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Abstract. Under some moment conditions on the errors, the sufficient and necessary conditions
are given for the rate of the strong consistency of the least squares estimate in a simple linear
errors-in-variables regression model.

1. Introduction

Consider the simple linear errors-in-variables (EV) regression model:

ηk = θ + βxk + εk, ξk = xk + δk, 1 � k � n, (1.1)

where θ ,β ,x1, · · · ,xn are unknown parameters or constants, (εk,δk),1 � k � n, are
random vectors and ξk,ηk,1 � k � n, are observable. Form (1.1), we have

ηk = θ + β ξk +(εk −β δk), 1 � k � n.

Then, as a usual regression model of ηk on ξk with the errors εk − β δk , the least
squares (LS) estimators of β and θ are given as

β̂n =
∑n

k=1(ξk − ξn)(ηk −ηn)

∑n
k=1(ξk − ξ n)2

, θ̂n = ηn− β̂nξ n,

where ξ n = n−1 ∑n
k=1 ξk and ηn = n−1 ∑n

k=1 ηk , δ n and xn are defined in the same
way.

Based on the above notions, we have

β̂n−β =
∑n

k=1(δk − δn)εk + ∑n
k=1(xk − xn)(εk −β δk)−β ∑n

k=1(δk − δn)2

∑n
k=1(ξk − ξ n)2

(1.2)

and
θ̂n −θ = −xn(β̂n−β )− (β̂n−β )δn + ε n−β δn. (1.3)
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This model was proposed by Deaton [3] to correct the effects of the sampling
errors and was somewhat more practical than the ordinary regression model. Fuller [4]
summarized many early works for the EV models. Due to the simple form and wide
applicability, the studies for the EV model have attracted much attention for the past
two decades. For more details, we refer to Liu and Chen [6], Miao et al. [7], Wang
et al. [10], Hu et at. [5], Shen [8], Wang and Hu [9], Wang et al. [11], and Wu et al.
[12], and so on. In particular, Liu and Chen [6] obtained the sufficient and necessary
conditions of the strong consistency for the unknown parameter β , and Hu et al. [5]
for the unknown parameter θ as follows.

THEOREM A. Under the model (1.1), assume that {(ε,δ ),(εn,δn),n � 1} is a
sequence of independent and identically distributed random vectors with Eε = Eδ = 0 ,
and 0 < Eε2,Eδ 2 < ∞ . Then

β̂n → β a.s. i f and only i f sn/n → ∞,

where and in the following, sn = ∑n
k=1(xk − xn)2 , n � 1 . And further assume that

supn�1 nx2
n/max{n,sn} < ∞ , then

θ̂n → θ a.s. i f and only i f nxn/max{n,sn}→ 0.

Theorem A characterizes the relation between the strong consistency for the un-
known parameters and the dispersion of the unknown constants xn . Theorem A has
been generalized and extended by many authors. For example, Miao et al. [7] obtained
the rate of strong consistency for the unknown parameter β .

THEOREM B. Under the model (1.1), assume that {(ε,δ ),(εn,δn),n � 1} is a
sequence of independent and identically distributed random vectors with Eε = Eδ = 0 ,
and 0 < E|ε|q,E|δ |q < ∞ for some q � 2 . Then n2−2/q/sn → 0 implies that

√
sn

n1/q
(β̂n−β ) → 0 a.s.

When q � 2, 2− 2/q � 2/q and hence
√

sn/n1/q → ∞ , so Theorem B gives the
rate of strong consistency for the unknown parameter β . In fact, Miao et al. [7] also
gave the rate of strong consistency for the unknown parameter θ , but their result does
not include Theorem A.

In the paper, another kind of rate of the strong consistency of LS estimators for the
unknown parameters is given. The first one is for the unknown parameter β .

THEOREM 1.1. Under the model (1.1), assume that {(ε,δ ),(εn,δn),n � 1} is a
sequence of independent and identically distributed random vectors with Eε = Eδ = 0 ,
0 < E|ε|q,E|δ |q < ∞ for 1/p = 1/q+ 1/2 , where 1 � p < 2 , and E(δε) �= βEδ 2 .
Then

n1−1/p(β̂n−β ) → 0 a.s. i f and only i f n2−1/p/sn → 0.

For the unknown parameter θ , we have
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THEOREM 1.2. Under the assumptions of Theorem 1.1, if supn�1 min{n,sn}x2
n/s∗n

< ∞ , then

n1−1/p(θ̂n−θ ) → 0 a.s. i f and only i f n2−1/pxn/s∗n → 0, (1.4)

where s∗n = max{n,sn} .

REMARK 1.1. When 1 < p < 2, n1−1/p → ∞ and hence Theorem 1.1 and Theo-
rem 1.2 also give the rates of strong consistency for the unknown parameters β and θ ,
respectively.

REMARK 1.2. We compare Theorem 1.1 to Theorem B under the same mo-
ment conditions. In this case, 1/p = 1/q + 1/2 and hence n2−2/q/sn → 0 implies
n2−1/p/sn → 0 and n1−1/p/(

√
sn/n1/q) → 0. So the rate of strong consistency in The-

orem 1.1 is weaker than that in Theorem B. However, the restrictive condition on sn in
Theorem 1.1 is also weaker than that in Theorem B when 1 < p < 2 (or q > 2 equiv-
alently). Therefore, the two theorems are not included in each other when 1 < p < 2
(or q > 2 equivalently). Of course, Theorem B includes Theorem 1.1 when p = 1 (or
q = 2 equivalently).

REMARK 1.3. Theorem 1.1 obtains the sufficient and necessary condition for the
rate of the strong consistency for the unknown parameter β , but Theorem B does not.
We guess that the necessary condition is also n2−2/q/sn → 0 in Theorem B. In fact,
Chen et al. [2] got the results recently.

REMARK 1.4. Under correlated and heterogeneous errors, Wang and Hu [9] and
Wang et al. [11] obtained the different convergence rate of the strong consistency, but
did not discuss the sufficient and necessary condition. To our knowledge, no literature
obtains the sufficient and necessary condition for the rate of the strong consistency for
the unknown parameter. So the main results in the paper are new.

REMARK 1.5. The condition supn�1 min{n,sn}x2
n/s∗n < ∞ in Theorem1.2 is slight-

ly weaker than supn�1 nx2
n/s∗n < ∞ in Theorem A.

2. Lemmas and proofs of main results

To prove the main results, the strong law of large numbers for weighted sums of
random variables is needed. One can refer to Bai and Cheng [1].

LEMMA 2.1. Let 1 � p < 2 , 1 < q,r < ∞ with 1/p = 1/q+1/r . Let {X ,Xn,n �
1} be a sequence of independent and identically distributed random variables, {ank,n �
1,1 � k � n} be an array of constants with

sup
n�1

1
n

n

∑
k=1

|ank|r < ∞.

Assume that EX = 0 and E|X |q < ∞ , then

n−1/p
n

∑
k=1

ankXk → 0 a.s.
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Proof of Theorem 1.1. By Theorem A, we only prove the case 1 < p < 2.
Sufficiency. Assume that n2−1/p/sn → 0. From (1.2), to prove n1−1/p(β̂n−β ) →

0 a.s. , it suffices to prove that

s−1
n ·n1−1/p

n

∑
k=1

(δk − δn)εk → 0 a.s. (2.1)

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)(εk −β δk) → 0 a.s. (2.2)

s−1
n ·n1−1/p

n

∑
k=1

(δk − δn)2 → 0 a.s. (2.3)

s−1
n

n

∑
k=1

(ξk − ξn)
2 → 1 a.s. (2.4)

By the Kolmogorov strong law of large numbers,

s−1
n ·n1−1/p

n

∑
k=1

(δk−δ n)εk =
n2−1/p

sn
·
(

1
n

n

∑
k=1

εkδk − ε nδ n

)
→ 0× [E(εδ )−0] = 0 a.s.

and

s−1
n ·n1−1/p

n

∑
k=1

(δk − δ n)2 =
n2−1/p

sn
·
(

1
n

n

∑
k=1

δ 2
k − δ

2
n

)
→ 0× (Eδ 2−0) = 0 a.s.

Hence, (2.1) and (2.3) hold. Set ank = n(xk − xn)/sn for n � 1 and 1 � k � n . Then

sup
n�1

n−1
n

∑
k=1

|ank|2 = sup
n�1

n
sn

= sup
n�1

(
n2−1/p

sn
·n−1+1/p

)
< ∞.

Therefore by Lemma 2.1 with r = 2,

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)εk = n−1/p
n

∑
k=1

ankεk → 0 a.s. (2.5)

and

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)δk = n−1/p
n

∑
k=1

ankδk → 0 a.s. (2.6)

Then (2.2) holds from (2.5) and (2.6). Note that

s−1
n

n

∑
k=1

(ξk − ξ n)
2 = 1+2s−1

n

n

∑
k=1

(xk − xn)δk + s−1
n

n

∑
k=1

(δk − δn)2.

Then by (2.6) and (2.3), (2.4) holds.
Necessity. Suppose that n2−1/p/sn → 0 does not hold. Taking subsequence when

necessary, we may assume that

n2−1/p/sn → c ∈ (0,∞] as n → ∞. (2.7)



STRONG CONSISTENCY OF LS ESTIMATOR IN SIMPLE LINEAR EV REGRESSION MODELS 775

By (2.7) and the Kolmogorov strong law of large numbers,

s−1
n ·n1−1/p

n

∑
k=1

(δk − δn)εk =
n2−1/p

sn
· 1
n

n

∑
k=1

(δk − δn)εk → cE(εδ ) a.s. (2.8)

and

s−1
n ·n1−1/p

n

∑
k=1

(δk − δ n)2 =
n2−1/p

sn
· 1
n

n

∑
k=1

(δk − δn)2 → cEδ 2 a.s. (2.9)

Set ank = n(xk − xn)/sn for n � 1 and 1 � k � n . Note that n1−1/p(β̂n −β ) → 0 a.s.
implies β̂n → β a.s. since 1 < p < 2, then n/sn → 0 from Theorem A. Hence,

sup
n�1

n−1
n

∑
k=1

a2
nk = sup

n�1

n
sn

< ∞.

Therefore by Lemma 2.1 with r = 2,

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)εk = n−1/p
n

∑
k=1

ankεk → 0 a.s.

and

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)δk = n−1/p
n

∑
k=1

ankδk → 0 a.s., (2.10)

which follow that

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)(εk −β δk) → 0 a.s. (2.11)

By (2.10), n/sn → 0, and the Kolomogorov strong law of large numbers,

s−1
n

n

∑
k=1

(ξk − ξ n)
2

=1+
2
sn

n

∑
k=1

(xk − xn)δk +
1
sn

n

∑
k=1

(δk − δn)2

=1+2n−1+1/p ·n−1/p
n

∑
k=1

n(xk − xn)
sn

δk +
n
sn

· 1
n

n

∑
k=1

(δk − δn)2

→ 1 a.s. (2.12)

Thus by (1.2), (2.9), (2.11), and (2.12),

n1−1/p(β̂n−β ) → c[E(εδ )−βEδ 2] a.s.,

which leads to a contradiction with n1−1/p(β̂n−β ) → 0 a.s. , so we have n2−1/p/sn →
0. The proof is completed. �

To prove Theorem 1.2, the follow lemma is also needed, and (2.14) is interesting
itself.
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LEMMA 2.2. Under the model (1.1), assume that {(ε,δ ),(εn,δn),n � 1} is a
sequence of independent and identically distributed random vectors with Eε = Eδ = 0 ,
0 < Eε2,Eδ 2 < ∞ . Then

min{1,Eδ 2} � liminf
n→∞

1
s∗n

n

∑
k=1

(ξk − ξ n)
2 � limsup

n→∞

1
s∗n

n

∑
k=1

(ξk − ξ n)
2 � 1+Eδ 2 a.s.,

(2.13)
where s∗n = max{n,sn} as Theorem 1.2, and

limsup
n→∞

|β̂n−β |� |E(εδ )|+ |β |Eδ 2

min{1,Eδ 2} a.s. (2.14)

Proof. It is clear that

1
s∗n

n

∑
k=1

(ξk − ξn)
2 =

sn

s∗n
+

2
s∗n

n

∑
k=1

(xk − xn)δk +
1
s∗n

n

∑
k=1

(δk − δn)2. (2.15)

Set ank = n(xk − xn)/s∗n , then

sup
n�1

1
n

n

∑
k=1

a2
nk = sup

n�1

nsn

(s∗n)2 � 1 < ∞.

Therefore by Lemma 2.1 with p = 1, and q = r = 2,

1
s∗n

n

∑
k=1

(xk − xn)δk =
1
n

n

∑
k=1

ankδk → 0 a.s. (2.16)

By the Kolmogorov strong law of large numbers,

1
n

n

∑
k=1

(δk − δ n)2 =
1
n

n

∑
k=1

δ 2
k − δ

2
n → Eδ 2 a.s., (2.17)

which and the definition of s∗n follow that

min{1,Eδ 2} � liminf
n→∞

(
sn

s∗n
+

1
s∗n

n

∑
k=1

(δk − δn)2

)

� limsup
n→∞

(
sn

s∗n
+

1
s∗n

n

∑
k=1

(δk − δn)2

)
� 1+Eδ 2 a.s. (2.18)

Then by (2.15), (2.16), and (2.18), (2.13) holds.
By the Kolmogorov strong law of large numbers,

1
n

n

∑
k=1

(δk − δn)εk =
1
n

n

∑
k=1

δkεk − δnε n → E(εδ ) a.s.,
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and hence

limsup
n→∞

∣∣∣∣∣ 1s∗n
n

∑
k=1

(δk − δn)εk

∣∣∣∣∣= limsup
n→∞

∣∣∣∣∣ n
s∗n

· 1
n

n

∑
k=1

(δk − δn)εk

∣∣∣∣∣� |E(εδ )| a.s. (2.19)

By the same argument as (2.16),

1
s∗n

n

∑
k=1

(xk − xn)(εk −β δk) → 0 a.s. (2.20)

Therefore, (2.14) follows from (1.2), (2.13), (2.17), (2.19), and (2.20). �

Proof of Theorem 1.2. By the Marcinkiwicz-Zygmund strong law of large num-
bers,

n1−1/pε n → 0 a.s. and n1−1/pδ n → 0 a.s.,

and hence by Lemma 2.2,

n1−1/p(β̂n−β )δn = n1−1/pδ n · (β̂n−β )→ 0 a.s.

Then by (1.3), to prove (1.4), it is equivalent to prove that

n1−1/p · xn(β̂n −β )→ 0 a.s. if and only if n2−1/pxn/s∗n → 0. (2.21)

Sufficiency. Assume that n2−1/pxn/s∗n → 0. By the Kolmogorov strong law of
large numbers,

n1−1/p · xn

s∗n

n

∑
k=1

(δk−δ n)εk =
n2−1/pxn

s∗n
· 1
n

n

∑
k=1

(δk−δ n)εk → 0×E(εδ )= 0 a.s. (2.22)

and

n1−1/p · xn

s∗n

n

∑
k=1

(δk − δ n)2 =
n2−1/pxn

s∗n
· 1
n

n

∑
k=1

(δk − δn)2 → 0 a.s. (2.23)

Set ank = nxn(xk − xn)/s∗n , note that

sup
n�1

1
n

n

∑
k=1

a2
nk = sup

n�1

1
n

n

∑
k=1

∣∣∣∣nxn(xk − xn)
s∗n

∣∣∣∣
2

= sup
n�1

nx2
nsn

(s∗n)2 = sup
n�1

min{n,sn}x2
n

s∗n
< ∞.

Hence by Lemma 1.2 with r = 2,

n1−1/p · xn

s∗n

n

∑
k=1

(xk − xn)(εk −β δk) =
1

n1/p

n

∑
k=1

nxn(xk − xn)
s∗n

(εk −β δk) → 0 a.s.

(2.24)
By (1.2), (2.22), (2.23), (2.24), and Lemma 2.2,

n1−1/p · xn(β̂n−β )→ 0 a.s.
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Necessity. Suppose that n2−1/pxn/s∗n → 0 does not hold. Taking subsequence
when necessary, we may assume that

n2−1/pxn/s∗n → c �= 0 as n → ∞. (2.25)

By the Kolmogorov strong law of large numbers,

n1−1/p · xn

s∗n

n

∑
k=1

(δk − δn)εk =
n2−1/pxn

s∗n
· 1
n

n

∑
k=1

(δk − δn)εk → cE(εδ ) a.s. (2.26)

and

n1−1/p · xn

s∗n

n

∑
k=1

(δk − δn)2 =
n2−1/pxn

s∗n
· 1
n

n

∑
k=1

(δk − δn)2 → cEδ 2 a.s. (2.27)

Hence, by (1.2), (2.24), (2.26), (2.27), and Lemma 2.2,

liminf
n→∞

|xn(β̂n−β )| � |c[E(εδ )−βEδ 2]|
1+Eδ 2 a.s.,

which leads to a contradictionwith n1−1/p · xn(β̂n−β )→ 0 a.s. , so we have n2−1/pxn/s∗n
→ 0. We complete the proof. �
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