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BOUNDEDNESS FOR A CLASS OF FRACTIONAL
CARLESON TYPE MAXIMAL OPERATOR

XI1AO YU, HUIHUI ZHANG AND XIAOMEI WU *

(Communicated by T. Buric)

Abstract. In this paper, the authors study the fractional Carleson type maximal operators 7B*
which is defined by

T f(x) = sup
B0 2 yp=f

where 0 < 8 <n and Q satisfies the L9 -Dini conditions with 1 < g < eo. The authors prove
the LP — LP boundedness of ?ﬁ* under certain conditions.

1. Introduction

In 1966, Carleson [2] studied the following Carleson type maximal operator 6™
as

T e—i}Lt
%”*f(x):sup/ W 4| (1.1)

rer|/-m X —I

where f € L?([~r,n]) and x € [~ 7]. Carleson [2] proved the almost everywhere
convergence of the Fourier series of the functions in L?([—7,7]) by using the weak
type (2,2) of €*. Later, Hunt [9] improved Carleson’s results to L”([—7,x]) with
1 <p<eoo.

In 1970, Sjolin [12] studied another type of following Carleson type operator 7 *
on R”, that is

S () (x) = sup

ALER”

L e K=y (12)

where A = (A1,---,A,) € R" and K is an appropriate Calderén-Zygmund kernel. Sjolin
[12] proved the following theorem.
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THEOREM A. ([12]) If K satisfies the following conditions:
1. K(tx)=t"K(x), for t>0;

2. 1K()c’)da()c’) =0;
S

3. Ke "R\ {0}).

Then || 7 (f)llr < Cpllfller for 1 < p <.

In 2001, Stein and Wainger [13] extended Theorem A to a broader context. That
is, the authors in [13] replace the linear phase A -y in the definition of #* by a more
general phase with a fixed degree. Now, let us state the main results of [13].

Define

T, = [ ORIy

where Py (x)= 2 Agx® is the polynomial in R" with real coefficients A := (A) 1<|aj<a -
2<|al<d
Then, the definition of the Carleson type maximal operator 7" is

T f(x) =Slip\Tz(f)(X)\» (1.1)

where the supremum is taken over all the real coefficients A of P, . Stein and Wainger
proved the following result.

THEOREM B. ([13]) Suppose that Py (x) = 2 Aox® and K satisfies the fol-
2<]al<d
lowing conditions:

1. K is a tempered distribution and agrees with a C' function K(x) for x # 0;
2. KeL”;
3. |VK )| <Alx|"M for 0< |yl < 1.

Then || 7 (f)llr < Cpllfller for 1<p <ee.

Obviously, Theorem B is a essential extension of Theorem A. Recently, Ding and
Liu [5] gave a weighted variant version of Theorem B under weak conditions. Before
giving the main results of [5], we introduce some definitions.

Let S"~! be the unit sphere in R” (n > 2), equipped with the usual Lebesgue mea-
sure do . Suppose that € is a homogeneous of degree zero and measurable function on
R"\ {0}. Furthermore, we assume that Q satisfies the following conditions:

QeLl(s 1, - Q¥ )do(¥)=0. (1.3)

DEFINITION 1.1. ([1]) Suppose that Q € L9(S"~!) for some 1 < g < . Then a
function Q is said to satisfy the L?-Dini condition if

L ay(5)
[0,
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where ,(8) (0 < 6 < 1) is called the integral continuous modulus of  of degree ¢,
which is defined by

1/q
w,(8) = H;lHl.Eé (/Snl }Q(px ) —Q(x)}qdcf(x )) for 1<g<oo

and

0(8) = sup |Q(px') — Qx)],
Il <8

where p is a rotation in R” and ||p|[| = sup {|px’ —x/| : X’ € S"" 1} .
Then the Carleson type maximal operator with a rough kernel on R” studied by Ding
and Liu in [5] can be written as

T f(5) = sup| Ty ()| = sup| [ OK(3)f(x =)y
A A /R

where K(y) = ?y(‘f,) . In [5], Ding and Liu proved the following theorem.

THEOREM C. ([5]) Suppose that Py(x) = Y, Aqx® and K(x) = Q(x)[x|™",
2<|a|<d
where Q satisfies (1.3). If Q satisfies the L1-Dini condition for some 1 < q < oo,
thenfor 1 <q < p <e and w € Ap/q» the Carleson type maximal operator T* is a
bounded operator on the weighted space LP(w). That is, there exists a constant C > 0
such that for all f € LP(w)

where Ap /d denotes the classical Muckenhoupt class (see [8] or [10]).

By the way, we would like to point out that Ding and Liu [4] also proved that if
Qe H'(S" 1), then 7 is bounded on L? for 1 < p < eo. Here H'(S"~!) denotes
the Hardy space on the unit sphere S"~! and one may see [3] for more details. Noting
the following fact

CY(S"!) c Lip, (") c LU(S" ) (1 < g < w0) C HY(S"™ 1) c L} (S"),

we find that Ding and Liu’s results in [4, 5] are improvements of the main results of
[13].

On the other hand, the fractional integral was also studied a lot by many authors.
Especially in [6], Ding and Lu studied the fractional integral with a rough kernel defined
by

Eﬁiﬂﬂw@,

where 0 < 8 <n and Q € L*(S""!). Ding and Lu [6] proved the following results.
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THEOREM D. ([6]) Let 0< B <n,s <p<n/aand 1/qg=1/p—B/n. If Q€
L(S™Y) and o(x)* € A(p/s',q/s'), then there exists a constant C independent of f,

such that
</JhNhMQW”yM<C(@Uuw@WMYM

where A(p/s',q/s’) denotes the fractional type Muckenhoupt-Wheeden class (see [11]).

In this paper, we will study the following fractional Carleson type maximal oper-
ators %* with the following definition,

/n eiPx()’)Kﬁ(y)f(x_y)dy ; (15)

Ty f(x) = sup Ty pf ()] = sup

where Kg(y) = Ij’@ﬁ with 0 < B <n and Q € L9(S""1) for some ¢ > 1.

Furthermore, for any ¢ > 0 and vector (Aq )2<|q|<a > the set A is defined by

A= {/1 = (Aa)ogjai<a 1A= D Al > C}.

2<]a|<d
Our results can be stated as follows.

THEOREM 1.2. Suppose that Pj (x) = Z Aox® with A € A and Q satisfies

2<|a|<d

the L7-Dini condition for some 1 < g < oo. Thenfor ¢ <p<ooand 0<f < n_alﬁl;zp)

with y(p) =min{1/p,1/p'} and & = &, we have
175 fllr < ClIflIr, (1.6)

where the constant C is dependent on 1/c and o but independent of f.

REMARK 1.3. By asimple computation, we have ﬂﬁ* (f)(x) < Tiqp(|f1)(x) with

0 < B < n. Thus by Theorem D, we can easily get the L? , — LT, boundedness of Ty
under the conditions of Theorem D.

2. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2. Some basic ideas and
techniques of this proof comes from [4, 5].

First, we will introduce a variant version of the Hardy-Littlewood maximal func-
tion which will be very useful in the proof of Theorem 1.2 (See [13]).

Let B3 = {x € R": |x| <3}. For a measurable set E C B3, yg denotes the
characteristic function of E. Then for any € > 0, the maximal operator .#; is defined
by

Me(f)) = sup  |f]* (2p)alx),

ECBs,|E|<e
a>0

where (yg)a(x) =a "xe(x/a).
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LEMMA 2.1. ([13]) For 1 < p < oo, there exists a constant C > 0, independent
of €, such that

|2 (f)ller < Ce =PI fl o

Proof of Theorem 1.2. As A € A, wehave [A|= Y |Aq| >c. Thus, it suffices
2<|a|<d
to consider the case for %* flx) = /Sllil()) |T7L~,l3 fx)].

Let A(x) be the nonzero vector (Ag(x)) satisfying

2<|al<d
|To 0.8 ())(x)] = %P’Tw )(x)],

where f € L? and x € R". Thus by the above estimates, to prove Theorem 1.2, it
suffices to show that there exists a constant C, such that

1Ty 8(Nler < ClIF 2,

where the constant C is independent of the choice of A(-).

L

Forany x € R", we define N(A(x)) = Y, |Aq(x)|™ . By the definition of A(-)
2<|el<d

and the condition A € A, wehave Y [Aq(x)| = c. As

I < 1, we obtain
2<]a|<d

|oc

| Tl
NA@) = Y |Aalx )a>< Y Ma(x)) > Cy, (2.1)

2<|of<d 2<al<d
where the constant Cy, is only dependent on ¢ and ¢ but independent of x.

Let y € C3(R") be a nonnegative function with supp (y) C {1 < [y| < 1}. Fur-
thermore, we assume that y satisfies

Y v =1 for y#0,

j=—

where y;(y) = w(27/y). Then, it is easy to get that

=

> wi(N(A(x)y) =1 for y#0.

Jj=—c0

Now we may decompose Kg as

Kg(y) = > Kp ;(v),
=0
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where Kp o(y Z Wiy ). Kg ;(0)=w; 2 (v)Kp(y) and y; 5 () =y, (N(A (x)y)

]—_°°

for j > 1 and x € R”. Thus, we have

|06 () ()] <

/ 0K oy )f(x—y)dy'

; z / et Kﬁ i )f(x—y)dy‘ 22)
The estimates of T}?(,). 5
By the fact supp (Kp ) C {[y| < } and (2.1), we have

|T7(L)(x),ﬁf(x)’ = /n eipk(”[(/s,of(x—}’)d)”

'3 [ €Ky ) 0 (5= )y

Jj=—o0

Q)|
2 /NJ 2 <M< ‘y‘n ﬁ|f( )‘dy

Jj=—o0

0 2] 2 ﬁ7"
<% (vaw ) [ 100y
— ‘}’KW

< CMQf(x)7

where Mg is the usual Hardy-Littlewood maximal function with a rough kernel(see
[7]). Thus, by the L? boundedness of Mg (see [7]), we have

1700 pfllr < ClMafllr < Clfle- (2.3)

. J
The estimates of T/I(~)7 B

We use some basic ideas from [5]. Choose a nonnegative function ¢ € C(R")
satisfying supp (¢) C {|y| <27°} and ||¢||;1 = 1. For any a > 0, we denote ¢,(x) =

a"o(x/a).
For a positive real number ¢ which satisfies 8 < ¢ and will be chosen later, we
may denote

Liawp(y) =Kpj* 0, 2i1=0) (v) and R;3np(y)=Kp (V) —Ljrmp0),j €N.

Thus, it is easy to see

)T){(x),ﬁ(f)(x)‘ S ‘gf{(xm(f)(x)) * )‘%/{(x)vﬁ(f)(x) ’
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where %/

(). and %’i(_) p are defined by

L . N E) Z/ PO 0 p ) f(x—y)dy

n

and
eTOIR 5 0 p () f(x—y)dy.

)

# s = [

Next, we will give the estimates of ‘f}f ()8 and %’i(,). B respectively.

; J
The estimates of XM_% 8

First, we give the estimate of L; ; () g . By the definition of L; 3 ,) g, we have

1
supp (Lj,l(').,ﬁ) - {N(/l(x) Iyl < N%;( ) } (2.4)

Define
L sy / w(y— )Kg(y — 2279 (2%7)dz.

Then, it is easy to see that

Ljdl(x),ﬁ(zv(i](yx))) = (N(72Lj(x)) )ﬁfnLj’ﬁ ¥)- (2.5)

By the definitionof L; 3.y g and the Holder inequality , we have the following estimates

for Lj,l(~),ﬁ'
[ —yl
RnKﬁ,j(y)¢ 2](1 o) dy
N(Z(x))
L4y

<(27/N(A(x)))"2/m° [ et ij,a(y)l| e 2

13
' ' 1/q
<@ INQ()) 2 (/ |qd) ( 515 dy)
%g\z—jzv( v\<1 <27IN(A(x))y[<1

iy a2 N "
<C(27/N(A(x)))"2/ (N(?L(x))) (N?Lx x)))
2JB
(N((x))P”

L 200.80)] = Q7/N(A(x)))"2/"®

=C(27/N(A(x))) 2/
From (2.1), we get

L1005 0)] € CRTINQ(0))12m0 - 2s < CRTIN(A)" 202, (2.6)
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which implies

|$lj(x),ﬁf(x)} <C/2,>1

oy <<y
(2.7)
Next, we adopt some notations from [5]. Recall that A (x) = (Aa/(x)), <laf<a- FOT
any j € Z", we denote
o (( 2 )laa ( ))
k= yam) A
N(A(x)) 2<]al<d
for convenience. From [5, p.2744], there is
S b= 3 2 )" @va”
Pi) = 3 dalt= 3 dalo) (i) @INGED
v 2<lal<d 2<lal<d N(A(x)) (2.8)

= Py, or (27INQL())y).

Thus, by (2.5), we obtain
25 (I@= [t B i ()P L (2IN)) f )

From now on, we denote .,2”){ (). (f)(x) by Z; g(f)(x) for simplicity.
From [5, p.2745], we know that there exists a constant co > 0 such that N(v) <
co|Vv| for any vector v satisfying N(v) > 1. Moreover, there is

|AjaoA|=>2//cy for all A(x), x€R" (2.9)
For r > 2/ /cg, we define
Ujy={x:r<|Aj 0| <2r}

and
2 () (x) = Zp(f) () xv;, (%)-
Let £7 5 be the adjoint operator of . ,. 5. Then, it is easy to check that
B Jor,

Zp@0) = [ N g5 38000, (Wdx

and
(LirpZep) () = [ Hp(x2)f(2)dz,

where

Hp(x,2) = / neip“")(y Je @I 0 0 g O)Lj A p @ —x+¥)dyr,, () xu;, (2)
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= (ML 5 0 p()) * (e PHOTIL; 5 ) (=) (v = 2)xw,, () 2w, (2)-

Following [5], we are going to prove that for r > 2/ /¢y and fixed x,z € U; , the fol-
lowing inequality holds.

7500 < CINAN) 248 253, 0 NGO c—2)

g, (2 IN(A(2))(x—2))]
—|—C(2 JN (x)) )n221n6+41ﬁ[ 6%33(27]‘1\7(1()6))()6—1)) (2.10)
+a (2ONG)G-2)]

where the sets E)’L(x),Ej C B3 = {|y| <3} satisfying |Ei(x)|, |E7{(z)| <r %% with § =

(6d)!
Now, we give the proof of (2.10) according to [5, p.2747-p.2748].

g,V
Define 7B by

T ) = (POL;y () (eI g (=) (w),
where v = (vq)

2<|a|<d and j = (“0‘)2<\a|<d to satisfy

r<

Aj O[.t|<2r.

Let h= xg’\f; and we may assume that & < 1. Hence, by (2.5) and (2.8), we have

gy:v( 2y ): /nei{PAj”VOV(y)_PAj,IIO“(_M+hy)]

2.11)
. 7n+ﬁ . ﬁ (
2/ 2/
To estimate .# j” ﬁv ( 2( i ) we adopt some basic ideas and estimates from [5, 13]. More-
over, we can divide it mto two cases: h is near the origin and away from the origin.
Casel. 0 <h<n<1,where n will be chosen later. Note that

supp(Ljg) C {1/8 <|y|<3/2} and |u| <|hy—u|+hly|<3

First, we have the following estimates.

Lipol<c [, B0 2y,

i~2<ly—z|<2) |y —z|" B

, 1/q RN
< coiro ( / IQ(y)quy) ( / [y P dy)
202 Jy|<2) 272 y|<2

< C2/m02IB,
(2.13)
Similarly, there is
|VL;j p(y)| < C2/"027P, (2.14)
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From [5, p.2747], we know that if we choose 1) small enough, then

Y |((Ajyov)a+OMAjon))| = Y |(Ajvov)e|—CnlAjuoul=Cr.

2<al<d 2<|a|<d

Thus, using (2.13), (2.14) and the van der Corput lemma in n-dimensional (see
Proposition 2.1 in [13, p. 791]), we obtain

‘ﬁjl'lb" (1\?(];:)) ’ < C(zij(‘u))"22jn()'+4jﬁr71/de3 (u) (215)

Case 2. n <h< 1. From the assumption on polynomial, we know that there is no first
order term in y of Py; ov(y). Let ex = (0,...,1,0...) with 1 in the k" component.
From [5, p.2748], we know that the first order term in y in Pa; ,ov (¥) — Pa; ou (—t+y)
can be written as

_hip(k) __hz Z 2/ \™ a—ery,
=1 A'f’”ou a “\N(w) Hodt™ ke

k=12<|o|<d

Now applying (2.13), (2.14) and Proposition 2.1 in [13] again, we have

2Ju . . L —1/d
u.v - n~2jnc+4;jB (k)
Zib (N(.ll))‘ <C(27/N(u))"2%mo+H (I;l}pAMoﬂ(u)D xB; (u0).
For p > 0, we define Ej, = {u €B3: ) }PX;)”O“(MH < p}. Thus, we get
k=1 ’

’j;’fﬁv <N2<j)> ’ < CTIN(w)" 22 4Pp = g, (u), (2.16)

for u € (E{L)C From Proposition 2.2 in [13, p. 791], we have

—1/d

\Eﬂ<cnd<2 > o (N(m)a'ma) pll

12<|a|<d

According to [5, p.2748], there is

> ak<%>la“a|> > (%)Iamzmwoupr

12<]al<d 2<]a|<d

M=

k

Let p = (Cpg) 9r'/3 and § = 6%]. Then, for u € Eﬂ, we have

\ﬁ;f,;” (13(;:)) \ < CTIN (W) 248 g () (2.17)
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with [E}| < Coalp/r)/4 <r*3. As r > 2/ /¢y, then using (2.15)-(2.17), we get

fj‘fﬁv <15(’::)) ' < C(ijN(‘u))nzzinoJrMﬁ [r726xB3 (u) +XE£ (u)} '

Now, we conclude that for i, v with r < |Ajyov| <2rr<|Ajy ou|<2rand h <1,
there is

| FEY ()| < C(27IN(w)) "2 +458 [r—25 25,2 IN()u) + 1, (2_jN([,L)u)] .
i
(2.18)
For fixed x,z € Uj, let v=A(x), u = A(z), u =x—z. By the symmetry of u,
v, and (2.18), we finish the proof of (2.10).
Now, we return to the estimates of .%} (1,5~ Recall the definition of Me(f)(x) and

Lemma 2.1. Denoting € = r—*% and using (2.10), we obtain
[(LinpLirpt 8)]
<[ [ A2l f@)ls) dzas

<craprent [ raieva@) [,

|g(x)|dxdz
LN vxa)

+e2nme i [ FEIQINAE)" [ 1y QONRE) ) (0l

wCr 2ot | el @INGW)" [

—2<xiey

|f(2)|dzdx

+C22no 4P /R s@)(27N(A(x)))" o XEL (27N(A))(x—2))|£(2) |dzdx

<Cr2092no4ip /R f(@)IM(g)(z)dz+ €22 HIP /R N @)|Ae(9)(2)dz

O 2520 4P /]R IM(f) () dx -+ C22n 4B /R |g@)[Ae(f)(x)dx.

Using the Holder inequality, the L2 boundedness of M (see [8]) and Lemma 2.1, we
obtain that

(LirpLryp28)| < Cr2022m0 4438 £] o g . (2.19)
As j j+k j+k+1
27 < 27 2J
{xER":|AJ-’;LoM>—}:U{x — < |Aj 0l < },
co =0 Co co
we may choose r = 21+k/co for k=0,1,---, and denote %(3 =% ,p- Thus, we
obtain .} g Z .,2” ). Using (2.19), we get

15,2 pe < i H 2% < C2ino+2iP i (27 o) ™8 < Camo 2By 75,
k=0 k=0

1212
(2.20)
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By the fact |.Z; 5 f(x)| < C2/" TP Mf(x) (see (2.7)), we have

151

<C" TP f|,

Al <

for 1 <s < oo,
Thus, by the Riesz-Thorin interpolation theorem, we obtain

|2 p £, < C21OH BRI E=BID) £,

where y(p) =min{1/p,1/p'} and ¢’ <p <eo. As 0 <fB < = IJEYE) we may choose

o satisfying f < 0 < %. Moreover, we denote 6 = (6 — 8)y(p) —no —f >
0, which implies

|27, = 128700 < 21l (221)

: J
The estimates of '%M) 8

Before giving the estimates of %’ WO recall the definition of 92/ 2.8 3

FL o p N0 = [ PR p(3)f(x=y)ay,

where R; ; g(y) is defined by

n

Riap) = [ [Kp0)¥:.0) ~Kp(s = wya(r=2)oyin o (e

2/-3

i1
supp (Rj,l,ﬁ) - {N(A(x)) <yl < N%f(x))} (2.22)

and |z] < %, we get |y —z| ~ |y|. Thus, we have

IRjap(y)| < / (Wi (v —2)||Kg(y) — Kg(y —2)|9,j0-0) (2)dz
R” VAW

[ KO0 = w32 0= 2)lbyr-o (a2

N(A(x))
|€2(y)|
C 200,00 (2)dz
[ 1=P JRe 216(/1(;);)

C
+|y|Tﬁ/ |Q(y—Z)—Q(y)|¢;%Vj(lfa) (2)dz

(%)

- |/ |27/N(2 x))z|¢M(Z)d2
‘y‘ N(A(x))

20)
Q(y—z)—Q 1-0) (2)dz.
S DI Je 00—~ Q00 ()i

<C2Jotip
\y\"‘ﬁ
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Now, we denote ‘%/{(')ﬁ (f) by Z;p(f) for simplicity. Then, from (2.22) and the
Holder inequality, we have

\Z;.p(f) ()]
L Qy—z)—Q
<C2777HP Mo (f) (x)+ ¢’2/ /2, 3 " WV(X—)’)WWZ
<M\N o) |y|
—_i i Q —7 _Q q l/q
<C2 ./6+JﬁMQ x)+ ¢2J ( 2/ 3 /+1 1y )n—[3 )l dy)
ey 1yl
X
" ( / . " |If( niy )
Nk |)’|\ NZQ®) ‘y‘
From [5, p.2750], we know that for o = ﬁ , there is
[ Je(2=2) —aw)| ot < coga)
1|\ Y —af D
i(1-6)—5
As 7] < ZIJ\I(JLT’ we get
ev--a \"_ -
/ . s PWay| < c2iblag,a-io-2),
2 |Y|\ 21t |y|n7ﬁ
N NAW)

Thus, we have
15,51 ()] <€ [2777 P Mo (1) () + 2P 0, (27772, (/) )]

where C is independent of the choice of A (). Since p > ¢', using the L” boundedness
of Mg and My again, we obtain

|5 50)||, = 1500

L SC(27700B 4 2B, (277°2)) || fllr.  (2.23)

Proof of Theorem 1.2

From (2.21) and (2.23), we have the following estimates.

Hijm,ﬁ(f)Hu S H‘g{('%ﬁ(f)HU ! )’%i(')’ﬁ(f)u

Lr
C (27 r +277 P fllp + 2P g (27772 £l )

By the fact that 6 < 0 and 3 < o, we can easily get

2 2770 £l < CIIf |lers (2.24)

izl
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and

> 271 B £l < C|f I (2.25)
=

Moreover, we have

> 27w, 27772)| ]|

izl
7/0' 1
= ) S 0y [ 5%l
j>1
ol (2.26)
<cyo [ @mnﬂm
j>1 e

o L6
<cy 220 [T ) s <l

izl

Combining (2.2)-(2.3), (2.24)-(2.26), we finish the proof of Theorem 1.2.
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