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POISSON RANDOMLY INDEXED BRANCHING PROCESS
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Abstract. Consider a Galton—-Watson process {Z,}, the Lotka—Negaev estimator for offspring
mean m is R, = Z,11/Z,. Let N, be a Poisson process independent of {Z,}, the continuous
time process {Zy, } is a Poisson randomly indexed branching process. We show the asymptotic
distributions for {R, := Ry, }.

1. Introduction

Consider a Galton—Watson process(GW) {Z,} with offspring distribution {p;}. A
basic task in statistical inference of GW is the estimation of the offspring mean m :=
> ipi. We assume that Zy = 1,pg = 0,0 < p; < 1,Vi and GW is supercritical, that is
m > 1. One of the most important estimator is Lotka-Negaev estimator defined as R, =
Zu+1/Zy, see [12]. Large deviations for R, attracted the attention of several researchers
in recent years, see [1, 2, 6, 10, 13], etc. [11], [14] and [9] extended these results
to the Lotka-Negaev estimator of a branching process with immigration or random
environment.

The model of Poisson randomly indexed branching process(PB) {Y; := Zy, } was
introduced by Epps[5] to study the evolution of stock prices, where {N;} is a Poisson
process which is independent of {Z,}. The statistical investigation on various estimates
and some parameters of the process were done in [3]. Particularly, 7; := log(Y;)/(At)
is used to estimate logm, where A is the density of underlying Poisson process. The
asymptotic normality and Berry—Esseen type inequalities were given in [7].

In this paper, we concentrate on the Lotka—Negaev estimator {R, := Ry, } for
offspring mean m. Wu[l5] obtained the large deviations for R,. These results have
been extended to the case that the random index is a renewal process, see [8] for details.
In this manuscript, we focus on the asymptotic distribution of R;.

Note that py = 0, there exists a positive random variable W such that ¥,/C, —
W a.s., where C, = exp(At(m — 1)), see [17]. Firstly, we consider the asymptotic
distribution of normalized process +/C; (R, —m) as t — oo.
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THEOREM 1. Assume that E(Z?) < o, one has

lim P(6™! /G (R, — m) < x) = / Dy /2)dG(y),
e 0

where 6> =Var(Z,), G(y) and ®(x) are the cumulative distribution functions of W
and the standard normal random variable respectively.

Theorem 1 shows that the typical asymptotic distribution of /C; (R, —m) as t — oo
is not a normal distribution. One naturally wonder whether the asymptotic distribution
of (R, —m)/Var(RR,) is normal distribution, so we consider the rate of Var(R,) as
t — oo,

For a PB, we distinguish between the Schroder case and the Bottcher case de-
pending on whether pg+ p; > 0 or pg+ p; = 0. Note that pg = 0 in this paper, the
Schroder index is defined as o = —log,, p1 € (0,+eo]. If & € (0,4o0), PB belongs to
the Schroder case, else if o = oo, PB belongs to the Bottcher case.

Let f,(s) be the generating function of Z,, if 1 > p; > 0 (Shroder case), there
exists a unique Q(s) such that f;,(s)/p| — Q(s) and (see [1])

O(f(s)) = p1Q(s), ©(0)=0, O(s) >0
forall s € (0,1), where f(s) = fi(s).

THEOREM 2. Let ¢(v) be the Laplace transformation of V := lim,_..Z,/m".
Assume that 1 > p; > 0 and E(Z?) < . One has Var(R,) ~ C(o,t), where f(t) ~
g(t) stands for f(t)/g(t) — 1 as t — oo, o is the Schrider index and

oZexp(At(p1— 1)) [5° O(exp(—v))dv, a<1;
Cla,t) = § o?piatexp(At(pi — 1)) [ Q(@(v))dv, o =1;
olexp(At(m=' —1)) [ o (v)dv, o> 1.

In Example 1, we choose A = 1,00 = 0.5,1,2. The decay rates of C(ct,7) are
illustrated in the Figure 1 and Figure 2. From these figures, we know that the smaller
the o, the faster the decay rate of Var(R,).

Note that 7 > 1, then m+m~!>2. When a < 1, p; >m~ !, thus G, Var(R,) — oo
as t — oo. According to Slutsky’s theorem,

R, — 1
r—m _ C[(R[_m)' d

_— — —0,
Var(R;) G Var(R,)

d e .
where — stands for convergence in distribution. That is (R, —m)/+/Var(IR,) has no
proper asymptotic distribution. In order to balance the fluctuation, we consider the
randomly normalized process \/Y; (R, —m), where ¥, = Zy, .

THEOREM 3. Assume that E(Z?) < . We have

}LIEQIP’(G_I\/Z(Rt —m) <x) = D(x).
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Figure 1: oo =0.5,1 Figure 2: a =2

Assume that A = 1 and the offspring distribution satisfies the following four cases
respectively.

(@) Z; — 1 ~ Geom(0.5): py =0.5F, (b) Z; — 1 ~ Pois(1): pr = 1/(e(k—1)!),

(¢) Zy — 1 ~ Binom(2,0.5): py=p3=1/4, pp=1/2,

(d) Z; ~ Unif(1,2,3): py = pr=p3 =1/3.

We conduct 10000 simulations for each case. Note that E(Z;) =2 and E(Z,) =
2", we choose ¢ = 8(2% = 128) for relatively small sample and ¢ = 10(2'° = 1024)
for relatively large sample. Compares for densities of + = 8, r = 10 and that of the
standard normal distribution are given in Figure 3—6. From these figures, we know that
for ¢ large enough, Theorem 3 is efficient.

The rates of convergence in Theorem 3 can be characterized by Berry—Esseen
type inequalities. Using the classical Berry—Esseen bound for sums of i.i.d. random
sequence and the harmonic moments of {Z,} one can obtain Theorem 4. Define
G(x) =P(o~'V/Y (R, —m) < x), one has

THEOREM 4. Assume that 1> py >0, E(Z}) < . Then there exists constant C
such that

sup|G; (x) — @(x)| < CH(ax,1),
xeR

where o. is the Schrider index, R = (—eo,+e0) and
exp(At(p1 —1)), o <0.5;

H(o,t) =< piAtexp(At(p;—1)), a=0.5;
exp(At(m~ 12 —1)), a>0.5.
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The rest of the paper is organized as follows. In Section 2, we obtain the asymp-
totic distribution for the normalized process +/C; (R, —m). Section 3 is devoted to the
decay rates of Var(IR;). Asymptotic normality of the randomly normalized process
VY (R, —m) is given in section 4.

In the rest of the paper, we denote by C an absolute and positive constant which
may differ from line to line.

2. Asymptotic distribution of \/C, (R, —m)

Independent of ¥;, let {X,,} be a sequence of i.i.d random variables with the same
distribution as Z; . Define S, = X; +---+ X forany k > 1 and

S _
Lk<x>=1@( L <x), veR, &y = suplly(r) ~ o)
xXe

where 62 = Var(Z;) € (0,). Then
Ay — 0 (D)

as k — oo, see [4]P105 for example. The proof of Theorem 1 depends on the conver-
gence W; :=Y;/C; — W a.s. and the independence between {N;} and the underlying
GW {Z,}.

The proof of Theorem 1.
Conditioning on Y;,

P(M gx):kip<w <x>IP>(Y,:k). )

o

For any € € (0, 1), we divide the right side of (2) into the following three parts.

Nen= Y P (m <x> P(Y, = k),

k<eCr ko

hien)= Y P (m <x> P(Y, = k),

eCr<k<e G ko

J3(8,t) = Z

k>e1G ko

p(L e -,

For J;(e,1), when € is a continuous point of G(x) =P(W < x), we have
< Y P=k = Y PW =k/G)=P(W, <e)— G(e), 3)
k<eCy k<eCy

1

as t — oo. Similarly, when €7 is a continuous point of G, we obtain

Je ) <PW, >e ) - 1-G(e™). 4)
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Finally, for J,(g,t), one has

Ja(&t) > P(i’}; <x é)P(Y,zk)

eCi<k<e1C

- 27 P(%éx@)ﬂwz:k/a)

eCi<k<e1C

- Dl SR <)
— [ oymarn <) o) ®

as t — oo, where the last equality follows from formula (1) and yC; > €C; — oo. Note
that ®(x,/y) is a bounded continuous function with respect to y and W, — W a.s., we
obtain

ste/ O(x/7)dG(y), ©)

as t — oo. Since € is arbitrary, we complete the proof of Theorem 1 by (2)—(6).

3. Decay rates of Var(RR,)

Convergence rates for generating function f,(s) and harmonic moment E(Y,"!)
play important role in estimating the decay rates of Var(R,), so we need the following
lemmas. Lemma 1 comes from [1].

LEMMA 1. Assume that 1 > p; > 0, then there exist constants 0 < qi < oo such
that

lmf"( iqkS—Q()<oo YoO<s < 1.

Furthermore, Q(s) is the unique solution of the functional equation
O(f(s)) = p1Q(s), ©(0)=0, O(s) >0
forall s€(0,1).
The harmonic moments were given in [13]. We use the following special case.

LEMMA 2. Assume that 1 > p; >0, E(Z}) < oo. Then,

J5> Qlexp(—v)vldv, o<,
Hm T(r)A, (rE(Z,") = { [{"Q(¢(v)v""dv, a=r
Jo ¢(V)Vr_1d"7 o>,
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where o is the Schrider index, ¢ is the Laplace transformation of V = 1im,, .. Z,, /m",

T is the T— function defined as T'(r) = [§’x""le *dx and
Py, o<r;
An(r)=q 1" a=r

m'™, oa>r.

The proof of Theorem 2.
Conditioning on N}, using the independence between {N;} and {Z,}, one has

ER,) = 3 E(R,)P(N; = n) =m,

and

Var(R,) = Z Var(R,)P(N; =n) = Y. E(R, —m)*P(N; = n),

where R, =Z,11/Z,.
Note that Z, | = X; + -+ Xz,, where {X;} are independent and have the same
distribution with Z; . In addition, {X j} are independent of Z,. Conditioning on Z,, we

obtain

M»

2
X;— m) P(Z, = k)P(N; = n)

Var(R,) EZE <k 1
1

—sz—l szn KP(N; =n) = 22E P(N; = n).

-
I

Letting » =1 in Lemma 2, one has

Jo O(exp(—v))dv, a<1;

lim (A(n, &))" "E(Z; 1) = { [ Q(9(v))dv, a=1; = C(a),
Jo o(v)dv, o>1
where
P, a<l;
A(n,a) = np}, o=1;
m"" o>l

For any € > 0, choose N large enough such that for all n > N, we have

E(z,') € ((C(a) —e)A(n, 00), (C(0r) +€)A(n. @) @)

n
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We can divide Var(RR,) into the following three parts.

Var(R,) = o2 i(E(z;l)_C(a)A(n,a))P(N, =n)

+0° Y (E(z,")—C(a)A(n,a)P(N; =n)
n=N+1

+02 Y C(a)A(n, )P(N, = n)
n=0
= N(o,t)+h(a,t)+L(o,t).
According to (7),

(e <o® S [EZ") - Cla)A(n, a)[B(N, = n) < el3(at,1).
n=N+1

For ¢ large enough such that A7 > N, one has

N
(%\;? e—)u_>

‘11(06,1‘)| < CJP)(N[ QN) QC(N-FI)

as t — oo,

Now we deal with I3(c,1). If o < 1, A(n, o) = p'f, then

Li(o,t) = C(a)o? i P'P(N, =n) = C(a)c? i

n=0 n=0 n!
= C(a)o?exp(At(p; —1)).
If « =1, A(n,at) = np', then
2% o2 MPI Y
L(o,t) = C(a)o” Y, np{P(N; =n) Z — e
n=0

= C(a)o*exp(At(p1—1)) Y n%e"“”l
n=0 :

= C(a)o”Atprexp(At(p1 — 1)).
If o >1,A(n,00) =m™", then

L(a,t) o’ Zm‘”IP o)c? i Mm S i

n=0

= Cla)c?exp(At(m~ —1)).

We complete the proof of Theorem 2 by (8)—(13).

®)

©))

(10)

(1)

12)

13)

We give an example to illustrate Theorem 2. We choose corresponding branching

law to satisfy o < 1,c =1 and o > 1 respectively.
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EXAMPLE 1. Choose three generating functions,

N N N

e AN el A N B N BTG EL

then corresponding Schroder index o =0.5< 1,00 =1,03 =2 > 1 and

fls) =

C(oy,t) = 12wexp(—0.5A1),
C(op,t) = (In2)Atexp (—0.541),

Clos,t) = (2—V2)exp ((% ~ 1) /lt) .

Proof. For generating function f(s), we know

4
(4327

36s

f//(s) = m

fls)=

Then

4
p1=1(0)= S =05, m=f(1)=4, ol =f"(1)4+m —m: =24.

Thus oy = —1og,0.5=0.5 < 1. By iteration,

N

fn(S) = (4n _ (4n _ 1)52)1/2 :
So we have
2" s
= 1. - .
Qi(s) = lim @@ )2 o
Consequently,

0o 00 e—V n
d :/ ——dv=—.
/0 Qule)dv 0 V1—e 2 )

For generating function g(s), one has

Then

2
plzg/(O):Z:O.S, my=g'(1)=2, 6222 /’(1)+m2—m%:2.

Thus 0, = —log, 0.5 = 1. By iteration,

N

8gnl(s) = m

743
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So we have

2" s
~ 1 -
02(s) = fim S s~ T

According to Theorem 2, we need to calculate the Laplace transformation of W which
is determined by

. . exp(—v/2") 1
= lim g, —v/2") =1 = .
$(v) nglgog (exp(—v/2")) nl_rg 20— (2" — 1) exp(—v/2") 1+v
Consequently,
2 L
/ 02(92(v))dv = / . iﬂL dv=1In(2).
I+v

Finally, for generating function h(s), one has

V2 3(2—v2)s /2

S N RV BT T, SN STt
Then
=1 (0) = 23*//52 0.5, my=H(1)=V2, O'%zh”(l)—l—mg—m%zl—g.

Thus o3 = —log 50.5=2> 1. By iteration,

So we have

- o) exp (—v/2"/?)
93(v) —}g}olohn <exp( v/2 >> _”12’1‘1’ (2"/2—(2"/2_1)e>(p(—v/2"/2+1))2

4
(2+v)?

Consequently,
/ o3(v)dv =
0
We complete the proof of Example 1.

4. Asymptotic normality of /Y, (R, —m)

In this section, we deal with the asymptotic normality of /Y; (R, —m).
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The proof of Theorem 3.
Conditioning on Y;,
Gi(x)— () = 3 P V(S —m) P(Y; = k) — ®(x)
= ko
= D (Li(x) = @(x))P(¥; = k), (14)
k=1

where L;(x) is defined at the beginning of Section 2. According to (1), for any € €
(0,1), there exist N = N(&) > 0 such that for any k > N, we have

Li(x) € (®(x) — &,D(x) +¢). (15)
We can divide (14) into the following two parts.

S(en) = 3 (14(3) ~ ()P0 =K)
<N

D(et) = Y (Li(x) = @(x)P(Y, =k).

k=N

The rest of the proof is straightforward via (15).

The proof of Theorem 4.
Conditioning on Y;, according to the Berry—Esseen bound for i.i.d. random vari-
ables, we obtain

sup |G (x) 2 ILi(x) — @(x)[P(Y, = k) <C ¥k~ 2B(Y, = k) = CE(y, /7).
xeR =

The rest of the proof is similar to that of Theorem 2.
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