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NEW UPPER BOUNDS FOR THE INFINITY
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Abstract. Some new upper bounds for the infinity norm of the inverse of Nekrasov matrices
are presented. It is shown that the new bounds are better than those given by Kolotilina (2013)
and Zhu, Li (2017). Numerical examples are given to illustrate the effectiveness of the derived
results.

1. Introduction

A matrix A = [ai j]∈ Cn×n is called an H -matrix if its comparison matrix < A >=
[mi j] defined by

< A >= [mi j] ∈ R
n×n,mi j =

{ |aii|, i = j,
−|ai j|, i �= j,

is a nonsingular M -matrix, that is, < A >−1� 0 [1, 2, 3]. H -matrices are widely used
in many disciplines, like scientific computing, economics, dynamical system theory,
etc [15]. An important topic among them concerns infinity norm bounds for the inverse
of H -matrices, since these bounds can often be used in the convergence analysis of
iterative algorithms, see [1, 4, 6, 7, 9], or can be used to estimate error bounds for linear
complementary problems, see [10, 11, 12, 17]. Until now, infinity norm bounds for
the inverse of H -matrices have been studied extensively, see [3, 4, 13, 16]. It is worth
noting that when the involved matrix in ||A−1||∞ is an SDD matrix as one of the most
important subclasses of H -matrices, an elegant so-called Varah’s bound is provided
by Varah in [16]. Here a matrix A = [ai j] ∈ Cn×n is said to be a strictly diagonally
dominant matrix (SDD) if for each i ∈ N = {1,2, · · · ,n} ,

|aii| > ri(A),

where ri(A) = ∑
j �=i

|ai j| .
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THEOREM 1. [16] Let A = [ai j] ∈ Cn×n be SDD. Then

||A−1||∞ � 1
min
i∈N

(|aii|− ri(A))
. (1)

Note that the Varah’s bound works only for SDD matrices. Then, several new
upper bounds for a wider class of H -matrices which sometimes are tighter in the SDD
case were derived, see [3, 4, 13] and references therein.

In [8], Kolotilina provided the following upper bound for ||A−1||∞ when A is a
Nekrasov matrix as a subclass of H -matrices, which only depends on the entries of A
and improves the bounds proposed by Varah in [16] and Cvetković et al. in [4].

DEFINITION 1. [4, 14] A matrix A = [ai j] ∈ Cn×n is called a Nekrasov matrix if
for each i ∈ N ,

|aii| > hi(A),

where h1(A) = ∑
j �=1

|a1 j| , and

hi(A) =
i−1

∑
j=1

|ai j|
|a j j|h j(A)+

n

∑
j=i+1

|ai j|, i = 2,3, . . . ,n. (2)

THEOREM 2. [8, Theorem 2.2] Let A = [ai j] ∈ Cn×n be a Nekrasov matrix. Then

||A−1||∞ � max
i∈N

zi(A)
|aii|−hi(A)

, (3)

where z1(A) = 1 and

zi(A) =
i−1

∑
j=1

|ai j|
|a j j| z j(A)+1, i = 2,3, . . . ,n. (4)

Observe from Theorem 2 that the estimate by using bound (3) may be inaccurate
when the value of min

i∈N
{|aii|−hi(A)} is very small, implying that the scope of applica-

tions of this bound is limited. To overcome this drawback, Zhu and Li in [18] gave the
following new upper bounds for the infinity norm of the inverse of Nekrasov matrices,
which involve an adjustable parameter ε .

THEOREM 3. [18, Theorem 5] Let A = [ai j] ∈ Cn×n be a Nekrasov matrix such
that, for each i = 1,2, . . . ,n−1 , ai j �= 0 for some j > i . Then

||A−1||∞ � max
i∈N

{wi}max

⎧⎪⎪⎨
⎪⎪⎩max

i�=n

1
n
∑

j=i+1
(1−wj)|ai j|

,
1
ε

⎫⎪⎪⎬
⎪⎪⎭ , (5)

where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and wn = hn(A)+ε

|ann| with ε ∈ (0, |ann|−hn(A)) .
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THEOREM 4. [18, Theorem 6] Let A = [ai j] ∈ Cn×n be a Nekrasov matrix with
hi(A) �= 0 for all i ∈ N . Then

||A−1||∞ � max
i∈N

{wi}max

⎧⎪⎪⎨
⎪⎪⎩max

i�=n

1
n
∑

j=i+1
(1−wj)|ai j|

,
1

hn(A)(ε −1)

⎫⎪⎪⎬
⎪⎪⎭ , (6)

where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and wn = hn(A)

|ann| ε with ε ∈
(
1, |ann|

hn(A)

)
.

It is not difficult to see that in some cases the bounds in Theorems 3 and 4 are not
always effective to estimate ||A−1||∞ because they can be arbitrarily large when ε → 0
or ε → 1. Hence it is interesting to find alternative bounds for ||A−1||∞ to overcome
this drawback. In this paper, we give new upper bounds for ||A−1||∞ when A is a
Nekrasov matrix, and then prove that the new bounds are better than those in Theorems
2 (Theorem 2.2 in [8]), 3, and 4 (Theorems 5 and 6 in [18]). Numerical examples are
presented to demonstrate their usefulness.

2. Main results

In this section, two upper bounds for ||A−1||∞ are provided when A is a Nekrasov
matrix. First, some lemmas and notations which will be used later are given as follows.

Given a matrix A = [ai j] , by A = D−L−U we denote the standard splitting of
A into its diagonal (D) , strictly lower (−L) and strictly upper (−U) triangular parts.
And we denote |A| = [|ai j|] .

LEMMA 1. [5, 18] Let A = [ai j] ∈ Cn×n be a Nekrasov matrix such that, for each
i = 1,2, . . . ,n− 1 , ai j �= 0 for some j > i . Then the matrix W = diag(wi) , where

wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and wn = hn(A)+ε

|ann| ,ε ∈ (0, |ann|−hn(A)) , has positive
diagonal entries and it satisfies that B = AW is SDD.

LEMMA 2. [18] Let A = [ai j] ∈ Cn×n be a Nekrasov matrix with hi(A) �= 0 for

all i ∈ N . Then the matrix W = diag(wi) , where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and

wn = hn(A)
|ann| ε,ε ∈

(
1,

|ann|
hn(A)

)
, has positive diagonal entries and it satisfies that B = AW

is SDD.

To get the desired upper bounds, we next give the two technical lemmas.

LEMMA 3. Suppose that A = [ai j] ∈ Cn×n is a matrix with aii �= 0 for all i ∈ N .
Let B = AW = [bi j] , where W = diag(wi) with wi defined in Lemma 1. Then

zi(B) = zi(A) and hi(A)−hi(B) = ηi(A), (7)
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where hi(B),zi(B) are defined as in (2) and (4), respectively, and

η1(A) =
n

∑
j=2

(1−wj)|a1 j|,ηi(A) =
i−1

∑
j=1

|ai j|
|a j j|η j(A)+

n

∑
j=i+1

(1−wj)|ai j|, i = 2,3, · · · ,n.

Proof. We prove (7) by induction on i . Note that z1(B) = z1(A) = 1. Then for
i = 2, we have

z2(B) =
|b21|
|b11| z1(B)+1 =

|w1 ·a21|
|w1 ·a11| z1(A)+1 = z2(A).

Now suppose that zi(B) = zi(A) holds for i = 3, . . . ,k and k < n . Since

zk+1(B) =
k

∑
j=1

|bk+1, j|
|b j j| z j(B)+1 =

k

∑
j=1

wj · |ak+1, j|
wj · |a j j| z j(A)+1 = zk+1(A),

by mathematical induction we have that for each i ∈ N , zi(B) = zi(A) holds.
We are now in a position to prove that hi(A)−hi(B) = ηi(A) holds for each i∈ N .

Suppose that W = diag(wi) is a diagonal matrix with wi defined in Lemma 1. Then
for i = 1, we have

h1(A)−h1(B) = r1(A)− r1(B)

=
n

∑
j=2

|a1 j|−
(

n−1

∑
j=2

|a1 j|h j(A)
|a j j| + |a1n|hn(A)+ ε

|ann|

)

=
n−1

∑
j=2

(
1− h j(A)

|a j j|
)
|a1 j|+

(
1− hn(A)+ ε

|ann|
)
|a1n|

=
n

∑
j=2

(1−wj)|a1 j| = η1(A).

Now suppose that hi(A)−hi(B) = ηi(A) holds for i = 2, . . . ,k and k < n . Since

hk+1(A)−hk+1(B) =
k

∑
j=1

|ak+1, j|
|a j j| h j(A)+

n

∑
j=k+2

|ak+1, j|−
[

k

∑
j=1

|bk+1, j|
|b j j| h j(B)

+
n

∑
j=k+2

|bk+1, j|
]

=
k

∑
j=1

|ak+1, j|
|a j j| [h j(A)−h j(B)]+

n

∑
j=k+2

(|ak+1, j|− |bk+1, j|
)

=
k

∑
j=1

|ak+1, j|
|a j j| η j(B)+

n

∑
j=k+2

(1−wj) |ak+1, j|

= ηk+1(A),
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by mathematical induction we have that for each i ∈ N , hi(A)− hi(B) = ηi(A) holds.
This completes the proof.

Similarly, we can easily obtain the following result.

LEMMA 4. Suppose that A = [ai j] ∈ Cn×n is a Nekrasov matrix with aii �= 0 for
all i ∈N . Let B = AW = [bi j] , where W = diag(wi) with wi defined in Lemma 2. Then

zi(B) = zi(A),hi(A)−hi(B) = ηi(A). (8)

where hi(B),zi(B),ηi(A) are defined as in (2), (4), and Lemma 2, respectively.

By Lemmas 1, 2, 3 and 4, we give the following bounds for ||A−1||∞ when A is a
Nekrasov matrix.

THEOREM 5. Let A = [ai j] ∈ Cn×n be a Nekrasov matrix such that, for each i =
1,2, . . . ,n−1 , ai j �= 0 for some j > i . Then

||A−1||∞ � max
i∈N

{wi}max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ ε

}
, (9)

where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and wn = hn(A)+ε

|ann| with ε ∈ (0, |ann|−hn(A)) .

Proof. Since A is a Nekrasov matrix, it follows from Lemma 1 that there exists a
positive diagonal matrix W = diag(wi) such that B = AW is SDD . Then A−1 =WB−1 ,
which together with Theorem 2 imply that

||A−1||∞ = ||WB−1||∞ � ||W ||∞ · ||B−1||∞ � max
i∈N

{wi} ·max
i∈N

zi(B)
|bii|−hi(B)

. (10)

By Lemma 3, it holds that for each i ∈ N , zi(B) = zi(A) , for i = 1,2, . . . ,n−1,

|bii|−hi(B) = wi|aii|−hi(B) =
hi(A)
|aii| |aii|−hi(B) = hi(A)−hi(B) = ηi(A),

and for i = n ,

|bnn|−hn(B) = wn|ann|−hn(B) =
hn(A)+ ε

|ann| |ann|−hn(B)

= hn(A)+ ε −hn(B)
= ηn(A)+ ε.

Hence,

max
i∈N

zi(B)
|bii|−hi(B)

= max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ ε

}
. (11)

The conclusion follows from (10) and (11).
The following Theorem can be obtained in a similar way.
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THEOREM 6. Let A = [ai j] ∈ Cn×n be a Nekrasov matrix with hi(A) �= 0 for all
i ∈ N . Then

||A−1||∞ � max
i∈N

{wi}max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ (ε −1)hn(A)

}
, (12)

where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and wn = hn(A)

|ann| ε,ε ∈
(
1, |ann|

hn(A)

)
.

REMARK 1. Obverse from Theorem 5 that when ε → 0 bound (9) converges to a
constant, i.e.,

max
i∈N

{wi}max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ ε

}
→ max

i∈N

{
hi(A)
|aii|

}
max

{
max
i�=n

zi(A)
η̃i(A)

,
zn(A)
η̃n(A)

}

when ε → 0, where η̃1(A) =
n
∑
j=2

(1− hi(A)
|aii| )|a1 j| and

η̃i(A) =
i−1

∑
j=1

|ai j|
|a j j|η j(A)+

n

∑
j=i+1

(1− hi(A)
|aii| )|ai j|, i = 2,3, · · · ,n.

In contrast, bound (5) in Theorem 3 is

max
i∈N

{wi}max

⎧⎪⎪⎨
⎪⎪⎩max

i�=n

1
n
∑

j=i+1
(1−wj)|ai j|

,
1
ε

⎫⎪⎪⎬
⎪⎪⎭ ,

and it can be arbitrarily large when ε → 0. Obviously, bound (6) in Theorem 4 can also
be arbitrarily large when ε → 1, while bound (12) converges to a constant in the same
setting.

The comparisons of the bounds in Theorems 3, 4, 5 and 6 are established as fol-
lows.

THEOREM 7. Let A = [ai j] ∈ C
n×n be a Nekrasov matrix such that, for each i =

1,2, . . . ,n−1 , ai j �= 0 for some j > i . Then

max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ ε

}
� max

⎧⎪⎪⎨
⎪⎪⎩max

i�=n

1
n
∑

j=i+1
(1−wj)|ai j|

,
1
ε

⎫⎪⎪⎬
⎪⎪⎭ ,

where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and wn = hn(A)+ε

|ann| with ε ∈ (0, |ann|−hn(A)) .

Proof. It follows from the proof of Theorem 5 that

max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ ε

}
= max

i∈N

zi(B)
|bii|−hi(B)

.
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Then, Theorem 2.4 of [8] can be applied to obtain that

max
i∈N

zi(B)
|bii|−hi(B)

� max
i∈N

1
|bii|− ri(B)

.

By Lemma 3, we know that for i = 1,2, . . . ,n−1,

|bii|− ri(B) = wi|aii|− ri(B)

=
hi(A)
|aii| |aii|− ri(B)

= hi(A)− ri(B)

=
i−1

∑
j=1

|ai j|
|a j j|h j(A)+

n

∑
j=i+1

|ai j|−
[

i−1

∑
j=1

|ai j|wj +
n

∑
j=i+1

|ai j|wj

]

=
n

∑
j=i+1

(1−wj)|ai j|,

and that for i = n ,

|bnn|− rn(B) = wn|ann|− rn(B) =
hn(A)+ ε

|ann| |ann|− rn(B)

= hn(A)+ ε − rn(B)
= ε.

Hence,

max
i∈N

1
|bii|− ri(B)

= max

⎧⎪⎪⎨
⎪⎪⎩max

i�=n

1
n
∑

j=i+1
(1−wj)|ai j|

,
1
ε

⎫⎪⎪⎬
⎪⎪⎭ .

The proof is completed.
Using the same technique, we can easily obtain the following result.

THEOREM 8. Let A = [ai j] ∈ C
n×n be a Nekrasov matrix with hi(A) �= 0 for all

i ∈ N . Then

max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ (ε −1)hn(A)

}

� max

⎧⎪⎪⎨
⎪⎪⎩max

i�=n

1
n
∑

j=i+1
(1−wj)|ai j|

,
1

hn(A)(ε −1)

⎫⎪⎪⎬
⎪⎪⎭ ,

where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , and wn = hn(A)

|ann| ε,ε ∈
(
1, |ann|

hn(A)

)
.
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We finally give comparisons of the bounds in Theorems 2, 4 and 5 for Nekrasov
matrices.

THEOREM 9. Let A = [ai j] ∈ C
n×n be a Nekrasov matrix such that, for each i =

1,2, . . . ,n−1 , ai j �= 0 for some j > i . If ηi(A) � |aii|−hi(A) holds for all i ∈ N , then

max
i∈N

{wi} ·max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ ε

}
� max

i∈N

zi(A)
|aii|−hi(A)

,

where wi = hi(A)
|aii| for i = 1,2, . . . ,n−1 , wn = hn(A)+ε

|ann| , and ηi(A) is defined in Lemma

3 with ε ∈ (0, |ann|−hn(A)) .

Proof. Since A is a Nekrasov matrix and ε ∈ (0, |ann|−hn(A)) , it follows that

wi =
hi(A)
|aii| < 1 for all i ∈ N . Furthermore, it follows from ηi(A) � |aii|−hi(A) that for

each i ∈ N ,
zi(A)
ηi(A)

� zi(A)
|aii|−hi(A)

,

which together with ε > 0 yield that

max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ ε

}
� max

i∈N

zi(A)
|aii|−hi(A)

.

This completes the proof.
Similarly, we can obtain the following result.

THEOREM 10. Let A = [ai j] ∈ C
n×n be a Nekrasov matrix with hi(A) �= 0 for all

i ∈ N . If ηi(A) � |aii|−hi(A) holds for all i ∈ N , then

max
i∈N

{wi} ·max

{
max
i�=n

zi(A)
ηi(A)

,
zn(A)

ηn(A)+ (ε −1)hn(A)

}
� max

i∈N

zi(A)
|aii|−hi(A)

,

where wi =
hi(A)
|aii| for i = 1,2, . . . ,n−1 , wn = hn(A)

|ann| ε , and ηi(A) is defined in Lemma 4

with ε ∈
(
1, |ann|

hn(A)

)
.

3. Numerical examples

In this section, we give some examples to show the sharpness of the proposed
bounds.

EXAMPLE 1. Consider the following five Nekrasov matrices in [4, 5, 13]:

A1 =

⎡
⎢⎢⎣

21 −9.1 −4.2 −2.1
−0.7 9.1 −4.2 −2.1
−0.7 −0.7 4.9 −2.1
−0.7 −0.7 −0.7 2.8

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

5 1 0.2 2
1 21 1 −3
2 0.5 6.4 −2

0.5 −1 1 9

⎤
⎥⎥⎦ ,
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A3 =

⎡
⎢⎢⎣

60 −15 −15 −15
−75 105 −45 0
−60 −60 120 −15
−15 −15 −15 45

⎤
⎥⎥⎦ , A4 =

⎡
⎢⎢⎣

5 −1/5 −2/5 −1/2
−1/10 2 −1/2 −1/10
−1/2 −1/10 1.5 −1/10
−2/5 −2/5 −4/5 1.2

⎤
⎥⎥⎦ ,

A5 =

⎡
⎣ 6 −3 −2
−1 11 −8
−7 −3 10

⎤
⎦ .

Obviously, A1 and A2 are SDD matrices, and all matrices satisfy the conditions in
Theorems 5 and 6. We compute by Matlab 12.0 the upper bounds for the infinity norm
of the inverse of Ai , i = 1, . . . ,5, which are shown in Table 1. It is easy to see from
Table 1 that this example illustrates Theorems 7 and 8.

Table 1. The upper bounds for ||A−1
i ||∞ , i = 1,2, . . . ,5.

Matrix A1 A2 A3 A4 A5

Exact ||A−1||∞ 0.8759 0.2707 0.6843 1.9864 1.1519
Varah (1) 1.4286 0.5556 – – –

The bound (3) 0.9676 0.5556 1.5333 2.2094 1.4138
The bound (4) 1.3298 0.4445 1.2222 10.3667 1.1567

ε 0.5630 1.4500 1.3000 0.0300 0.7800
The bound (5) 1.3297 0.4442 1.2222 10.3643 1.1555

ε 1.3790 2.3500 1.0320 1.0880 1.0948
Theorem 5 0.9477 0.3998 0.6985 2.0316 1.1528

ε 0.5630 1.4500 1.3000 0.0300 0.7800
Theorem 6 0.9477 0.4006 0.6980 2.0316 1.1544

ε 1.3790 2.3500 1.0320 1.0880 1.0948

EXAMPLE 2. Consider the following matrix:

A6 =

⎡
⎢⎢⎣

8 −0.5 −0.5 −0.5
−9 16 −5 −5
−6 −4 15 −3
−4.9 −0.9 −0.9 2

⎤
⎥⎥⎦ .

By computations, we have

h1(A6) = 1.5,h2(A6) = 11.6875,h3(A6) = 7.0469,h4(A6) = 1.9990.

Obviously, A6 is a Nekrasov matrix. Hence, by Theorems 3 and 5, we can get the
bounds (5) and (9) involved with ε ∈ (0,0.001) for ||A−1

6 ||∞ , which is drawn in Figure
1a. And by Theorems 4 and 6, we can get the bounds (6) and (12) involved with



732 L. GAO AND Q. LIU

ε ∈ (1,1.0005) for ||A−1
6 ||∞ , which is drawn in Figure 1b. Furthermore, by the bound

(3) of Theorem 2 we have

max
i∈N

zi(A6)
|aii|−hi(A6)

= 1840.3.

In fact, ||A−1
6 ||∞ = 3.2592.

It is easy to see from Figure 1 that the bounds in Theorem 5 and 6 are considerably
smaller than those in Theorems 2 (Theorem 2.2 in [8]), 3, and 4 (Theorems 5 and 6 in
[18]).
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Figure 1: The bounds (3), (5), (6), (9) and (12).
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