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INHOMOGENEOUS MULTI-PARAMETER BESOV
AND TRIEBEL-LIZORKIN SPACES ASSOCIATED
WITH DIFFERENT HOMOGENEITIES AND
BOUNDEDNESS OF COMPOSITION OPERATORS

JIAN TAN

(Communicated by N. Elezovic)

Abstract. In this paper, the author establishes inhomogeneous multi-parameter Besov and Triebel-
Lizorkin spaces associated with different homogeneities. Moreover, the boundedness of the
composition of two inhomogeneous Calderén-Zygmund singular integrals of order (g,0) with
different homogeneities is obtained.

1. Introduction and statement of main results

The new multi-parameter function spaces associated with the underlying mixed
homogeneity arising form the two singular integral operators attracted many authors at-
tentions, which is motivated by Phong and Stein’s work in [9]. Recently, the weighted
Besov spaces and Triebel-Lizorkin spaces associated with different homogeneities were
introduced in [16]. Weighted Carleson measure spaces associated with different homo-
geneities were considered in [17]. Y-C. Han and Y-S. Han [3] introduced a new class of
Lipschitz spaces associated with different homogeneities and characterized these spaces
via the Littlewood-Paley theory.

On the other hand, inhomogeneous function spaces have their own interests. For
instance, the principle that Hardy space H? is like Lebesgue space L” when 0 <
p < 1 breaks down at a number of key points namely: (1) Hardy space H? does
not contain Schwartz space .¥’; (2) Hardy space H? is not semi-local; (3) pseudo-
differential operators are not bounded on Hardy spaces. To circumvent those draw-
backs, Goldberg [2] introduced inhomogeneous Hardy spaces h”, 0 < p < eo. In many
applications, moreover, it does not work to use the homogeneous spaces ¢* rather
than the inhomogeneous Holder spaces 6*. For example, the continuity property of

pseudo-differential operators T € OpST, (whose symbols fulfilling \DE‘DE o(x, &) <

C(a,B)(1+&|.)"~ 12y in the inhomogeneous Holder spaces ¢ is considered in [11].

Also, T € 0pSY | (whose symbols satisfy that |D2‘D£G(x, E)|<Clet, B)(1+|E|,)BHely
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is continuous on all inhomogeneous Besov spaces %7, where s >0 and 1 < p,q < o
(see [8]). Recently, Stein and Yung [12] show that T € &pS&~%¢ or O'pS—¢¢ (whose

symbol o (x, ) =0y (x, M, &) for some symbol oy (x,&) that satisfies \DO‘ Dl3 Dloy(x, &)

<Clo, B,1)(1+|E[)"BI(1+ &)1, where m=¢, n=—2e orm= —¢,n=¢)
preserve the isotropic and non-isotropic inhomogeneous Lipschitz spaces. There has
been a lot of work on the inhomogeneous function spaces studied by many authors, see
[1,5,6, 10, 13, 14, 15].

In this paper, we will introduce a new class of inhomogeneous multi-parameter
Besov and Triebel-Lizorkin spaces associated with different homogeneities and prove
that the composition of two inhomogeneous Calderén-Zygmund singular integral oper-
ator associated with different homogeneities is bounded on these new spaces.

Before we introduce the new inhomogeneous multi-parameter Besov and Triebel-
Lizorkin spaces, we need some notions. Throughout this paper, we use C to denote
positive constants, whose value may vary from line to line. Constants with subscripts,
such as Cy, do not change in different occurrences. We denote by f < g that there
exists a constant C > 0 independent of the main parameters such that f < Cg. We also
denote by f ~ g that there exists a constant C > 0 independent of the main parameters
such that C~'g < f < Cg. Now we can introduce the definition of inhomogeneous
Lipschitz space associated with different homogeneities.

For x = (x',x,) € R" ! xR, we denote |x|, = (|¥'|* + |x,|*)/? and |x|;, = (]x|> +
Ix,[)'/2. Note that both |x|, and |x|, satisfy the triangular inequality. We also use
notations j Ak =min{j,k} and jVk=max{j,k}. Let y(!) € #(R") satisfy

SuPPlI/ (é)c{é 1/2 <&l <2},

and ") whose Fourier transform does not vanish at the origin with

suppp(!) € {& 1 [E]. <2}.
satisfy
\2+2|w 277 forall & € R".

And let y® € .(R") with

suppy(£) € {£: 1/2 < E]x < 2},

and @2 whose Fourier transform does not vanish at the origin with

suppe ) {&:|€ln<2}
fulfill

P2 (EL &P+ Y W@ *E 2% )P =1, for all (§,&,) €R"' xR.
k=1
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Let yi! (x) = 27y (27x,27x,), y”) (x) = 260+ Dyl (250 2% x,,) and i (x) =
l//j(-l) * w,ﬁz)(x). We denote @) = (()i), where i = 1,2. Notice that l[/j(-l) * 111152) (x)=0
unless k < j < 2k for x € R,

For f € L?, we have the inhomogeneous continuous Calderén’s identity

=2 D Wik wj*f

j=0k=0

via taking the Fourier transform, where the series converges in L?(IR") norm.
First we obtain the following discrete Calderén’s identity.

THEOREM 1.1. Suppose that V), w@ and Y,k are defined above. Then

f(x/,xn) = z (Wo.0 *f)(l/yln)ll/j,k(xl —l'x, — In)

(1 1,) €2\ X Z.

+2 2 (Wj,O*f)(l/aln)Wj,O(x/_llyxn_ln)
J=1(1,)ezn—1x7

oo

+3 Y (Wor * ) L) Wor (X =1 0 — 1)
k=11 1,)eZr 1 xZ

+ Z Z Z 2_(n_1)(j/\k)2_(j/\2k)(Wj,k >|<f)(2_(j/\k)l’,2_(“2k)l,,)

= i i Y 2 (DU (g ) (27 AR 27 A2y
J=0k=0 (1" 1,)eZ" 1 x 7,

<y (! =27 UMY g, — 270N,

where the series converges in L* if f € L*, and the series also converges in % if
f € . Furthermore, the convergence of the right-hand, as well as the equality, is in
.

Now we can introduce the definition of inhomogeneous multi-parameter Besov
and Triebel-Lizorkin spaces associated with different homogeneities.

DEFINITION 1.1. Let s = (s1,52) € R? and p,q € (0,%). The inhomogeneous
Triebel-Lizorkin space associated with different homogeneities .7, , is defined to be a
collection of all f €.’ such that

IA11%,

= S oo N )

—1
(1/7171)€Z" X7 LP(R")
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1/q
Y X 2N W)
J=1({ 1) ez <7
LP(R)
1/q
n 2 2 stzq|(ll/0,k * f) (l/aln)‘qxle
=1(I'l,)€Z"~1XZ
LP(R™)
o 1/q
I EZY X 2Ry )@ U2 Uy
J=Lk=1(1' I,)ezn—1x7,
LP(RY)
< oo

and the inhomogeneous multi-parameter Besov space associated with different homo-
geneities %), , is defined to be a collection of all f € .% " such that

= S (oo N W)

(' )7~ XZ

LP(R")
N 1/q
> Y (o N
j=1 (I 1,)€Z" =1 X7
N 1/q
X2 Y ok N L) o gen
k=1 (I' 1) €21 X Z.
o 1/q
ZE piswagkad|l Ny )2 UM 270N [ 2 e
j=1k=1 (I 1,)€Z = XL,
< oo,
REMARK 1.1. Let all notation be as in Definition 1.1, observe that
v
1%,
1/q
~IZE X 2@ 20,y
J=0k=0 (1" 1,,)ezn=1xZ -
LP(R"

as well as

1%,
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1/q

i i 2Js14pks2q

j=0k=0

S (e )@ U 2 GRSy
(I ly)€Z"~1xZ

Lp(R")

Next we will show that the definitions of the Besov spaces %), , and the Triebel-

Lizorkin spaces .#, , are independent of the choice of (l//( ), l//(z), ¢(1), (p(2)) There-
fore, the Besov spaces %), , and the Triebel-Lizorkin spaces .7, , are well defined.

THEOREM 1.2. Let s = (s1,57) € R? and p,q € (0,0). If @, satisfies the same
conditions as j, then for f € /",

”fH?*IZ?%,q ~

¢ v ¢
5’5’;;#7 Hf”?[gq ~ Hf”?[gq

REMARK 1 2. As a consequence of Theorem 1.2, L? N B4 L’N F 5.4 18 dense
in %, and F, q4- Tespectively. Indeed, we only need to observe that Y 1s dense in
%, , and Z, . The proof of this claim is similar to the proof of Corollary 3.3 in [4].

Then we will state that the composition of two inhomogeneous Calderén-Zyg-
mund singular integral operators of order (¢,0) with different homogeneities is a
bounded operator on the new inhomogeneous multi-parameter Besov spaces.

We consider two kinds of homogeneities

§: (' ,xn) — (6x,8x,), 6 >0

and
8: (W, xn) — (8,8%x,), 8 > 0.

The first are the classical isotropic dilations occurring in the inhomogeneous Calderén-
Zygmund singular integrals, while the second are non-isotropic and related to the heat
equations. The inhomogeneous singular integrals were originally introduced by Meyer
and Coifman [8].

DEFINITION 1.2. Let K; € L}, (R"\{0}) and let &,8 > 0. K; is called an inho-
mogeneous Calderén-Zygmund kernel of type (€,8) associated with isotropic homo-
geneity if there exist C; > 0 such that:

Q) |Ki(x)] gclﬁ for x € R";

(i) |K;(x)| < CIW for |x[e > 1;

(i) K1 (x) — Ky ()] < C1 G for [x— ] < 1/2]4;
(V) <|f<r, K1 (x)dx =0 forall 0 <ry <ry <ee.

We say that an operator 77 is an inhomogeneous Calderén-Zygmund singular inte-
gral operators associated with isotropic homogeneity if 7j f(x) = p.v.(K; = f)(x), where
K, fulfills condition (i) — (iv).
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DEFINITION 1.3. Let K» € L} (R"\ {0}) and let £,6 > 0. K, is said to be
an inhomogeneous Calder6n-Zygmund kernel of type (&,8) associated with the non-
isotropic homogeneity if there exist C; > 0 such that:

) |K2(X)|<C2II,% for x € R";
h

(vi) [Ka(x)] < CzW for [x[, > 1

(vii) Ko () — Kao)] < Cagily for =]y < 1/20x =l

(Vi) [y, () <r, K2(x)dx =0 forall 0 <rj <ry <ee.

We say that an operator 7, is an inhomogeneous Calderén-Zygmund singular in-
tegral operators associated with the non-isotropic homogeneity if 7> f(x) = p.v.(K; *
f)(x), where K, fulfills condition (v) — (viii).

We see that T and 75 are, respectively, bounded on L?. We omit the details of
the proofs and refer reader to [7, Section 2.1] for further details. Now we state the main
results.

THEOREM 1.3. Let s = (s1,50) € R? and 0 < p,q < . Suppose that Ty and T,
are, respectively, the inhomogeneous Calderon-Zygmund singular integral operators
associated with the isotropic and non-isotropic homogeneity and the kernel satisfying
(i) — (iv) of Definition 1.2 and (v) — (viii) of Definition 1. 3 respectively Then both
T\ and T, can be extended to bounded linear operators on F, , for (A Vv

0’+n 1 o‘éJrl
n—1 1 s 1 n— 1 1
oj+n—1 v 0[‘+1) <(pAgq) and ‘% for (cr +n 1 v oj+1 v o} +n—1 v 04+1)

oj+0y=05+20,=0', 0'= (5 /\8) Furthermore, T =Ty 0T, can be also extended
to a bounded linear operator on 7, , and %

p, where

2. Proof of Theorem 1.1

As mentioned in Section 1, for f € [? (R™), we have the inhomogeneous continu-
ous Calderén’s identity

F=2 Y vk Wixxf, (1)

j=0k=0

where the series convergencesin L?, .7, ..
Now we get a discrete version of Calderén identity. First we need to decom-
pose Wi * Wix* f in (1). Set g = y/j ¢k fand h = u/j . The Fourier transforms of

g and h are given by g(&',&,) = w1 (277¢/, 277, )y (275, 27%E,) f(&',8,) and
n(E &) = 14/(1)(2‘/5’72‘/&,,)1;/( ( —kg! 272kE,). Note that the Fourier transforms of
g and h are both compactly supported. More precisely,

supp &, supp h € {(&,&,) € R"™' x R: [§']| <2/, |&,| <27 x}.
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Thus, we first expand g in a Fourier series on the rectangle R;; = {&’ e R""!. &, e R:
&' <27, 8] < 2777}

AEE)= X 27N g

(0 60)eZ~1 <7,
(jAk) pr N2k
/ g’ my)e@ I 2 gy,
]k

e ( j/\k)(/é 42~ (jA2k) fnén)

and then replace R;; by R" since g is supported in R; . Finally, we obtain

(/g\(é/vén) = Z 2= (n=1)(jrk) 9—(jn2k)
(0 by €L X7

xg(2~ Mg 2=(in2k)g ) iU 12NN 8

Multiplying ﬁ(’g” ,&,) from both sides yields

BE L ENR(EE) = Y 2~ (=1)UAR) 3 =(iN2K) g(=(iN0) g7 2=(in20)p
(0 4, €71 X T,

(&) emi e g i)

Note that h(E’,&,) e I 4270 — [p(. —2=k¢' . — 2770,)]"(E',&,). There-
fore, applying the 1dent1ty gxh=(g h) implies that

(g Wom)= 3 27D AR g0 GMg 9=(in2H0g, )
(0 0,) €T X T, ()

x h(x' =27 UM x, —2=N2K)g .

Substituting g by ;i * f and h by y; into Calderdn’s identity in (1) gives the
inhomogeneous discrete Calderén’s identity and the convergence of the series in the
L*(R").

It remains to prove that the series in the inhomogeneous discrete Calderén’s iden-
tity converges in . (R"). To do this, it suffices to show that

Z Z (V/j,o*f)(glagn)ll/j,o(x/_e/axn_en)7 (3)

JZNI (0 0,) ez 17,

D D (Wor* ) b)) Wor (X — €', xp — L) 4)

k=N (0 0,)€Z"— X7

and
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2 2 zf(nfl)(j/\k) 27(./'/\2k (V// ‘ *f)( (jAk) El (j/\2k)€n)
JZN3.kZNy (0 £,)€ZN X7 (3)

Xy p(x — 2~ N x, — 2 (AR
tend to zero in . (R") as Ny, N2, N3 and Ny tend to infinity.
When j € Zy, k=0, the above limit (3) will follow from the following estimates:

for any fixed j and any given integer M > 0, |c| > 0, there exists a constant C =
C(M, o) > 0 which is independent of j such that

S (Wio* ) ) D%y 0 (X — €' xy — )| < C277 (14 X + |xa]) ™™
(0 )7 ~1x7

Notice that we can get that

1

(1) (2) ! <L

On the other hand, from the size conditions of the functions y/(l) and 1//(0)
have that for any fixed large M,

D%y 0l )|
=Dy 5y @ )|

. 2Jn 1
<c2/ll : : av'dv,
w1k (L4290 — V] + 29 un — v )™ (L [+ o 44"
. 1
§C2~’|a‘—
(L[| + [ua )M
Therefore,
2 (Wj,O*f)(g/agn)DaWj,O(x/_glaxn_gn)
(¢ £n)EZN-1XTZ.
. 1
<2 i(L-lel) (6)
B TG (T =17 e G
dy/dyn

—p—i(L—a))
(O )T XL

/(1+\€’|+|15 DM (L4 | = ]+ Jn — £a] )M

where Z = I, x J; € Z"~! x Z with unit side-length.
Note that if y/ € I} and y, € Ji, then 1+ [ — 0| ~ T+ [x' — €], 1+ |0'] ~ 1+
'], T4 |xy— €| ~ 1+ |xy—yu|, and 1+ |¢| ~ 1+ |y,|. The simple calculation gives
1 1
(L =+ e = €)M (L4 | =¥+ e — ya )M
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Similarly,
1 1

~

(L 1]+ 1) (14 ||+ [y )M
This implies that the last term in (6) is dominated by

Co-i(L-lal) / dy'dy
(L+ [+ DM (L + [ = [+ |ea — v )M
Rr-1R
2 ilL—ol)

SC————
(1 ]+ peal) 2

Thus, the series in (3) converges to zero as N; tend to infinity.

We can get the similar result for the case j =0, k € Z; in (4). Here we omit its
proof.

Finally, we will consider the case j = Z4, k € Z+ in (5). For the sake of conve-
nience, we denote x; = 2~ UM and x; = 2-UA2K) ¢, . Let I be dyadic cubes in R~
and J be dyadic intervals in R with side-length £(I) = 2~ U and £(J) = 2-UA20) |
and the left lower corners of / and the left end points of J are x; and x;, respectively.
Then the above limit will follow from the following estimates: for any fixed j,k and
any given integer M > 0,|ot| > 0, there exists a constant C = C(M, o) > 0 which is
independent of j and k such that

DL (W ) e, x) (D) (F = w1, =) | < C27727K (1 ¥+ )™
IxJ

Now we apply the classical almost orthogonality argument. To be more precise, for any
given positive integers L; and L,, there exists a constant C = C(Ly,L,) > 0 such that

2=li=J'IL1 p(iAi)n
(1 + 20AD W] + 20/ x| 2

v ) <€

and

@ @ 2~ [k=K'|Ly (kAK)(n+1)

|Wk * W ( KK | 2(kNK L'
(14 2(kAK) || 4 22(kAK) |, VL2

X ,x)| <C

Applying the classical almost orthogonality argument with 14/(52) =f,Li =L+2M+
n+1 and L, = n, where L and M are any fixed positive integers, we obtain

27(/{/\0)("4*1)
(1 + 2®A0) [y/| - 22670 [, [)M

|(WI£2) *f) (x/7xn)‘ <C 27|k\(L+2M+n+l)

1

SOl
(14 ']+ [ )M

Note that %52) « f € (R"). Similarly, we have that

1

(M) 4 (@ L) < C 272
(v () omn)| < C2752 i
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From the size conditions of the functions w(!) and w(?), we have that for any fixed
large M,

Dyt un)| = D% (yri sy ) (o )|
oJjn ok(n+1)
Re—1xR (14270 — V| + 20 [uy — vy )M (14 25| | +22K|v,,|)
2 (iNk) (n—=1)7 (jA2K)
(1 277K/ + 2772k g, [ )M
1
(L [+ Jual M

jlor|+2k
<c2/1ol+2kal

/
i dvdv,

jlor|+2k
<c2/lol+2kal

<C2j(M+n+\al)zk(2M+2+2|a\)
Estimates above yield

DI (D w0 (% = x,200 = x7) (% ) (x1,x7)

IxJ
<CoHL-2M-2lal-2)y|j(L-M-n-a)
1
X 1| |J
2V e o (T =+ =)™

zcsz(L72M72|OC‘72)27]’(L*M7n7|06‘)

% 2/ dy/dyn
7o (L [xa| + [ DM (14 ¥ =2 + e — xs )M

Note that if y' € I and y, € J, then (1) + |x' — x| ~ (1) + |xX' — /|, (1) + |x7| ~
D)+ 1y, €() + |xn— x| ~ €(J) + x5 — yul, and £(J) + |x;| ~ €(J) + |yn|. The simple
calculation gives

1 22jM2|k‘3M
<C
(U =2z e =g DM (6D +€(T) + I = x| + e — s )M
24jM26kM

(14| =y [+ |xn_yn|)M.

Similarly,
1 24jM26kM
< .
(L e+ P DM (1 |+ [y )M
Then
(2~ HIL-20M-2]t}-2) —j(L-20M—n—] ot / dy'dy,
Ri-UxR (L[ =y |4 e =y DM (LY [+ [ )M
< k(L-20M 20| ~2)5— j(L—20M—n—|al) 1

(14 /| =+ )M

Choosing L =20M +2|oc| +n+ 3, we derive the estimates above and hence the series
in (5) converges to zero as N3 and N; tend to infinity. Therefore, the series in the
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inhomogeneous discrete Calderdn identity converges in . (R"). By the duality argu-
ment, we can also obtain the series in the inhomogeneous discrete Calderén identity
converges in .’ (R"). The proof of Theorem 1.1 is concluded.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we need the following lemmas.

LEMMA 3.1. (Almost orthogonality estimates) Suppose that Wy and @ sat-
isfy the same conditions as above. Then for any given integers L and M, there exists a
constant C = C(L,M) > 0 such that

(W) @ g (&)
2 (INT NeAK ) (n—1) 2N N2(kNK)

<o li-JLy— k=KL .
€2 2 (14 2N NAK |/ Y (Mn=1) (] 4 DI N2(RAK) |, |) (M+1)

Proof. When j,k,j k' > 0, the proof is just [4, Lemma 3.1]. Here we only con-
sider the case: j, j/, K € Z. and k = 0 and the proofs of other cases are similar. We
first write

(Wioror)ox) = [ W)V s @l ) = ox ) (W < o) )y
Rr-1xR J

By the classical almost orthogonal estimates, we have

2 (A p—1i=J'IL

1), D) <
W// *(Pjr (M7Mn)| \C(l_’_z(//\j,)‘u/D(M“r"*l) (1+2(,/\J/)|un‘)(M+l) (7)
Moreover, we claim that
2—k’L
v« o ()l < € ®)

(T DD (T4 o
In fact, forany 8 >0 and M > 0 we have

DRy (y—2) <C+y—zn) ™,
0P (2) <1 +2X [z} ™

because of y/(gz), qo,i,z) es.

To prove this claim, we subtract the Taylor polynomial of L —1 of 14/(52) at the

point z from the function l[/(gz) using the cancellation of (p,i,2 ) Then we write

() RN )
/l‘%"*lxRWO (y Z)(Pk/ (Z)dZ




758 J. TAN

(2)
@) D'yy" (), | @
—27)— —(z 7 (z)dz
/R”"“R [% . \YKXLLI R A

B!

(2)
/ M(Zﬁ)%ﬁ?)(z)dz
Rnfl xR ‘ﬁliL

1 |z|F 1 '
<C —/ 4
ImzéLﬁ! w1 (L+ [y — 02" (142X [zly)V
1

<C

b

2—k,L 1
! dZ
/RHX]R (L+ |y —60z[p)™ (142X ],)N-L

P

where 6 € (0,1).
By the triangle inequality and k' > 0,

L+ |y[n < 14|y —0z]p+ 10z,
< 1+ |y — 0z + 282l
< (14 |y — 0z (142X |23).

Hence, we obtain the estimate

@y o2
/R g Vo 020 (@)dz

c oKL 1/ 1 J
X ey ! 2
(L™ G2 BY [t (14 28]y N2 M
2—k/L
<Cori——7
(14 [yln)™

27HL
c
(L [Y)OF=D) (14 [y 5D

where M =3M;+n+1, N>L+M+n.
The estimates in (7) and (8) imply that

(W% @y ) (¥ ,30)| < C27HT 1L 27K g,

where
20AT) 1 1
A= — dy, <C——————
/R(1+2<W>|yn\><M+” (1 on — )70 (1 o] ) MFn=1)
and
(AT (n=1)
B:/ 2. . ! dy/SC;.
Ri—1 (1 +2(j/\j)|y/‘)(M+n—l) (1 + ‘x/_y/|)(M+n—1) (1 + WD(MH)

This implies the proof of Lemma 3.1. [J
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LEMMA 3.2. [4] Let I,I' be dyadic cubes in R"™' and J,J' be dyadic inter-
vals in R with the side lengths 1(I) = 2~UMN) [(I') = 2=U'™) ang 1(J) = 27 (A2K),
1(J') =27 U"N2K) " and the left lower corners of 1,I' and the left end points of J,J' are
2= 2= 2=(A2K) g, apd 2-U'NKL! - respectively. Then for any u' V' € 1,
Uy, vy € J, and any M'J'r 1 <6<,

2 (=1) (AT NNK') 9 AT N2KA2K 5 —(n—=1)(j'AK) 9 —(j'A2K)

(1 - 20NN |y — 2= (AR 171 (M+n—1)

(1" 1) eZ X T,

(@0 % f) (27U M 272K
(1 + 2]/\]’/\2k/\2k,|un —2-(J ’/\Zk’)l;l|)(M+l)

/29 1/8
<c{//z[( Y e ) UM 2 <f“"’l’>|xxﬁ) ]} Vo),
(Z//l/)

1)EZIXT

where Cy = C2=DG=DU M =i p(F=DNK A2+ pore (a—b)+ = max{a —
b,0}, and My is the strong maximal function.

Now we return the proof Theorem 1.2.
Proof. Let f € '(R"). For any (¥',x,) € R", we have that
(Wja* ) x)
Z Z Z 2—(n—1)(j’/\k’)2—(j’/\2k’ ( Qi *f)( (' AE") l/ (j’/\2k’)ln)
=0k'=0 (1" 11 eZn—1 x 7,

X ((Pjﬁk’ * ‘Vch)(x/ - 2_(j//\k,)l//,xn - 2_(j,A2k,)l;,).

First we will prove that

v )
||fH,gzI-;‘q Hf”yf;#
We only need to prove that

1/q

ST ey )@ U 20

J=0k=0(1" 1,,)eZ" 1 x 7.
LP(R")

<ClIf1%, -
P9

We denote x; = 2~ UMY x; = 2-UNK), xy = 2= UM and xp = 27 UA2K0
Discrete Calderon s identity on ./(R") and the almost orthogonality estimates yield
that for <d<p<landanyV €l,v, €J,

M+n 1

|(wja* ) (xr,x7)]
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o ) 6/2 1/8
<c Yy 2 le_k_le{///s[(([Z |((Pj',k'*f)(x1'7x1')|29{1'?(1'> ](V/,vn)} .

J K0 701

When ¢ < 1, by a simple calculation we have

H( Z Z 2J5199ks249

Z o lim i Ly~ k—H|L

Jk=0 (1" K=
5/2741/54 1/q
x {///K (@0 % f) (2 UM 27K xmm) ]} xm)
1" 1) Ly
i 2 2 (i=i")s1a9 (k=K")s2q9—1j—J'|Lan—k=K'|Lqr j's199K s2q
Jk=0(l"1,)
/279y q/6
x {///K S (@ p = f) @ UM 2=k xmm) ]} xx)'
(".0) L

<H< 2 2./’S1t12k/5‘2¢1

JH=0

, 8/29y q/0\ 1/q
x{//zs[(zugfk/*f)( W g xm) ]} )
{

)

L
Here notice that Y7, _ 02U Inap(k=K)s2ap—li=ILap~k=KIla < oo when L is large e-

nough.
When g > 1, applying the Holder inequality with indices ¢ and ¢, we get that

H( 2 2 2Js149ks2q

Jk=0(l"1,)

S ol kK
7 K=0

q

1/q
%I%J)

", l/ ) Ly

o G517 (K )52 [ — KL\ /4 \ 1/
YL 3|5, rmaesma sy’

i k'=0

/29 1/8
{ [(zw,/k/*f)( ) g=01RK) 1'>|xxﬂ) ]}
(
>
l

?

% < 2 (=519 (k=K )s2p—=|j=J'|Ly—lk=K|Ly /'s1a9K 524

5/21y q/6
{/fz[( (@0 % )2 UM =R xm) ]} )
l/,l

> L/ /.
gH ( 2 28149k 529
7' k'=0

y 6/27y q/0\ 1/q
x{//zs[(zw,/kf*f)( GO W”"l’)mm) ]} )
(

l// l/ )

1/q1q 1/q
XIXJ)

LP

LP
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Thus, applying the boundedness of strong maximal function on L/ 5(l‘1/ 5) yields

H( 2 2J's199K 529

/k/

6/27yq/0\ 6/q
x{///s[(xup,fk/*f)( WO =Ny xm) }} )
(

1".1)

1/6

Lp/é

o q/2
<c||( 3 ammn( 3 (e @2 R gy
(

j’,k’:O . l/)

Lr
1/q
<€ ( 2 2 2 qu2kluq| Qi *f) (27 (AK) l” ~(n2K) l/)|q%1'XJ'>
i k/ 0(1// l/) Lp

< o, .
<Clf1%,,
Thus it yields the desired inequality.

Now we will prove

||ij%;,q ~ |
For symmetry, we only need to prove that
. 1/q
Z Z 2Js1a9ks2q Z (%k*f)( J/\k)l/ (j/\Zk)ln)XIXJ
j=0k=0 (U 1,)eZn=1 X7, Lr(R")
<IFN%, -
<G,
Here we claim that
q
Y e ()@ 27 U
(' 1)ezr—1xz (Y
<C i i i llLi=n(k~1)—elay— kLo~ (n+1)(5 ~1)~€lg ©
j'=0K'=0
q
|| X e N@ V2T |
(1" 11)eZn=1 <7, Lr(R")

n n+l n—1 n n+1
where (n+L1 Vg Vv M+n71> < <n+L1—\sl\ Vg no T Y e 1) <P <o

To prove (9), we will consider the following two case where 0 < p < 1 and p > 1.
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(i) When 0 < p < 1, we have

P
> Wi ()@ 27U g () s ()

(' 1)ezr—1xz Lo (R
<C i i i IL1py kK |Lapyp(n=1)(5 = 1) (J A= jAR) 5§ —1) (' A2K —jA20)

7=0k'=0

5/~ 176"
(3 oo OB ) L
(1" 1) ez %7, (@)

<c2 22 = 1 —n( —1)]py kK [La—(n+ 1) (4 ~D)]p

J'=0k'=0
P

X S @pax )@ UM 27U e
(" 1€z X7

)

Lr(R7)

where in the last inequality we use the fact that (j/ Ak — j /\k) <j— ] H— |k — K],
() A2K — jA2K). < |j— j'| +2lk— K| and ( v
(pA1) <oo.

n
n+Li—|sq| Vv VH’LZ [s2]+1 M+n l) < 6 <

If 0 < g < p using the inequality (3, a;)9/?) <3, al(q/p) and if g > p using the
Holder inequality yield (9).

(ii) When p > 1, applying the Holder inequality and the L”/® boundedness of ./,

Y e (@I 27U (o) o ()

(I 1y) €7~ X Z.

LP(R")
<CS Y oy K g DG DU K iR (DG 28
J'=0K'=0
5/ 1/8
. {///[( Y (g @ U 2 xm) ]}
(l”,l/)GZ” Ixz L”(R")
gcz 22 = lILi=n(§ =) g~ kK| [La—(n+1) (3 —1)]
J'=0k'=0
<Y ey )@ TN 2T e
(1" 1) 7=\ X L. Lo ()

When 0 < g < 1 using the inequality (¥;a;)7 < Y;af and if g > 1 using the
Hoélder inequality yield (9).
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By (9), we get that

oo ) iy q 1/q
(T3 omakaa) % (e (@027 0|
j=0k=0 (U 1) €21 X7 Lr(®)

<C (2 22"1‘12’“2‘1 2 2 y=li=Jl[Li=n(5—1)~elag—lk=K|[La—(nt+1)(5~1)—elq
J=0k= =0k'=
q 1/q
X Z [(@jrar+f)(27 Mk/)l// ~(n2K) l/)|XI'XJ' )
(l”,l,’l)EZ"*lXZ P(]R")
(Z Z 2/ Slqzk/szqz 22 j=F Ly =s1=n(§—1)~elgy— k=K |[Lo—s2—(n+1)(5~1)—€lq
0K'= j=0k=

q 1/q
X Y (@ * f)(27 TN 2= T2 N e e ) ;

s n—1
(1" 1) €21 X T, (R

where ( v

) < 8 < p < o yields that

n vV ntl
n+Li—[s;| 7 n+Ly—[s|+1 M+n 1

i i i~ NLi—lstl=n(5 1) €lgg— k| [La—ls2 |-+ 1) (5 ~1)—elg < o
j=0k=0

Therefore, we have that

£,
. 1/q
zzwww Y e ()@ 2700
j=0k= (I 1,)eZ"=1 xZ LP(R™)

=0k'=

<C< Z Z 275199k s2q
q

1/q
x S (@ )N 27U g )

(l”,l,’l)eZ"* X7 L”(R")

<Cl|flzy,,-

So we have proved Theorem 1.2. [
As a consequence of Theorem 1.2, L2 N 3&;‘ is dense in BKP‘ 4+ Where 3&;‘ g 18
B, 4 . Indeed we have the following

COROLLARY 3.1. .¥ is dense in f%;,“;q.

Proof. Let f € 2. For any fixed N > 0, denote
E={(j,k £,):0<j<N,O<Lk<N,0K<N,0< L, <N},
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and

fN(x/7xn) = 2 2—(n—l)(j/\k) 2—(j/\2k (ij*f)( (jAk) ﬁl (j/\2k)€n)
(j.k 0 0n)EE

« Wj k(x/ _ 2—(j/\k)£/7xn _ 2—(]/\2/()£n)

)

where y; is the same as in Theorem 1.1.
Since yj; € .7, we obviously have fy € .. Repeating the proof of Theorem

1.2, we can conclude that || fiv[| 27y, < C|[f|| 2;,- To see that fy tendsto fin 27, by
the discrete inhomogeneous Calderén’s identity in ./ in Theorem 1.1,
(f=m)&x) = Y 2~ (=DM 9= (AK) (. £)(27 N7 2 (A2, )

(j.k, ' 0,)€EC
X Y =2 UM, — 2= (in2K)g, )

where the series converges in ..

Therefore, repeating the proof of Theorem 1.2, || f — fi|| 2;;, tendsto O as N tends
to infinity. This implies that fy tends to f inthe 2, normas N tend to infinity. Thus,
we have proved Corollary 3.1. [

4. Proof of Theorem 1.3

In order to prove Theorem 1.3, we need a inhomogeneous discrete Calderdon-type

identity on L> N A, 4» Which has its own interests. To do this, let ¢ € % with supp

¢ C B(0,1) and @) with

—

(&) =C>0, supp@V c{|&] <2}

satisfy
|2+2\¢ (277E))>=1  forall £ eR",
j=1
and

oW (x)x%dx=0  forall |o| < 10M,
Rll

where M is a fixed large positive integer depending on p,q and s.
We also let ¢ € . with supp ¢ C B(0,1) and ®?) with

—

[@2)(§)|>C>0, suppd?  {|E] <2}

satisfy

DEP+ Y 6O HE2HE)P =1 forall (§,6) R xR,

k>1
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and
0 (xX)xPdx =0 forall |B| < 10M,
Rn

where M is a fixed large positive integer depending on p,q and s.
We denote @) =: ¢ and ¢’,('l)(x) =29 (2/x), i=1,2 and set ¢, = (pj(.l) *

9, where ¢\ (x) = 2779 (2/x) and ¢ (', x,) = 25 D9 (24w, 2%y,,).
The discrete Calderdn-type identity is given by the following

PROPOSITION 4.1. Let (P(l) and ¢(2) satisfy conditions above. Then for any f &

L*N B, 4 there exists h € LN B, 4 such that for a sufficiently large N € N,

X x) = Z Z 1] |J| ¢j7k(x/ _2—(j/\k)—N€/,xn _ 2—(j/\2k)—N£n)
J.keZ (/«y/,én)EZ"’IXZ
% ((b, % h)(2_(j/\k)_N€/,2_(j/\2k)_N€n),

where the series converges in L*, I are dyadic cubes in R"~' and J are dyadic inter-
vals in R with side-length ((I) =2~UN)=N and ¢(J) =2-U =N " and the left lower
corners of 1 and the left end points of J are 2-UNO=Ny gpq 2-UN2K)-Nyg respec-
tively. Moreover,

1Fllz2 ~ 11l 2,

and

I’q I’q

Following the analogous argument to Proposition 4.1 in [4], we can prove this
proposition. Here we leave the details to the readers. We point out that the main dif-
ference between the discrete Calderén-type identity above and the discrete Calderén’s
identity given in Theorem 1.1 is that for any fixed j,k € Z, ¢; (X', x,) above have com-
pact supports but ; x(x’,x,) in Theorem 1.1 don’t. Being of compact support allows
to use the orthogonality argument in the proof of Theorem 1.3.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. First we prove the 75 is a bounded operator on J . For
fel’nZs

» q, by the L? boundedness of 7> and applying discrete Calderén’s 1dent1ty
of fon L?N

p g0 We conclude

1721,

q 1/q
(Z >, 2929« To ) (27012 (’“"’lw‘ xm)

Fk=0(1"1,) 1

i z 2Js149ks2q
J k=0 (" 1)

=

Z Z 2—(n—1)(j’/\k')2—(j'/\2k (¢ ’k’*f)( (j'AK) l// 2= (j’/\2k')l}/1)
k O(Z//’I’Q)EZH—IXZ
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~ (¢j,k*K2*¢j’,k’)(2_(j/\k)l/ —2_(j/\k)l//,2_(j/\2k)ln _- (jN2k) l/) X %J)l/q

)74
Here we claim that

2—li=J'ILy~lk—K|L
[2—(j/\j’/\k/\k’) 4 |x/|]n+cf§—l

— (NG NNK Y039 — (A J A2KA2K Yoy
2 2

|0k % Ko @jr o (X' ,2)| <C

X

)

[2—(j/\j’/\2k/\2k’) + |xn|]1+q{

where 0} +20) = 0', 6/ =0 when k or k' =0, otherwise ¢’ = €.
To prove this, we will consider the cases where k > 0 and k= 0.

Case 1. |x|, <227%.

In this case, 2X|x’| <2 and 2%|x,| < 4, which imply that

142K ~ 1 and 1+2%|x,| ~ 1.

By the fact supp ¢,§2) C {x: |x[n < 27%} and the cancellation condition in (viii), K *
¢,§2) (x) is bounded by

1Kz %97 (x)]
i [ K2<x—y>¢,£2><y>dy|
e—0 g<|x y‘h§3 2k
. 2 2
iim / Ko(r—) 67 ) - 9P (@) dy|
€0 Je|x—y|;<3 27F
<ce) [ Wy gy [ — vl 22y,
X' —y'|<3 [ —yn] <9
k(n+1
<C2k(n+l) < C . 2 (nt1) v
(14 2k|x/|) 3 1= 1 (1 4- 22k x| ) 04!

27k0'/

[2—k+ |x/|]n+c§—1[2—2k + ‘anIJro‘( ’

Case 2. |x|, >227*:
In this case, 2¢|¥'| > 2 or 2%|x,| > 4, which imply that

142K ) ~ 28] or 14-2%x,| ~ 2%x,,].

By the cancellation condition of ¢(2) and the smoothness condition of K, in (vii),
When k£ > 0, we get that

K 07 (x)] =

/\y\ <k [Ka(x—y)— K2(x)]¢k(2) (v)dy
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C/|y|h<27k W‘% )l d

2k(n+1)
C ; ;
(14 2k|x/|) T3 =1 (1 422k x| ) Oat!
ka()',

[2—k 4 |x/|]n+c§—1[2—2k + ‘anIJro‘( ’

When k = 0, using the size condition on the kernel K, when |x|, > 1, we have

1K+ 047 ()] =

/ K, (x)¢<§2) (x—y)dy
[x—ylp<1

! @)
C/|y|h<1 W‘% )l dy
1

C 7 7
(1+|xl‘)63+"_1(l+|xn‘)o4+l

c 1
[1+|x/|]"+6§71[1—|—|xn|]1+64.

By the classical orthogonality argument, for any fixed L amd M,

2=li=J'IL pn(iny")
(14 2GA7) [/ [)M1=1) (1 4 200 [ [) M+

0" %01 () < €

and
9= [k=K'|L o (kAK)(n+1)

(1 4 2(knK) |xl‘)(M+n—l) (1 -+ 22(kNK") \xn\)(MH) ’

2 2
07 %9 (¢ x) < C
Therefore,

2 2
1Ky % 0% @0 (o )| =101 5 00T (K y™ sy (0 )|
2= i=J'|Ly=k=K'|Ly (iA] NCAK') (n—1) 5 jAJ N2KA2K

<C 7 )"
(1_|_2j/\j’/\k/\k"x/|)(63+n—1) (1_|_2j/\j’/\2k/\2k’|xn‘)(0'4+l)

Thus, the claim follows.
Then by Lemma 3.2, forany ',V €1, u,,v, €J, and any (=~

(pAgNT),

V=

c74+1)<6<

O'+n1

2 (n=1)(JAJNRAK') o AT N2RN2K = (n=1)(J'AK') o —(j'A2K')

(1 o DINT AR \u’ _ 27(./’Ak’)l//|)(c§+n—1)

(@ )@ UMI, 27 W)
(1 + 2INN2KN2K gy, — 2= (772K 11 1) (04 1)

1) eTr—1XZ
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, o 5/27 3 1/8
<c{///s[( R <f”’<>l;>|2xm) ]} (V1v0),
(Z//l/)

1)EZIXT

where Cj = €20V =ink)s o(5=DU'AK —jAK)+ here (q—b), = max{a —
b,0}, and .#; is the strong maximal function.

H ( 2 2Js149ks2q

/
ln

S S o e g, s -0 2

/ k/ l// l/
1/q
XIXJ)

% ((ij *KZ % (Pj’ k,)(zf(j/\k)lc27(j/\2k)ln,27(j/\k)l//, _~—(jN2k) l/)

Lr

Y ol iy kKL
J' k=0

<H< i 2 2Js149ks2q

j,k:() (1,7171)

o /21 1/8
{ [(Zw,fk/*f)( R <~’A2">l,z>|2xpxﬁ) }}
(

l// l/ )

9 1/q
XIXJ)

Repeating the similar argument in Theorem 1.2 and applying the fact that L N

ars H
F, 4 is densein F) . we can get the desired result.

Similarly, we can also prove that

p

ITifll.7;, < ClIfll.75,

where we need to observe that (G’n-':nl—l v G,1+1) <(pAgq) and o + 0, =0’
1 2

Therefore, we have that

ITfl55, = Ty 0 Tofll 55, < CITfll 55, <CILfl 55,0

n—1 1 n—1 1
where (m V @ V G§+n71 \ O'—H) < (p/\q)
The proof of the case f € %), , is similar. For brevity, we omit its details. So we

conclude the proof of Theorem 1.3. [
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