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Abstract. In this paper, the authors study the fractional Carleson type maximal operators T ∗
β

which is defined by

T ∗
β f (x) = sup

λ

∣∣∣∣∫
Rn

eiPλ (y) Ω(y)
|y|n−β f (x− y)dy

∣∣∣∣ ,
where 0 < β < n and Ω satisfies the Lq -Dini conditions with 1 < q < ∞ . The authors prove
the Lp → Lp boundedness of T ∗

β under certain conditions.

1. Introduction

In 1966, Carleson [2] studied the following Carleson type maximal operator C ∗
as

C ∗ f (x) = sup
λ∈R

∣∣∣∣∣
∫ π

−π

e−iλ t f (t)
x− t

dt

∣∣∣∣∣ , (1.1)

where f ∈ L2([−π ,π ]) and x ∈ [−π ,π ] . Carleson [2] proved the almost everywhere
convergence of the Fourier series of the functions in L2([−π ,π ]) by using the weak
type (2,2) of C ∗ . Later, Hunt [9] improved Carleson’s results to Lp([−π ,π ]) with
1 < p < ∞ .

In 1970, Sjölin [12] studied another type of following Carleson type operator J ∗
on R

n , that is

J ∗( f )(x) = sup
λ∈Rn

∣∣∣∣∫
Rn

e−iλ ·yK(x− y) f (y)dy

∣∣∣∣, (1.2)

where λ = (λ1, · · · ,λn)∈ Rn and K is an appropriate Calderón-Zygmundkernel. Sjölin
[12] proved the following theorem.
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THEOREM A. ([12]) If K satisfies the following conditions:

1. K(tx) = t−nK(x), for t > 0;

2.
∫

Sn−1
K(x′)dσ(x′) = 0;

3. K ∈Cn+1(Rn \ {0}).
Then ‖J ∗( f )‖Lp � Cp‖ f‖Lp for 1 < p < ∞ .

In 2001, Stein and Wainger [13] extended Theorem A to a broader context. That
is, the authors in [13] replace the linear phase λ · y in the definition of J ∗ by a more
general phase with a fixed degree. Now, let us state the main results of [13].

Define
Tλ ( f )(x) =

∫
Rn

eiPλ (y)K(y) f (x− y)dy,

where Pλ (x)= ∑
2�|α |�d

λαxα is the polynomial in R
n with real coefficients λ :=(λα)1�|α |�d .

Then, the definition of the Carleson type maximal operator T ∗ is

T ∗ f (x) = sup
λ

|Tλ ( f )(x)|, (1.1)

where the supremum is taken over all the real coefficients λ of Pλ . Stein and Wainger
proved the following result.

THEOREM B. ([13]) Suppose that Pλ (x) = ∑
2�|α |�d

λαxα and K satisfies the fol-

lowing conditions:

1. K is a tempered distribution and agrees with a C1 function K(x) for x �= 0 ;

2. K̂ ∈ L∞ ;

3. |∂ γ
x K(x)| � A|x|−n−|γ| for 0 � |γ| � 1 .

Then ‖T ∗( f )‖Lp � Cp‖ f‖Lp for 1 < p < ∞ .

Obviously, Theorem B is a essential extension of Theorem A. Recently, Ding and
Liu [5] gave a weighted variant version of Theorem B under weak conditions. Before
giving the main results of [5], we introduce some definitions.

Let Sn−1 be the unit sphere in Rn (n � 2), equipped with the usual Lebesgue mea-
sure dσ . Suppose that Ω is a homogeneous of degree zero and measurable function on
Rn \ {0} . Furthermore, we assume that Ω satisfies the following conditions:

Ω ∈ L1(Sn−1),
∫

Sn−1
Ω(x′)dσ(x′) = 0. (1.3)

DEFINITION 1.1. ([1]) Suppose that Ω ∈ Lq(Sn−1) for some 1 � q � ∞ . Then a
function Ω is said to satisfy the Lq -Dini condition if∫ 1

0

ωq(δ )
δ

dδ < ∞,
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where ωq(δ )(0 < δ � 1) is called the integral continuous modulus of Ω of degree q ,
which is defined by

ωq(δ ) = sup
‖ρ‖<δ

(∫
Sn−1

∣∣Ω(ρx′)−Ω(x′)
∣∣q dσ(x′)

)1/q

for 1 � q < ∞

and
ω∞(δ ) = sup

‖ρ‖<δ
|Ω(ρx′)−Ω(x′)|,

where ρ is a rotation in Rn and ‖ρ‖ = sup
{|ρx′ − x′| : x′ ∈ Sn−1

}
.

Then the Carleson type maximal operator with a rough kernel on Rn studied by Ding
and Liu in [5] can be written as

T ∗ f (x) := sup
λ

|Tλ f (x)| = sup
λ

∣∣∣∣∫
Rn

eiPλ (y)K(y) f (x− y)dy

∣∣∣∣ ,
where K(y) = Ω(y)

|y|n . In [5], Ding and Liu proved the following theorem.

THEOREM C. ([5]) Suppose that Pλ (x) = ∑
2�|α |�d

λαxα and K(x) = Ω(x)|x|−n ,

where Ω satisfies (1.3). If Ω satisfies the Lq -Dini condition for some 1 < q � ∞ ,
then for 1 � q′ < p < ∞ and w ∈ Ap/q′ , the Carleson type maximal operator T ∗ is a
bounded operator on the weighted space Lp(w) . That is, there exists a constant C > 0
such that for all f ∈ Lp(w) ∥∥T ∗ f

∥∥
Lp(w) � C‖ f‖Lp(w), (1.4)

where Ap/q′ denotes the classical Muckenhoupt class (see [8] or [10]).

By the way, we would like to point out that Ding and Liu [4] also proved that if
Ω ∈ H1(Sn−1) , then T ∗ is bounded on Lp for 1 < p < ∞ . Here H1(Sn−1) denotes
the Hardy space on the unit sphere Sn−1 and one may see [3] for more details. Noting
the following fact

C1(Sn−1) ⊂ Lip1(S
n−1) ⊂ Lq(Sn−1)(1 < q � ∞) ⊂ H1(Sn−1) ⊂ L1(Sn−1),

we find that Ding and Liu’s results in [4, 5] are improvements of the main results of
[13].

On the other hand, the fractional integral was also studied a lot by many authors.
Especially in [6], Ding and Lu studied the fractional integral with a rough kernel defined
by

TΩ,β f (x) =
∫

Rn

Ω(x− y)
|x− y|n−β f (y)dy,

where 0 < β < n and Ω ∈ Ls(Sn−1) . Ding and Lu [6] proved the following results.
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THEOREM D. ([6]) Let 0 < β < n,s′ < p < n/α and 1/q = 1/p−β/n. If Ω ∈
Ls(Sn−1) and ω(x)s′ ∈ A(p/s′,q/s′) , then there exists a constant C independent of f ,
such that (∫

Rn
[TΩ,β f (x)ω(x)]qdx

)1/q

� C

(∫
Rn

| f (x)ω(x)|pdx

)1/p

where A(p/s′,q/s′) denotes the fractional type Muckenhoupt-Wheeden class (see [11]).

In this paper, we will study the following fractional Carleson type maximal oper-
ators T ∗

β with the following definition,

T ∗
β f (x) := sup

λ

∣∣Tλ ,β f (x)
∣∣ = sup

λ

∣∣∣∣∫
Rn

eiPλ (y)Kβ (y) f (x− y)dy

∣∣∣∣ , (1.5)

where Kβ (y) = Ω(y)
|y|n−β with 0 < β < n and Ω ∈ Lq(Sn−1) for some q > 1.

Furthermore, for any c > 0 and vector (λα)2�|α |�d , the set Λ is defined by

Λ =

{
λ = (λα)2�|α |�d : |λ | = ∑

2�|α |�d

|λα | � c

}
.

Our results can be stated as follows.

THEOREM 1.2. Suppose that Pλ (x) = ∑
2�|α |�d

λαxα with λ ∈ Λ and Ω satisfies

the Lq -Dini condition for some 1 < q � ∞ . Then for q′ < p < ∞ and 0 < β < δγ(p)
n−1+γ(p)

with γ(p) = min{1/p,1/p′} and δ = 1
6d , we have

‖T ∗
β f‖Lp � C‖ f‖Lp , (1.6)

where the constant C is dependent on 1/c and α but independent of f .

REMARK 1.3. By a simple computation, we have T ∗
β ( f )(x) � T|Ω|,β (| f |)(x) with

0 < β < n . Thus by Theorem D, we can easily get the Lp
ω p → Lq

ωq boundedness of T ∗
β

under the conditions of Theorem D.

2. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2. Some basic ideas and
techniques of this proof comes from [4, 5].

First, we will introduce a variant version of the Hardy-Littlewood maximal func-
tion which will be very useful in the proof of Theorem 1.2 (See [13]).

Let B3 = {x ∈ R
n : |x| � 3} . For a measurable set E ⊂ B3 , χE denotes the

characteristic function of E . Then for any ε > 0, the maximal operator Mε is defined
by

Mε( f )(x) = sup
E⊂B3, |E|�ε

a>0

| f | ∗ (χE)a(x),

where (χE)a(x) = a−nχE(x/a) .
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LEMMA 2.1. ([13]) For 1 < p < ∞ , there exists a constant C > 0 , independent
of ε , such that

‖Mε( f )‖Lp � Cε1−1/p‖ f‖Lp .

Proof of Theorem 1.2. As λ ∈ Λ , we have |λ |= ∑
2�|α |�d

|λα |� c . Thus, it suffices

to consider the case for T ∗
β f (x) := sup

λ>0

∣∣Tλ ,β f (x)
∣∣ .

Let λ (x) be the nonzero vector
(
λα(x)

)
2�|α |�d satisfying

∣∣Tλ (x),β ( f )(x)
∣∣ � 1

2
sup

λ

∣∣Tλ ,β ( f )(x)
∣∣,

where f ∈ Lp and x ∈ R
n . Thus by the above estimates, to prove Theorem 1.2, it

suffices to show that there exists a constant C , such that

‖Tλ (·),β ( f )‖Lp � C‖ f‖Lp ,

where the constant C is independent of the choice of λ (·) .
For any x∈ Rn , we define N(λ (x)) = ∑

2�|α |�d

|λα(x)| 1
|α| . By the definition of λ (·)

and the condition λ ∈ Λ , we have ∑
2�|α |�d

|λα(x)| � c . As 1
|α | < 1, we obtain

N(λ (x)) = ∑
2�|α |�d

|λα(x)| 1
|α| �

(
∑

2�|α |�d

|λα(x)|
) 1

|α|
� Cα , (2.1)

where the constant Cα is only dependent on c and α but independent of x .

Let ψ ∈C∞
0 (Rn) be a nonnegative function with supp(ψ) ⊆ { 1

4 < |y| � 1} . Fur-
thermore, we assume that ψ satisfies

∞

∑
j=−∞

ψ j(y) = 1 for y �= 0,

where ψ j(y) = ψ(2− jy) . Then, it is easy to get that

∞

∑
j=−∞

ψ j
(
N(λ (x))y

)
= 1 for y �= 0.

Now we may decompose Kβ as

Kβ (y) =
∞

∑
j=0

Kβ , j(y),
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where Kβ ,0(y)=
0

∑
j=−∞

ψ j,λ (y)Kβ (y) , Kβ , j(y)=ψ j,λ (y)Kβ (y) and ψ j,λ (y)=ψ j
(
N(λ (x))y

)
for j � 1 and x ∈ Rn . Thus, we have∣∣Tλ (x),β ( f )(x)

∣∣ �
∣∣∣∣∫

Rn
eiPλ(x)(y)Kβ ,0(y) f (x− y)dy

∣∣∣∣
+

∞

∑
j=1

∣∣∣∣∫
Rn

eiPλ(x)(y)Kβ , j(y) f (x− y)dy

∣∣∣∣
:= T 0

λ (x),β ( f )(x)+
∞

∑
j=1

T j
λ (x),β ( f )(x).

(2.2)

The estimates of T 0
λ (·),β

By the fact supp(Kβ ,0) ⊂ {|y| � 1
N(λ (x))} and (2.1), we have

∣∣T 0
λ (x),β f (x)

∣∣= ∣∣∣∣∫
Rn

eiPλ (y)Kβ ,0 f (x− y)dy

∣∣∣∣
=

∣∣∣∣∣ 0

∑
j=−∞

∫
Rn

eiPλ (y)Kβ (y)ψ j,λ (y) f (x− y)dy

∣∣∣∣∣
�

0

∑
j=−∞

∫
2 j−2

N(λ(x)) �|y|� 2 j
N(λ(x))

|Ω(y)|
|y|n−β | f (x− y)|dy

� C
0

∑
j=−∞

(
2 j−2

N(λ (x))

)β−n∫
|y|� 2 j

N(λ(x))

|Ω(y) f (x− y)|dy

� CMΩ f (x),

where MΩ is the usual Hardy-Littlewood maximal function with a rough kernel(see
[7]). Thus, by the Lp boundedness of MΩ (see [7]), we have

‖T 0
λ (·),β f‖Lp � C‖MΩ f‖Lp � C‖ f‖Lp . (2.3)

The estimates of T j
λ (·),β

We use some basic ideas from [5]. Choose a nonnegative function φ ∈ C∞
c (Rn)

satisfying supp(φ) ⊆ {|y| � 2−6} and ‖φ‖L1 = 1. For any a > 0, we denote φa(x) =
a−nφ(x/a) .

For a positive real number σ which satisfies β < σ and will be chosen later, we
may denote

Lj,λ (x),β (y) = Kβ , j ∗φ 2 j(1−σ)
N(λ(x))

(y) and Rj,λ (x),β (y) = Kβ , j(y)−Lj,λ (x),β (y), j ∈ N.

Thus, it is easy to see∣∣∣T j
λ (x),β ( f )(x)

∣∣∣� ∣∣∣L j
λ (x),β ( f )(x)

∣∣∣+ ∣∣∣R j
λ (x),β ( f )(x)

∣∣∣ ,
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where L j
λ (·),β and R j

λ (·),β are defined by

L j
λ (x),β ( f )(x) =

∫
Rn

eiPλ(x)(y)Lj,λ (x),β (y) f (x− y)dy

and

R j
λ (x),β ( f )(x) =

∫
Rn

eiPλ(x)(y)Rj,λ (x),β (y) f (x− y)dy.

Next, we will give the estimates of L j
λ (·),β and R j

λ (·),β respectively.

The estimates of L j
λ (·),β

First, we give the estimate of Lj,λ (x),β . By the definition of Lj,λ (x),β , we have

supp (Lj,λ (·),β ) ⊆
{

2 j−3

N(λ (x)) � |y| � 2 j+1

N(λ (x))

}
. (2.4)

Define

Lj,β (y) =
∫

Rn
ψ(y− z)Kβ (y− z)2 jnσφ(2 jσ z)dz.

Then, it is easy to see that

Lj,λ (x),β ( 2 jy
N(λ (x)) ) = ( 2 j

N(λ (x)) )
β−nL j,β (y). (2.5)

By the definition of Lj,λ (·),β and the Hölder inequality , we have the following estimates
for Lj,λ (·),β .

∣∣Lj,λ (x),β (y)
∣∣= (2− jN(λ (x)))n2 jnσ

∣∣∣∣∣∣
∫

Rn
Kβ , j(y)φ

⎛⎝ |x− y|
2 j(1−σ)

N(λ (x))

⎞⎠dy

∣∣∣∣∣∣
�(2− jN(λ (x)))n2 jnσ

∫
1
4 �|2− jN(λ (x))y|�1

|ψ j,λ (y)| |Ω(y)|
|y|n−β dy

�(2− jN(λ (x)))n2 jnσ
(∫

1
4�|2−jN(λ (x))y|�1

|Ω(y)|qdy

)1/q(∫
1
4�|2−jN(λ (x))y|�1

|y|q′(β−n)dy

)1/q′

�C(2− jN(λ (x)))n2 jnσ
(

2 j

N(λ (x))

)n/q( 2 j

N(λ (x))

)β−n( 2 j

N(λ (x))

)n/q′

=C(2− jN(λ (x)))n2 jnσ 2 jβ

(N(λ (x)))β .

From (2.1), we get

|Lj,λ (x),β (y)| � C(2− jN(λ (x)))n2 jnσ 2 jβ

(N(λ (x)))β � C(2− jN(λ (x)))n2 jnσ2 jβ , (2.6)
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which implies∣∣L j
λ (x),β f (x)

∣∣�C
∫

2 j−1
N(λ) �|y|� 2 j+1

N(λ)

(2− jN(λ (x)))n2 jnσ2 jβ | f (x−y)|dy�C2 jnσ+ jβM f (x).

(2.7)
Next, we adopt some notations from [5]. Recall that λ (x) =

(
λα(x)

)
2�|α |�d . For

any j ∈ Z+ , we denote

Aj,λ ◦λ =

((
2 j

N(λ (x))

)|α |
λα(x)

)
2�|α |�d

for convenience. From [5, p.2744], there is

Pλ (x)(y) = ∑
2�|α |�d

λα(x)yα = ∑
2�|α |�d

λα(x)
(

2 j

N(λ (x))

)|α | (
2− jN(λ (x))y

)α

= PAj,λ◦λ
(
2− jN(λ (x))y

)
.

(2.8)

Thus, by (2.5), we obtain

L j
λ (x),β ( f )(x)=

∫
Rn

e
iPAj,λ ◦λ(2−jN(λ (x))y)(

2−jN(λ (x))
)n−β

Lj,β
(
2−jN(λ (x))y

)
f (x−y)dy.

From now on, we denote L j
λ (x),β ( f )(x) by L j,β ( f )(x) for simplicity.

From [5, p.2745], we know that there exists a constant c0 > 0 such that N(ν) �
c0|ν| for any vector ν satisfying N(ν) � 1. Moreover, there is∣∣Aj,λ ◦λ

∣∣� 2 j/c0 for all λ (x), x ∈ R
n. (2.9)

For r � 2 j/c0 , we define

Uj,r =
{
x : r � |Aj,λ ◦λ | < 2r

}
and

L j,r,β ( f )(x) = L j,β ( f )(x)χUj,r (x).

Let L ∗
j,r,β be the adjoint operator of L j,r,β . Then, it is easy to check that

L ∗
j,r,β (g)(y) =

∫
Rn

e−iPλ(x)(x−y)Lj,λ (x),β (x− y)g(x)χUj,r(x)dx

and (
L j,r,βL ∗

j,r,β
)
( f )(x) =

∫
Rn

Kβ (x,z) f (z)dz,

where

Kβ (x,z) =
∫

Rn
eiPλ(x)(y)e−iPλ(z)(z−x+y)Lj,λ (x),β (y)Lj,λ (z),β (z− x+ y)dyχUj,r(x)χUj,r (z)
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=
(
eiPλ(x)(·)Lj,λ (x),β (·))∗ (e−iPλ(z)(−·)Lj,λ (z),β (−·))(x− z)χUj,r(x)χUj,r (z).

Following [5], we are going to prove that for r � 2 j/c0 and fixed x,z ∈Uj,r , the fol-
lowing inequality holds.∣∣Kβ (x,z)

∣∣� C
(
2− jN(λ (z))

)n
22 jnσ+4 jβ[r−2δ χB3(2

− jN(λ (z))(x− z))
+χ

E j
λ(z)

(
2− jN(λ (z))(x− z)

)]
+C
(
2− jN(λ (x))

)n
22 jnσ+4 jβ[r−2δ χB3(2

− jN(λ (x))(x− z))
+χ

E j
λ(x)

(
2− jN(λ (x))(x− z)

)]
,

(2.10)

where the sets E j
λ (x),E

j
λ (z) ⊂ B3 = {|y|� 3} satisfying |E j

λ (x)|, |E j
λ (z)|� r−4δ with δ =

(6d)−1 .
Now, we give the proof of (2.10) according to [5, p.2747-p.2748].
Define F μ,ν

j,β by

F
μ,ν
j,β (u) =

(
eiPν (·)Lj,ν,β (·))∗ (e−iPμ (−·)Lj,μ,β (−·))(u),

where ν =
(
να
)
2�|α |�d and μ =

(
μα
)
2�|α |�d to satisfy

r �
∣∣Aj,ν ◦ν

∣∣, ∣∣Aj,μ ◦ μ
∣∣< 2r.

Let h = N(μ)
N(ν) and we may assume that h � 1. Hence, by (2.5) and (2.8), we have

F μ,ν
j,β ( 2 ju

N(μ) ) =
∫

Rn
e
i
[
PAj,ν ◦ν (y)−PAj,μ ◦μ (−u+hy)

]

×Lj,β (y)
(

2 j

N(μ)

)−n+β (
2 j

N(ν)

)β
Lj,β (hy−u)dy.

(2.11)

To estimate F μ,ν
j,β
( 2 ju

N(μ)

)
, we adopt some basic ideas and estimates from [5, 13]. More-

over, we can divide it into two cases: h is near the origin and away from the origin.
Case 1. 0 < h � η � 1, where η will be chosen later. Note that

supp(Lj,β ) ⊆ {1/8 < |y| � 3/2
}

and |u| � |hy−u|+h|y|� 3.

First, we have the following estimates.

|Lj,β (y)| � C
∫

2 j−2�|y−z|�2 j

|Ω(y− z)|
|y− z|n−β 2 jnσdz

� C2 jnσ
(∫

2 j−2�|y|�2 j
|Ω(y)|qdy

)1/q(∫
2 j−2�|y|�2 j

|y|(β−n)q′dy

)1/q′

� C2 jnσ2 jβ .
(2.13)

Similarly, there is
|∇Lj,β (y)| � C2 jnσ2 jβ . (2.14)
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From [5, p.2747], we know that if we choose η small enough, then

∑
2�|α |�d

∣∣((Aj,ν ◦ν)α +O(h|Aj,μ ◦ μ |))∣∣ � ∑
2�|α |�d

∣∣(Aj,ν ◦ν)α
∣∣−Cη |Aj,μ ◦ μ | � Cr.

Thus, using (2.13), (2.14) and the van der Corput lemma in n -dimensional (see
Proposition 2.1 in [13, p. 791]), we obtain∣∣∣∣F μ,ν

j,β

(
2 ju

N(μ)

)∣∣∣∣� C
(
2− jN(μ)

)n
22 jnσ+4 jβ r−1/dχB3(u). (2.15)

Case 2. η < h � 1. From the assumption on polynomial, we know that there is no first
order term in y of PAj,ν◦ν(y) . Let ek = (0, . . . ,1,0 . . .) with 1 in the kth component.
From [5, p.2748], we know that the first order term in y in PAj,ν◦ν(y)−PAj,μ◦μ(−u+hy)
can be written as

−h
n

∑
k=1

P(k)
Aj,μ◦μ(u)yk = −h

n

∑
k=1

∑
2�|α |�d

αk

(
2 j

N(μ)

)|α |
μαuα−ekyk.

Now applying (2.13), (2.14) and Proposition 2.1 in [13] again, we have∣∣∣∣F μ,ν
j,β

(
2 ju

N(μ)

)∣∣∣∣� C
(
2− jN(μ)

)n
22 jnσ+4 jβ

( n

∑
k=1

∣∣P(k)
Aj,μ◦μ(u)

∣∣)−1/d

χB3(u).

For ρ > 0, we define E j
μ =

{
u ∈ B3 :

n

∑
k=1

∣∣P(k)
Aj,μ◦μ(u)

∣∣� ρ
}

. Thus, we get

∣∣∣∣F μ,ν
j,β

(
2 ju

N(μ)

)∣∣∣∣� C
(
2− jN(μ)

)n22 jnσ+4 jβ ρ−1/dχB3(u), (2.16)

for u ∈ (E j
μ
)c

. From Proposition 2.2 in [13, p. 791], we have

∣∣∣E j
μ

∣∣∣� Cn,d

(
n

∑
k=1

∑
2�|α |�d

αk

(
2 j

N(μ)

)|α |
|μα |

)−1/d

ρ1/d.

According to [5, p.2748], there is

n

∑
k=1

∑
2�|α |�d

αk

(
2 j

N(μ)

)|α |
|μα | � ∑

2�|α |�d

(
2 j

N(μ)

)|α |
|μα | = |Aj,μ ◦ μ |� r.

Let ρ = (Cn,d)−dr1/3 and δ = 1
6d . Then, for u ∈ E j

μ , we have∣∣∣∣F μ,ν
j,β

(
2 ju

N(μ)

)∣∣∣∣� C
(
2− jN(μ)

)n
22 jnσ+4 jβ χ

E j
μ
(u) (2.17)
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with |E j
μ | � Cn,d(ρ/r)1/d � r−4δ . As r � 2 j/c0 , then using (2.15)-(2.17), we get∣∣∣∣F μ,ν

j,β

(
2 ju

N(μ)

)∣∣∣∣� C
(
2− jN(μ)

)n
22 jnσ+4 jβ

[
r−2δ χB3(u)+ χ

E j
μ
(u)
]
.

Now, we conclude that for μ , ν with r �
∣∣Aj,ν ◦ν

∣∣� 2r,r �
∣∣Aj,μ ◦μ

∣∣� 2r and h � 1,
there is∣∣F μ,ν

j,β (u)
∣∣� C

(
2− jN(μ)

)n
22 jnσ+4 jβ

[
r−2δ χB3(2

− jN(μ)u)+ χ
E j

μ

(
2− jN(μ)u

)]
.

(2.18)
For fixed x,z ∈Uj,r , let ν = λ (x) , μ = λ (z) , u = x− z . By the symmetry of μ ,

ν , and (2.18), we finish the proof of (2.10).
Now, we return to the estimates of L j

λ (·),β . Recall the definition of Mε( f )(x) and

Lemma 2.1. Denoting ε = r−4δ and using (2.10), we obtain∣∣(L j,r,β L ∗
j,r,β f ,g

)∣∣
�
∫

Rn

∫
Rn

|Kβ (x,z)|| f (z)||g(x)|dzdx

�Cr−2δ 22 jnσ+4 jβ
∫

Rn
| f (z)|(2− jN(λ (z))

)n ∫
|x−z|� 3·2 j

N(λ(z))

|g(x)|dxdz

+C22 jnσ+4 jβ
∫

Rn
| f (z)|(2− jN(λ (z))

)n ∫
Rn

χ
E j

λ(z)

(
2− jN(λ (z))(x− z)

)|g(x)|dxdz

+Cr−2δ 22 jnσ+4 jβ
∫

Rn
|g(x)|(2− jN(λ (x))

)n ∫
|x−z|� 3·2 j

N(λ(x))

| f (z)|dzdx

+C22 jnσ+4 jβ
∫

Rn
|g(x)|(2− jN(λ (x))

)n ∫
Rn

χ
E j

λ(x)

(
2− jN(λ (x))(x− z)

)| f (z)|dzdx

�Cr−2δ 22 jnσ+4 jβ
∫

Rn
| f (z)|M(g)(z)dz+C22 jnσ+4 jβ

∫
Rn

| f (z)|Mε (g)(z)dz

+Cr−2δ 22 jnσ+4 jβ
∫

Rn
|g(x)|M( f )(x)dx+C22 jnσ+4 jβ

∫
Rn

|g(x)|Mε( f )(x)dx.

Using the Hölder inequality, the L2 boundedness of M (see [8]) and Lemma 2.1, we
obtain that ∣∣(L j,r,βL ∗

j,r,β f ,g
)∣∣� Cr−2δ 22 jnσ+4 jβ‖ f‖L2‖g‖L2 . (2.19)

As {
x ∈ R

n :
∣∣Aj,λ ◦λ

∣∣� 2 j

c0

}
=

∞⋃
k=0

{
x :

2 j+k

c0
� |Aj,λ ◦λ | < 2 j+k+1

c0

}
,

we may choose r = 2 j+k/c0 for k = 0,1, · · · , and denote L
(k)
j,β := L j,r,β . Thus, we

obtain L j,β ( f )(x) =
∞

∑
k=0

L
(k)
j,β ( f )(x) . Using (2.19), we get

∥∥L j,β
∥∥

L2→L2 �
∞

∑
k=0

∥∥∥L (k)
j,β

∥∥∥
L2→L2

� C2 jnσ+2 jβ
∞

∑
k=0

(
2 j+k/c0

)−δ � C2 jnσ+2 jβ2− jδ .

(2.20)
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By the fact |L j,β f (x)| � C2 jnσ+ jβM f (x) (see (2.7)), we have∥∥L j,β f
∥∥

Ls � C2 jnσ+ jβ‖ f‖Ls ,

for 1 < s < ∞ .
Thus, by the Riesz-Thörin interpolation theorem, we obtain∥∥L j,β f

∥∥
Lp � C2 jnσ+ jβ2− j(δ−β )γ(p)‖ f‖Lp ,

where γ(p) = min{1/p,1/p′} and q′ < p < ∞ . As 0 < β < δγ(p)
n−1+γ(p) , we may choose

σ satisfying β < σ < β+(δ−β )γ(p)
n . Moreover, we denote θ = (δ −β )γ(p)−nσ −β >

0, which implies ∥∥∥L j
λ (·),β f

∥∥∥
Lp

= ‖L j,β f‖Lp � C2− jθ‖ f‖Lp . (2.21)

The estimates of R j
λ (·),β

Before giving the estimates of R j
λ (·),β , we recall the definition of R j

λ (·),β as

R j
λ (x),β ( f )(x) =

∫
Rn

eiPλ(x)(y)Rj,λ ,β (y) f (x− y)dy,

where Rj,λ ,β (y) is defined by

Rj,λ ,β (y) =
∫

Rn

[
Kβ (y)ψ j,λ (y)−Kβ (y− z)ψ j,λ (y− z)

]
φ 2 j(1−σ)

N(λ(x))

(z)dz.

As

supp (Rj,λ ,β ) ⊆
{

2 j−3

N(λ (x)) � |y| � 2 j+1

N(λ (x))

}
(2.22)

and |z| � 2 j(1−σ)−5

N(λ (x)) , we get |y− z| ∼ |y| . Thus, we have

|Rj,λ ,β (y)| �
∫

Rn
|ψ j,λ (y− z)||Kβ (y)−Kβ (y− z)|φ 2 j(1−σ)

N(λ(x))

(z)dz

+
∫

Rn
|Kβ (y)||ψ j,λ (y)−ψ j,λ (y− z)|φ 2 j(1−σ)

N(λ(x))

(z)dz

�C
|Ω(y)|
|y|n+1−β

∫
Rn

|z|φ 2 j(1−σ)
N(λ(x))

(z)dz

+
C

|y|n−β

∫
Rn

|Ω(y− z)−Ω(y)|φ 2 j(1−σ)
N(λ(x))

(z)dz

+C
|Ω(y)|
|y|n−β

∫
Rn

∣∣2− jN(λ (x))z
∣∣φ 2 j(1−σ)

N(λ(x))

(z)dz

�C2− jσ+ jβ |Ω(y)|
|y|n +

C

|y|n−β

∫
Rn

|Ω(y− z)−Ω(y)|φ 2 j(1−σ)
N(λ(x))

(z)dz.
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Now, we denote R j
λ (·),β ( f ) by R j,β ( f ) for simplicity. Then, from (2.22) and the

Hölder inequality, we have

|R j,β ( f )(x)|

�C2−jσ+jβMΩ( f )(x)+
∫

Rn
φ 2 j(1−σ)

N(λ(x))

(z)×
∫

2 j−3
N(λ(x))�|y|� 2 j+1

N(λ(x))

|Ω(y−z)−Ω(y)|
|y|n−β | f (x−y)|dydz

�C2− jσ+ jβMΩ( f )(x)+
∫

Rn
φ 2 j(1−σ)

N(λ(x))

(z)
(∫

2 j−3
N(λ(x)) �|y|� 2 j+1

N(λ(x))

|Ω(y− z)−Ω(y)|q
|y|n−β dy

)1/q

×
(∫

2 j−3
N(λ(x)) �|y|� 2 j+1

N(λ(x))

| f (x− y)|q′
|y|n−β dy

)1/q′

dz.

From [5, p.2750], we know that for α = z
|y| , there is

∫
Sn−1

∣∣∣∣Ω( y′ −α
|y′ −α|

)
−Ω(y′)

∣∣∣∣qdσ(y′) � Cωq
q (|α|).

As |z| � 2 j(1−σ)−5

N(λ (x)) , we get

(∫
2 j−3

N(λ(x)) �|y|� 2 j+1
N(λ(x))

|Ω(y− z)−Ω(y)|q
|y|n−β dy

)1/q

� C2 jβ/qωq(2− jσ−2).

Thus, we have

|R j,β ( f )(x)| � C
[
2− jσ+ jβMΩ( f )(x)+2 jβ ωq(2− jσ−2)Mq′( f )(x)

]
,

where C is independent of the choice of λ (·) . Since p > q′ , using the Lp boundedness
of MΩ and Mq′ again, we obtain∥∥∥R j

λ (·),β ( f )
∥∥∥

Lp
=
∥∥R j,β ( f )

∥∥
Lp � C

(
2− jσ+ jβ +2 jβ ωq(2− jσ−2)

)‖ f‖Lp . (2.23)

Proof of Theorem 1.2

From (2.21) and (2.23), we have the following estimates.∥∥∥T j
λ (·),β ( f )

∥∥∥
Lp

�
∥∥∥L j

λ (·),β ( f )
∥∥∥

Lp
+
∥∥∥R j

λ (·),β ( f )
∥∥∥

Lp

� C
(
2− jθ‖ f‖Lp +2− jσ+ jβ‖ f‖Lp +2 jβ ωq(2− jσ−2)‖ f‖Lp

)
.

By the fact that θ < 0 and β < σ , we can easily get

∑
j�1

2− jθ‖ f‖Lp � C‖ f‖Lp , (2.24)
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and

∑
j�1

2− jσ+ jβ‖ f‖Lp � C‖ f‖Lp . (2.25)

Moreover, we have

∑
j�1

2 jβ ωq(2− jσ−2)‖ f‖Lp

= (ln2)−1 ∑
j�1

ωq(2− jσ−2)2 jβ
∫ 2− jσ−1

2− jσ−2
δ

dδ
δ

‖ f‖Lp

� C ∑
j�1

2 jβ
∫ 2− jσ−1

2− jσ−2

ωq(δ )
δ

δdδ‖ f‖Lp

� C ∑
j�1

2 jβ 2− jσ
∫ 1

0

ωq(δ )
δ

dδ‖ f‖Lp � C‖ f‖Lp .

(2.26)

Combining (2.2)-(2.3), (2.24)-(2.26), we finish the proof of Theorem 1.2.
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