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Abstract. Consider a Galton–Watson process {Zn} , the Lotka–Negaev estimator for offspring
mean m is Rn = Zn+1/Zn . Let Nt be a Poisson process independent of {Zn} , the continuous
time process {ZNt } is a Poisson randomly indexed branching process. We show the asymptotic
distributions for {Rt := RNt } .

1. Introduction

Consider a Galton–Watson process(GW) {Zn} with offspring distribution {pi} . A
basic task in statistical inference of GW is the estimation of the offspring mean m :=
∑i ipi . We assume that Z0 = 1, p0 = 0,0 � pi < 1,∀i and GW is supercritical, that is
m > 1. One of the most important estimator is Lotka-Negaev estimator defined as Rn =
Zn+1/Zn , see [12]. Large deviations for Rn attracted the attention of several researchers
in recent years, see [1, 2, 6, 10, 13], etc. [11], [14] and [9] extended these results
to the Lotka-Negaev estimator of a branching process with immigration or random
environment.

The model of Poisson randomly indexed branching process(PB) {Yt := ZNt} was
introduced by Epps[5] to study the evolution of stock prices, where {Nt} is a Poisson
process which is independent of {Zn} . The statistical investigation on various estimates
and some parameters of the process were done in [3]. Particularly, Tt := log(Yt)/(λ t)
is used to estimate logm , where λ is the density of underlying Poisson process. The
asymptotic normality and Berry–Esseen type inequalities were given in [7].

In this paper, we concentrate on the Lotka–Negaev estimator {Rt := RNt} for
offspring mean m . Wu[15] obtained the large deviations for Rt . These results have
been extended to the case that the random index is a renewal process, see [8] for details.
In this manuscript, we focus on the asymptotic distribution of Rt .

Note that p0 = 0, there exists a positive random variable W such that Yt/Ct →
W a.s. , where Ct = exp(λ t(m− 1)) , see [17]. Firstly, we consider the asymptotic
distribution of normalized process

√
Ct(Rt −m) as t → ∞ .

Mathematics subject classification (2010): 60J80.
Keywords and phrases: Asymptotic distribution, Berry-Esseen’s inequality, branching process, Pois-

son process.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-14-47

735

http://dx.doi.org/10.7153/jmi-2020-14-47


736 Z. GAO AND H. ZHANG

THEOREM 1. Assume that E(Z2
1) < ∞ , one has

lim
t→∞

P(σ−1
√

Ct(Rt −m) � x) =
∫ ∞

0
Φ(xy1/2)dG(y),

where σ2 = Var(Z1) , G(y) and Φ(x) are the cumulative distribution functions of W
and the standard normal random variable respectively.

Theorem 1 shows that the typical asymptotic distribution of
√

Ct(Rt −m) as t →∞
is not a normal distribution. One naturally wonder whether the asymptotic distribution
of (Rt −m)/Var(Rt) is normal distribution, so we consider the rate of Var(Rt) as
t → ∞ .

For a PB , we distinguish between the Schröder case and the Böttcher case de-
pending on whether p0 + p1 > 0 or p0 + p1 = 0. Note that p0 = 0 in this paper, the
Schröder index is defined as α = − logm p1 ∈ (0,+∞] . If α ∈ (0,+∞) , PB belongs to
the Schröder case, else if α = ∞ , PB belongs to the Böttcher case.

Let fn(s) be the generating function of Zn , if 1 > p1 > 0 (Shröder case), there
exists a unique Q(s) such that fn(s)/pn

1 → Q(s) and (see [1])

Q( f (s)) = p1Q(s), Q(0) = 0, Q(s) > 0

for all s ∈ (0,1) , where f (s) = f1(s) .

THEOREM 2. Let φ(v) be the Laplace transformation of V := limn→∞ Zn/mn .
Assume that 1 > p1 > 0 and E(Z2

1) < ∞ . One has Var(Rt) ∼C(α, t) , where f (t) ∼
g(t) stands for f (t)/g(t) → 1 as t → ∞ , α is the Schröder index and

C(α, t) =

⎧⎪⎨
⎪⎩

σ2 exp(λ t(p1−1))
∫ ∞
0 Q(exp(−v))dv, α < 1;

σ2p1λ t exp(λ t(p1−1))
∫ m
1 Q(φ(v))dv, α = 1;

σ2 exp(λ t(m−1−1))
∫ ∞
0 φ(v)dv, α > 1.

In Example 1, we choose λ = 1,α = 0.5,1,2. The decay rates of C(α,t) are
illustrated in the Figure 1 and Figure 2. From these figures, we know that the smaller
the α , the faster the decay rate of Var(Rt) .

Note that m > 1, then m+m−1 > 2. When α � 1, p1 �m−1 , thus CtVar(Rt)→∞
as t → ∞ . According to Slutsky’s theorem,

Rt −m√
Var(Rt)

=
√

Ct(Rt −m) · 1√
CtVar(Rt)

d−→ 0,

where
d−→ stands for convergence in distribution. That is (Rt −m)/

√
Var(Rt) has no

proper asymptotic distribution. In order to balance the fluctuation, we consider the
randomly normalized process

√
Yt(Rt −m) , where Yt = ZNt .

THEOREM 3. Assume that E(Z2
1) < ∞ . We have

lim
t→∞

P(σ−1√Yt(Rt −m) � x) = Φ(x).
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Figure 1: α = 0.5,1
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Figure 2: α = 2

Assume that λ = 1 and the offspring distribution satisfies the following four cases
respectively.

(a) Z1 −1 ∼ Geom(0.5): pk = 0.5k , (b) Z1−1 ∼ Pois(1): pk = 1/(e(k−1)!) ,
(c) Z1 −1 ∼ Binom(2,0.5): p1 = p3 = 1/4, p2 = 1/2,
(d) Z1 ∼ Unif(1,2,3): p1 = p2 = p3 = 1/3.
We conduct 10000 simulations for each case. Note that E(Z1) = 2 and E(Zn) =

2n , we choose t = 8(28 = 128) for relatively small sample and t = 10(210 = 1024)
for relatively large sample. Compares for densities of t = 8, t = 10 and that of the
standard normal distribution are given in Figure 3–6. From these figures, we know that
for t large enough, Theorem 3 is efficient.

The rates of convergence in Theorem 3 can be characterized by Berry–Esseen
type inequalities. Using the classical Berry–Esseen bound for sums of i.i.d. random
sequence and the harmonic moments of {Zn} one can obtain Theorem 4. Define
Gt(x) = P(σ−1√Yt(Rt −m) � x) , one has

THEOREM 4. Assume that 1 > p1 > 0 , E(Z3
1) < ∞ . Then there exists constant C

such that

sup
x∈R

|Gt(x)−Φ(x)| � CH(α, t),

where α is the Schröder index, R = (−∞,+∞) and

H(α,t) =

⎧⎪⎨
⎪⎩

exp(λ t(p1−1)), α < 0.5;

p1λ t exp(λ t(p1−1)), α = 0.5;

exp(λ t(m−1/2−1)), α > 0.5.
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Figure 3: Z1−1 ∼ Geom(0.5)
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Figure 4: Z1−1 ∼ Pois(1)
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Figure 5: Z1 −1 ∼ Binom(2,0.5)
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Figure 6: Z1 ∼ Unif(1,2,3)
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The rest of the paper is organized as follows. In Section 2, we obtain the asymp-
totic distribution for the normalized process

√
Ct(Rt −m) . Section 3 is devoted to the

decay rates of Var(Rt) . Asymptotic normality of the randomly normalized process√
Yt(Rt −m) is given in section 4.

In the rest of the paper, we denote by C an absolute and positive constant which
may differ from line to line.

2. Asymptotic distribution of
√

Ct(Rt −m)

Independent of Yt , let {Xn} be a sequence of i.i.d random variables with the same
distribution as Z1 . Define Sk = X1 + · · ·+Xk for any k � 1 and

Lk(x) = P

(
Sk −m√

kσ
� x

)
, x ∈ R, Δk = sup

x∈R

|Lk(x)−Φ(x)|,

where σ2 = Var(Z1) ∈ (0,∞) . Then

Δk → 0 (1)

as k → ∞ , see [4]P105 for example. The proof of Theorem 1 depends on the conver-
gence Wt := Yt/Ct →W a.s. and the independence between {Nt} and the underlying
GW {Zn} .

The proof of Theorem 1.
Conditioning on Yt ,

P

(√
Cn(Rt −m)

σ
� x

)
=

∞

∑
k=1

P

(√
Cn(Sk −m)

kσ
� x

)
P(Yt = k). (2)

For any ε ∈ (0,1) , we divide the right side of (2) into the following three parts.

J1(ε, t) = ∑
k<εCt

P

(√
Cn(Sk −m)

kσ
� x

)
P(Yt = k),

J2(ε, t) = ∑
εCt�k�ε−1Ct

P

(√
Cn(Sk −m)

kσ
� x

)
P(Yt = k),

J3(ε, t) = ∑
k>ε−1Ct

P

(√
Cn(Sk −m)

kσ
� x

)
P(Yt = k).

For J1(ε, t) , when ε is a continuous point of G(x) = P(W � x) , we have

J1(ε, t) � ∑
k<εCt

P(Yt = k) = ∑
k<εCt

P(Wt = k/Ct) = P(Wt < ε) → G(ε), (3)

as t → ∞ . Similarly, when ε−1 is a continuous point of G , we obtain

J3(ε,t) � P(Wt > ε−1) → 1−G(ε−1). (4)
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Finally, for J2(ε, t) , one has

J2(ε, t) = ∑
εCt�k�ε−1Ct

P

(
Sk −m√

kσ
� x

√
k
Ct

)
P(Yt = k)

= ∑
εCt�k�ε−1Ct

P

(
Sk −m√

kσ
� x

√
k
Ct

)
P(Wt = k/Ct)

=
∫ ε−1

ε
LyCt (x

√
y)dP(Wt � y)

=
∫ ε−1

ε
Φ(x

√
y)dP(Wt � y)+o(1), (5)

as t → ∞ , where the last equality follows from formula (1) and yCt � εCt → ∞ . Note
that Φ(x

√
y) is a bounded continuous function with respect to y and Wt →W a.s. , we

obtain

J2(ε,t) →
∫ ε−1

ε
Φ(x

√
y)dG(y), (6)

as t → ∞ . Since ε is arbitrary, we complete the proof of Theorem 1 by (2)–(6).

3. Decay rates of Var(Rt )

Convergence rates for generating function fn(s) and harmonic moment E(Y−1
t )

play important role in estimating the decay rates of Var(Rt) , so we need the following
lemmas. Lemma 1 comes from [1].

LEMMA 1. Assume that 1 > p1 > 0 , then there exist constants 0 � qk < ∞ such
that

lim
n→∞

fn(s)
pn

1
=

∞

∑
k=1

qks
k =: Q(s) < ∞, ∀0 � s < 1.

Furthermore, Q(s) is the unique solution of the functional equation

Q( f (s)) = p1Q(s), Q(0) = 0, Q(s) > 0

for all s ∈ (0,1) .

The harmonic moments were given in [13]. We use the following special case.

LEMMA 2. Assume that 1 > p1 > 0 , E(Z2
1) < ∞ . Then,

lim
n→∞

Γ(r)An(r)E(Z−r
n ) =

⎧⎪⎨
⎪⎩
∫ ∞
0 Q(exp(−v))vr−1dv, α < r;∫ m
1 Q(φ(v))vr−1dv, α = r;∫ ∞
0 φ(v)vr−1dv, α > r,
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where α is the Schröder index, φ is the Laplace transformation of V = limn→∞ Zn/mn ,
Γ is the Γ− function defined as Γ(r) =

∫ ∞
0 xr−1e−xdx and

An(r) =

⎧⎪⎨
⎪⎩

p−n
1 , α < r;

1
n p−n

1 , α = r;

mrn, α > r.

The proof of Theorem 2.
Conditioning on Nt , using the independence between {Nt} and {Zn} , one has

E(Rt) =
∞

∑
n=0

E(Rn)P(Nt = n) = m,

and

Var(Rt) =
∞

∑
n=0

Var(Rn)P(Nt = n) =
∞

∑
n=0

E(Rn −m)2
P(Nt = n),

where Rn = Zn+1/Zn .
Note that Zn+1 = X1 + · · ·+XZn , where {Xj} are independent and have the same

distribution with Z1 . In addition, {Xj} are independent of Zn . Conditioning on Zn , we
obtain

Var(Rt) = ∑
n

∑
k

E

(
k−1

k

∑
j=1

Xj −m

)2

P(Zn = k)P(Nt = n)

= ∑
n

∑
k

k−1σ2
P(Zn = k)P(Nt = n) = σ2 ∑

n
E(Z−1

n )P(Nt = n).

Letting r = 1 in Lemma 2, one has

lim
n→∞

(A(n,α))−1
E(Z−1

n ) =

⎧⎪⎨
⎪⎩
∫ ∞
0 Q(exp(−v))dv, α < 1;∫ m
1 Q(φ(v))dv, α = 1;∫ ∞
0 φ(v)dv, α > 1

⎫⎪⎬
⎪⎭=: C(α),

where

A(n,α) =

⎧⎪⎨
⎪⎩

pn
1, α < 1;

npn
1, α = 1;

m−n, α > 1.

For any ε > 0, choose N large enough such that for all n � N , we have

E(Z−1
n ) ∈ ((C(α)− ε)A(n,α),(C(α)+ ε)A(n,α)). (7)
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We can divide Var(Rt) into the following three parts.

Var(Rt) = σ2
N

∑
n=0

(E(Z−1
n )−C(α)A(n,α))P(Nt = n)

+σ2 ∑
n�N+1

(E(Z−1
n )−C(α)A(n,α))P(Nt = n)

+σ2
∞

∑
n=0

C(α)A(n,α)P(Nt = n)

=: I1(α,t)+ I2(α,t)+ I3(α,t). (8)

According to (7),

|I2(α, t)| � σ2 ∑
n�N+1

|E(Z−1
n )−C(α)A(n,α)|P(Nt = n) � εI3(α,t). (9)

For t large enough such that λ t > N , one has

|I1(α,t)| � CP(Nt � N) � C(N +1)
(λ t)N

N!
e−λ t → 0, (10)

as t → ∞ .
Now we deal with I3(α,t) . If α < 1, A(n,α) = pn

1 , then

I3(α, t) = C(α)σ2
∞

∑
n=0

pn
1P(Nt = n) = C(α)σ2

∞

∑
n=0

(λ t p1)n

n!
e−λ t

= C(α)σ2 exp(λ t(p1−1)). (11)

If α = 1, A(n,α) = npn
1 , then

I3(α, t) = C(α)σ2
∞

∑
n=0

npn
1P(Nt = n) = C(α)σ2

∞

∑
n=0

n
(λ t p1)n

n!
e−λ t

= C(α)σ2 exp(λ t(p1−1))
∞

∑
n=0

n
(λ t p1)n

n!
e−λ t p1

= C(α)σ2λ t p1 exp(λ t(p1−1)). (12)

If α > 1, A(n,α) = m−n , then

I3(α, t) = C(α)σ2
∞

∑
n=0

m−n
P(Nt = n) = C(α)σ2

∞

∑
n=0

(λ tm−1)n

n!
e−λ t

= C(α)σ2 exp(λ t(m−1−1)). (13)

We complete the proof of Theorem 2 by (8)–(13).

We give an example to illustrate Theorem 2. We choose corresponding branching
law to satisfy α < 1,α = 1 and α > 1 respectively.
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EXAMPLE 1. Choose three generating functions,

f (s) =
s

(4−3s2)1/2
, g(s) =

s
2− s

, h(s) =
s

(
√

2− (
√

2−1)s1/2)2
,

then corresponding Schröder index α1 = 0.5 < 1,α2 = 1,α3 = 2 > 1 and

C(α1,t) = 12π exp(−0.5λ t),
C(α2,t) = (ln2)λ t exp(−0.5λ t),

C(α3,t) = (2−
√

2)exp

((
1√
2
−1

)
λ t

)
.

Proof. For generating function f (s) , we know

f ′(s) =
4

(4−3s2)3/2
, f ′′(s) =

36s

(4−3s2)5/2
.

Then

p1 = f ′(0) =
4
8

= 0.5, m1 = f ′(1) = 4, σ2
1 = f ′′(1)+m1−m2

1 = 24.

Thus α1 = − log4 0.5 = 0.5 < 1. By iteration,

fn(s) =
s

(4n− (4n−1)s2)1/2
.

So we have

Q1(s) = lim
n→∞

2ns

(4n− (4n−1)s2)1/2
=

s√
1− s2

.

Consequently,

∫ ∞

0
Q1(e−v)dv =

∫ ∞

0

e−v
√

1− e−2v
dv =

π
2

.

For generating function g(s) , one has

g′(s) =
2

(2− s)2 , g′′(s) =
4

(2− s)3 .

Then

p1 = g′(0) =
2
4

= 0.5, m2 = g′(1) = 2, σ2
2 = g′′(1)+m2−m2

2 = 2.

Thus α2 = − log2 0.5 = 1. By iteration,

gn(s) =
s

2n− (2n−1)s
.
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So we have

Q2(s) = lim
n→∞

2ns
2n− (2n−1)s

=
s

1− s
.

According to Theorem 2, we need to calculate the Laplace transformation of W which
is determined by

φ2(v) = lim
n→∞

gn (exp(−v/2n)) = lim
n→∞

exp(−v/2n)
2n− (2n−1)exp(−v/2n)

=
1

1+ v
.

Consequently,

∫ 2

1
Q2(φ2(v))dv =

∫ 2

1

1
1+v

1− 1
1+v

dv = ln(2).

Finally, for generating function h(s) , one has

h′(s) =
√

2

(
√

2− (
√

2−1)s1/2)3
, h′′(s) =

3(2−√
2)s−1/2

2(
√

2− (
√

2−1)s1/2)4
.

Then

p1 = h′(0) =
√

2

23/2
= 0.5, m3 = h′(1) =

√
2, σ2

3 = h′′(1)+m3−m2
3 = 1−

√
2

2
.

Thus α3 = − log√2 0.5 = 2 > 1. By iteration,

hn(s) =
s

((
√

2)n − ((
√

2)n −1)s1/2)2
.

So we have

φ3(v) = lim
n→∞

hn

(
exp
(
−v/2n/2

))
= lim

n→∞

exp
(−v/2n/2

)
(
2n/2− (2n/2−1)exp

(−v/2n/2+1
))2

=
4

(2+ v)2 .

Consequently, ∫ ∞

0
φ3(v)dv = 2.

We complete the proof of Example 1.

4. Asymptotic normality of
√

Yt(Rt −m)

In this section, we deal with the asymptotic normality of
√

Yt(Rt −m) .
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The proof of Theorem 3.
Conditioning on Yt ,

Gt(x)−Φ(x) =
∞

∑
k=1

P

(√
k(Sk −m)

kσ
� x

)
P(Yt = k)−Φ(x)

=
∞

∑
k=1

(Lk(x)−Φ(x))P(Yt = k), (14)

where Lk(x) is defined at the beginning of Section 2. According to (1), for any ε ∈
(0,1) , there exist N = N(ε) > 0 such that for any k � N , we have

Lk(x) ∈ (Φ(x)− ε,Φ(x)+ ε). (15)

We can divide (14) into the following two parts.

J1(ε,t) = ∑
k<N

(Lk(x)−Φ(x))P(Yt = k),

J2(ε,t) = ∑
k�N

(Lk(x)−Φ(x))P(Yt = k).

The rest of the proof is straightforward via (15).

The proof of Theorem 4.
Conditioning on Yt , according to the Berry–Esseen bound for i.i.d. random vari-

ables, we obtain

sup
x∈R

|Gt(x)−Φ(x)| �
∞

∑
k=1

|Lk(x)−Φ(x)|P(Yt = k) � C
∞

∑
k=1

k−1/2
P(Yt = k) = CE(Y−1/2

t ).

The rest of the proof is similar to that of Theorem 2.
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