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MORREY TYPE TEICHMULLER SPACE AND HIGHER BERS MAPS

GUANGMING HU, YUTONG LI1U, Y1 QI AND QINGTIAN SHI*

(Communicated by S. Li)

Abstract. In this paper, we focus on the set of univalent analytic functions f with log f’ € H,%.
Motivated by the study of BMO-Teichmiiller spaces and Morrey type spaces, we establish serval
equivalent characterizations of Morrey type domains. Furthermore, we show that the higher
Bers maps, induced by the higher Schwarzian differential operators, are holomorphic in Morrey
type Teichmiiller spaces. Finally, one of connected components in the small pre-logarithmic
derivative model of the Morrey type Teichmiiller space is also obtained.

1. Introduction

Let D ={z:|z] < 1} be the unit disc in the extended complex plane C. Denote
by D* the exterior of D and S' = dID the boundary of ID. Here use .7 (D) to denote
the set of all analytic functions defined in ID. Throughout this paper, the notation a < b
stands for the fact that there is a constant C > 0 such that a < Cb and the notation a = b
indicates that ¢ < b < a. Let M(D*) be the open unit ball of the Banach space L= (D*)
of all Beltrami differentials t(z) on D*, which have finite L..-norms. For u(z) €
M(D*), there exists a unique quasiconformal mapping f* : C — C whose complex
dilatation is u in D* and is zero in D, normalized by

FH0) = (1) (0) = 1= (f*)"(0) =0.

We say that two Beltrami coefficients y; and y, in M(ID*) are equivalent and denoted
by Uy ~ Uy, if f*1|p = f*2|p. Then the universal Teichmiiller space T is the space of
equivalent classes and can be represented as

T =M(D*)/ ~={[u]: u €MD)},

where [] is the equivalent class among u € M(D*).

A Beltrami differential u(z) € M(D*) is vanishing at the boundary of D*, if for
any € >0, there exists r > 1 such that ||tt[|;|<|| < €. Moreover, the small Teichmiiller
space is defined by

70 ={[u]: peMO(D)}.
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It is a subspace of the universal Teichmiiller space T, where M°(ID*) consists of all
vanishing Beltrami differentials.

Denote by Sp the class of all univalent analytic functions f in ) normalized by
£(0) = f(0) — 1 = 0, which can be quasiconformal extended to C. It is known that

T(1) = {logf’: f belongsto Sp}

is an alternative model called the pre-logarithmic derivative model of universal Te-
ichmiiller space. In [29], T(1) is a disconnected subset of Bloch space B'. The
connected components of 7(1) include 7, = {logf’ € T(1) : f(D) is bounded} and
To ={logf' € T(1): f(e'®) =0}, B €[0,27). Analogously, the small pre-logarithmic
derivative model of universal Teichmiiller space is defined by

79(1) = {logf' € T(1) : logf' € B}

It is well known that log f’ is in the small Bloch space %(1) if and only if its complex
dilatation p7(z) belongs to M (D).

Recently, some other subspaces of Teichiiller spaces, combined with BMO spaces,
VMO spaces, Qk spaces, F(p,q,s) spaces and Dirichlet Morrey spaces, have been
widely studied (see [1], [4], [5]1, [8], [9], [19], [12], [25], [20] and [21] for more details).

In this paper, motivated by the study of BMO Teichmiiller spaces and Morrey type
spaces, we introduce Morrey type Teichmiiller spaces as follows.

Let K : [0,00) — [0,00) be a right-continuous and nondecreasing function satisfy-
ing K(t) =K(1) forr > 1, K(2t) ~ K(t) and the following conditions:

1

¢ 1
/ K(log—) dr < eo; (L.1)
0 r

/ Pr(s) = < oo, (1.2)
and
B ds 0 2; 1.3
/1¢K<s>s1—+,,<oo, <p< (13)
where
ok (s) = sup K(st)/K(t), 0<s<oo. (1.4)
0<r<1

It is not difficult to verify that K(z) = 19,0 < ¢ < 1, satisfies (1.1) — (1.3).
For 1 < n < oo, the Hardy space H" consists of all f € &/ (D) with

£l = sup 5o [ ()0 < .

0<r<1

The Morrey type space Hz consists of all functions f € H? with

171 = 50 (e 1706~ A5 C') -
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|d§|
fi=1 /f

1
Il=—[|d
1= 5= [1ag]
is the length of subarc 1 C S'.
The small Morrey type space H12<,0 consists of all functions f € H,% satisfying

o dg] _
im Jur©-nrsz

2r
The analytic Morrey (small Morrey) space is the Morrey (small Morrey) type space
when K(1) =t* (0 <A <1). Specially, Hg = BMOA and HZ, = VMOA when
K(t) =t. The properties of analytic Morrey spaces can be found in [14, 15, 24].
Next, we introduce (vanishing) K-Carleson measures and ¢ -Bloch (small o -
Bloch) spaces.
Let

where

is the average of f over I and

Sp()={r{eD:1-|I|<r<1,(el}

and
Spr()={r{eD*: 1< r<1+|I,{ €1}

be Carleson squares in D and D*, respectively.
A non-negative measure i on D is called K-Carleson measure if

_ u(Sn)\? _
"“D="‘,i‘§%< K1) ) <

lim (M(SD(I))) o,

=0\ K(|1])
u is called vanishing K -Carleson measure on ). When K(r) =% (0 < A < 1), the
(vanishing) K -Carleson measure is the (vanishing) A -Carleson measure. In particular,
it is the classical Carleson measure when K (7) =t . Similarly, we can define the (vanish-
ing) K -Carleson measure on D*. Let CMk (D) (CMk (D)) and CMg (ID*) (CMk o(D*))
be the set of all (vanishing) K -Carleson measures on D and D, respectively.

For o € (0,00), the o -Bloch space B* [28] is defined as

Moreover, if in addition

B = {h € o/ (D)« |11l := sup | (2)|(1 - 2% < ”}~
z€

The small o-Bloch space B [28] is the subspace of B* consisting of functions &
satisfying
lim |7 (z)|(1—|z*)* = 0.

|2]—1~
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Clearly, B% (‘B{) is the classical Bloch (small Bloch) space when o = 1.

In [23], a characterization of pre-logarithmic derivatives log f” in the Morrey space
is described by Schwarzian derivatives Sy for univalent analytic functions f in D,
which are defined as

550 = Nj(2) - 3N} (2),
where
_ @)
1'(2)

Ny(z) = (log /') (2)
are pre-Schwarz derivatives of f.

THEOREM A. ([23]) Let K(t) =t* (0 <A < 1) and f be a univalent analytic
function in . Then the following statements hold.

(1) If log ' € Hg(Hg ), then log f' € B' and
1S7(2)[(1 = |2]*)*dxdy € CMk (D)(CM o(DD));

(2) If 1S7(2))2(1 — |z|*)3dxdy € CMk(D)(CMk o(D)) and log f' € B}, then log f' €
Hg(Hg ).

In this paper, we generalize Theorem A to

THEOREM 1.1. Let K : [0,00) — [0,00) be a right-continuous and nondecreasing
Sunction satisfying K(t) = K(1) fort > 1, K(2t) =~ K(t) and (1.1) — (1.3). Suppose
that f is a univalent analytic function in . Then the following statements hold.

(1) Iflog f' € Hg(Hg ), then log f' € B' and
1S7(2)[(1 = |2*)*dxdy € CMk (D)(CM o(DD));

(2) If 1S7(2))2(1 — [z|*)3dxdy € CMk(D)(CMk o(D)) and log f' € B}, then log f' €
Hg(Hg ).

Let f be a univalent analytic function in D, normalized by f(0) = f(0)—1=0,
which can be extended to a quasiconformal mapping in the extended complex plane C.
There is a quasisymmetric homeomorphism 2 = f~'og: §' — ', called the conformal
welding corresponding to f [13], if g : D* — C— f(ID) is a conformal mapping with
g(o0) = eo.

For a quasisymmetric homeomorphism % : S! — S, there are two important kernel
functions [11]:

1 h(w)
¢n(C,2) = Z_m'/sl (l—Cw)2(1—zh(w))dW’ (€,z) eDxD

and

U(f»C7Z): - B (c7Z)€DXD,
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where the kernel U(f,,z) is called Grunsky kernel function. Let

¢n(z) = (%/D%(QZ)W@CI’H){ zeD

and

vira= (3 [WirLapdan) . zep.

One of main results is the following

THEOREM 1.2. Let K be the same as that in Theorem 1.1. Suppose that f is a
univalent analytic function in D, normalized by f(0) = f(0) — 1 = 0, which can be

extended to a quasiconformal mapping in the extended complex plane C and log f’ €
%(1). Then the following statements are equivalent:

(1) logf' € HE(HE )
(2) |S¢(2)*(1 = |z*)*dxdy € CMk (D) (CMk o(D));

(3) f can be extended to a quasiconformal mapping to the whole plane such that its
dxdy € CMg(D*)(CMk o(D*));

complex dilatation | satisfies ()
i H (-1

(4) U*(f,2)(1—|z|*)dxdy € CMk(D)(CMx o(D));

(5) 02(2)(1—|z|?)dxdy € CMk(D)(CMk o(D)), where h is the conformal welding
corresponding to f.

According to Theorem 1.2, we introduce the Morrey type Teichmiiller space as
follows. Let .Z(ID*) be the Banach space of all essentially bounded measurable func-

tions u on D* with A, = “gl(lefdxdy being K-Carleson measures. The norm of
u € Z(D*) is defined by the form as
1tllz = oo+ | Aplpe & < oo

We set
M(D*) = M(D*)N.L(D*) and M°(D*) = M°(D*) N.L(D*).

Then, u belongs to M(D*) if and only if

1+ ]

% 9:rz=1H<
Il =l

)+l <
Here,
Tyr ={[u] €T :ucMD)} and TA(,}T ={[u] e T ue E)ﬁo(]D)*)}

are called the Morrey type Teichmiiller space and the small Morrey type Teichmiiller
space, respectively.
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The higher Bers maps are studied in [3], which are defined by higher Schwarzian
derivatives introduced in [18]. The higher Schwarzian derivatives 0,(f) (n > 3) of a
univalent function f are generalizations of the classical Schwarzian derivative Sy with
03 (f) =S f and

0u+1(f)(2) = 6,(f)(2) = (0= )N¢(2)0u(f)(2), n=>3.
Let Ak, (n > 3) be the space of all f € o/ (D) satisfying
2 o3 (1—lal)
(1— ————-dxdy < oo.
1P, = sop S e = i gy

The holomorphy of hlgher Bers map in the BMO Teichmiiller space is obtained in
[22] as follows.

THEOREM B. ([22]) Let K(t) =1t and n > 3. Then the higher Bers map B, :
M(D*) — Ak, is holomorphic. Moreover, the differential Dof, at the origin is given
by the following correspondence

(—1)mt [ u(w)
u— /* ( dudy.

T z—w )n+1

Analogously, the higher Bers maps are well-defined in the Morrey type Teichmiiller
space and we obtain their holomorphy as the following theorem, which generalizes The-
orem B.

THEOREM 1.3. Let K be the same as that in Theorem 1.1 and n > 3. Then the
higher Bers map B, : M(D*) — Ak, is holomorphic. Moreover, the differential Dof3,
at the origin is given by the following correspondence

= (—1)"n!/ KOO,

T

Here we call the space

Tyr(1) :={logf' € T°(1) : log f' € Hg},

the small pre-logarithmic derivative model of the Morrey type Teichmiiller space. Then
we draw the following conclusion.

THEOREM 1.4. The small pre-logarithmic derivative model T\ (1) has a con-
nected component

TA(/)IT,b(l) = {logf' € T3y (1) : f(D) is bounded}.

The structure of this paper is arranged as follows. Firstly, serval equivalent char-
acterizations of Morrey type domains are obtained in Theorem 1.1 and Theorem 1.2
and their proofs are given in section 2. In section 3, the well-defined of higher Bers
maps in the Morrey type Teichiiller space are discussed (refer to Theorem 1.3), which
generalizes Theorem B. Next, we draw one connected component of 7, (1) which is
the small pre-logarithmic derivative model of the Morrey type Teichmiiller space, and
see Theorem 1.4 for details. Finally, some remarks are presented in Section 5.



MORREY TYPE TEICHMULLER SPACE AND HIGHER BERS MAPS 787

2. Morrey type Teichmiiller space

In this section, we shall prove Theorem 1.1 and 1.2. Some lemmas are needed.
The following results, due to [26], give some characterizations of the space H,%.

LEMMA 2.1. [26] Let K be the same as that in Theorem 1.1. Suppose f € H>.
Then f € H (le(,o) if and only if du(z) = |f'(z)|*(1 — |z|*)dxdy is a K-Carleson
measure (vanishing K -Carleson measure ).

LEMMA 2.2. [26] Let K be the same as that in Theorem 1.1. Then du(z) is a
K -Carleson measure if and only if

(1—|aP) [ | a2
su ——d1(z) < oo
S0 KT Jal) Jo [T —azp M)

du(z) is a vanishing K -Carleson measure if and only if

-l [ 1-la?
su du(z) < oo
P KT Jal) Jo TP M)

and

. (1—Ia\2)/ 1—|af?
1 d =0.
Jm T jal) Jo T—ap

LEMMA 2.3. [20] Let K be the same as that in Theorem 1.1 and let [ € H2.
Then du(z) = |f(2)|>(1 — |z|*)dxdy is a (vanishing) K -Carleson measure if and only
if dv(z) = |f'(2)]>(1 — |z|*)3dxdy is a (vanishing) K -Carleson measure. Moreover;

(1—Ia\2)/ 1= laf . ., i
1— dxdy ~
Zlelup)K(l—|a\) D |1_az|2|f(2)| (1 — |z]*)dxdy

(1 ‘a|2) / 1 ‘a|2 / 2 2\3 Ixd
u 1— xXday.

We will need the following lemma in our proof of Theorem 1.2.

LEMMA 2.4. [2] Let f be a univalent analytic function in D with d f(D) being
a Jordan curve in C and log f' € %(1). Then f can be extended to a quasiconformal
mapping f to the extended plane C whose complex dilatation satisfies

1 1 1\?
(@)= 5|Sr 2 ) , l<lzl<R<2.

P

In [11], it is also introduced the following kernel:

1 h(w
<Ph(C,z)=2—m./S1 (C—W)z((l)—zh(w))dw’ (¢.z) eDxD.
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Then two operators are defined as follows:

/q», (@)dxdy, ne€HLeD,

/%CZ 2)dxdy, me#*¢eD,

where .7 is analytic Hilbert space with respect to the inner product:

/ o(w dudv

Itis proved in [11] that 7, and ThJr are bounded operators.

The following results, which establish the relationship between Schwarzaian deriva-
tives, kernel functions and complex dilations, are important in our proof of Theorem
1.2.

LEMMA 2.5. [19] Let h be the conformal welding corresponding to f. Then
U(f.2) < @) <7 U(f,2), z€D.

LEMMA 2.6. [19] Let h be the conformal welding corresponding to f. Denote
by v the complex dilatation of a quasiconformal extension of h™' to . Then

(1-12])?
36

L lvw)P?

ISr@I <U(f2) <4i @) < T VW [T Ewpr e

The following result [27] will be very useful in our proof of Theorem 1.2.

LEMMA 2.7. [27] Suppose that k > —1, r,t >0, and r+t—k>2. Ift <k+2 <
r, then there exists a universal constant C > 0 such that for all z,{ € D,

B Nk _ 2\24k—r
/ A= WPt gy < Oz
p|l—wz|"|1—w( [t |[1-Cz |

where w = u-+1iv.

We now start our proof of Theorem 1.1 and 1.2.

Proof of Theorem 1.1. Since f is a univalent analytic function in I, it always
has the famous distortion theorem |Ny(z)|(1 —|z[?) < 6 [17]. Using S¢(z) = Ni(z) =
%Nj% (z), we get |Sp(2))* < N} (z )|? + [Ny (2)|* by Cauchy-Schwarzian inequality. This
implies that

1Sp()1P(1=12%)* S INF(2) P (1= [2*)* + [Np () [* (1 = [2*)?
SINFRP =12’ + INrR)P(1 = [2).
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Note that log f' € H}(Hz ), then |N¢(z)|*(1 — |z]*)dxdy is a K-Carleson measure
(vanishing K-Carleson measure) by Lemma 2.1. Using Lemma 2.3, |N}(z)|2(l -

|z|?)3dxdy is a K -Carleson measure (vanishing K -Carleson measure). Therefore,
IS£(2)|*(1 — |z]*)3dxdy is K -Carleson measure (vanishing K -Carleson measure). That
is S/(2) (1 — 212)dm(z) € CM (D)(CMi o(D)).

Conversely, set

1 / 12 2\3
= IN(2)[7(1 = |z]7)  dxdy.
k() Jss 7
Note that |
Sf(z) =Np(x) = 5N} (2),
$0

1
- W/SJD(I) ‘Sf(z)|2(l B ‘Z| ) dxdy+ (|1|)/ \Nf(z)|4(1 - |Z|2)3dxdy.

Since log ' € B}, for any & > 0, there exists 0 < re < 1 such that [Ny (z)|(1—[z*) <&
as |z] > re. By Lemma 2.3, it has

1
<|1|>/ ieion V@I U= [P dudy < £ (m) / INA(2) (1 |2P)dxdy

» 1 / 12 243
N¢(2)]7(1 — |z|7)  dxdy.

<e

By |N¢(2)|(1—|z|*) < 6, we have

1 / 4 4 2y\—1
NP P sy <6 s [ ()
(1) Jsprizpi<ry K(III) (O(lei<re)
<fSD(I)dXdy 1
YUK 17
1

1—r

<

mro

Here we choose sufficiently small € > 0 such that

1

(1=C S g ) 1S5 ey +

~ k(1)) L=

€

where C is a positive constant depending on the above inequalities. Since [S¢(z)|*(1 —
|2|*)*dxdy € CMg (D)(CMg (D)), then [Nf(z)[*(1 — [z|*)*dxdy is K-Carleson mea-
sure (vanishing K-Carleson measure). By Lemma 2.1, 2.2 and 2.3, it is obtained
log f' € H[%(le(,o)-

Proof of Theorem 1.2. Note that (1) < (2) by Theorem 1.1. And it follows from
Lemma 2.5 that (4) < (5). Lemma 2.6 gives (5) = (2). Thus it remains to show that
(2) = (3) and (3) = (5).
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Here (2) = (3) is proved. By logf’ € B and Lemma 2.4, f can be extended
to a quasiconformal mapping f to the extended plane C and its complex dilatation

satisfies
1 1 1\?
=—|S¢| = 1-— ), 1<]|zl<R<2.
ual=3l5(3)|(1-22) - 1<H
Then

2 1S (D122 = 1)3
@ IS ()] (P -1) glsfe)

lz2—1 4)z|8

2
(l22=1)3, 1<|7<R<2.

From [S¢(z)[*(1—|2|?)3dxdy € CMg (D) (CMg (D)), we have |Sf(%) ?(|z|>—1)%dxdy €
CMg (D*)(CMk o(D¥)). Therefore, we obtain

u(z)?
22— 1

Then it shows that (3) = (5). Since f is a univalent function in D and can
be extended to a quasiconformal mapping to the extended plane C such that its com-

plex dilatation 1t satisfies ('l’z“gzj‘f) dxdy € CMg (D*)(CMi o (D*)). Next (";‘( = )“ dxdy €

CMk(D)(CMk (D)) needs to be proved. For I C dI) and |I| > 1, it has

dxdy € CMy (D*)(CMg o(D")).

| (b
K<u|>/sm< [~

1 2 1 2
<L / me )\2ddy+ 1 / me )|2ddy
K(5) Jizespy<y 1] K(%) Jizespylz 4 1 -2

1 21 1 2
<Ct+—r | Rl 1y <ot L / QL gy,
K(E) Sp(81) |2[* — 1 Iz] K(z) Sp+(S) 2] —1

For |I| < 1, anew subarc J C 9D has the same midpoint with  and satisfies |J| = 2|1|.
Then, if z € Sp(I), it has % € Sp+(I). According to K(2t) ~ K(t), then we have

1 / (2 1 u@)]* 1
dxdy < —/ —dxdy
K1) Jsay 1=zl K(J]) Jspe) [ =11z

<1 / ()P dxdy.
SD*

K1) Jspe) 2 =1

In summary, it has
()
(1—1z?)

Denote by H= g lofa quasiconformal extens10n of h~! to D*. Notice that
H has the same complex dilation y as f, where f g "o f|p+ is a quasiconformal

———dx dy S CMK(D) (CMK70(]D)).



MORREY TYPE TEICHMULLER SPACE AND HIGHER BERS MAPS 791

mapping of D* onto itself. Note that H= joHo j, where Jj(2) = % By a simple com-

putation, then Hisa quasiconformal extension of 4~ to ID with its complex dilatation
2

v(z) satisfying |v(z)| = |u(%)| Therefore, MT)"z dxdy € CMkg(D)(CMk o(D)). Then

¢ (2)(1 — |z|*)dxdy € CMg (D)(CMk (D)) needs to be proved. Here sety’ = {=£,
where a € D. By Lemma 2.1 and a simple computation, it is only proved that

(1 ~JaP)
)(1— oo
S 1ol Jp 9RO (1= )P <

when |1V_(TZ)‘|§ dxdy € CMg (D) and in addition

(1—lal’)
lim )(1— |y =
- K(1—a]) /¢h 7 (%) )dudv =0,

2
when |1V_(TZ)‘|2 dxdy € CMg (D). By Lemma 2.6, we obtain

U [ 61— ) Puay

K(1—a])

1( ~ Ja?) 1 @F 1
< ;K(l—\a|)/ﬂ)(l_hﬂ( dudv/ T EATET 7dxdy

o (A—laP) 1 v 1-la?
K(1—la]) Jo 1= [z* |1 —az|?

(L= 1O —ef2(1 ~ P)
o T T

From Lemma 2.7, it has

dxdy

(1—laP) [ v@)P 1-]a]
~ K(1—lal) /o 1—[z]* [1 —az|?

1"“‘ L [ 38) (1~ 00 e dxdy.

K(1—a])
By Lemma 2.1, it is obtained that ¢7(Z)(1 — |z|?)dxdy € CMk(D)(CMx o(D)). There-
fore, this theorem is proved completely.

Next, we recall that the Douady-Earle extension w = E(h)(z) of the quasisymmet-
ric homeomorphism # is defined as the equation, for z,w € D,

Lo (h@)—w)(1=|w]?) -~
Few) =52 [, A—w)z—rp |41=0

(see [0]).

In [10], they obtained the upper bound for the maximal dilatation of E (%) in terms
of the cross-ratio distortion of 4. Given a quadruple Q = {a,b,c,d} consisting of
four points a,b,c and d on the unit circle S arranged in counterclockwise order, one
cross-ratio of Q is defined by
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Given a quasisymmetric homeomorphism /4, the cross-ratio distortion norm of % is
defined as

[hller = sup [Incr(h(Q))],
cr(Q)=1

where
(h(b) —h(a))(h(d) —h(c))

LEMMA 2.8. For any quasisymmetric homeomorphism h of S', there exists a
universal constant C > 0 such that the maximal dilatation

1+ o
o (L

< CRller,
- uE<h>w>

where E(h)(z) is the Douady-Earle extension of h.

Let v(w) be the complex dilatation of the inverse mapping E(%)~! of the Douay-

Earle extension E (/) of quasisymmetric homeomorphism /.

PROPOSITION 1. Let K be the same as that in Theorem 1.1. Let h be a quasisym-
metric homeomorphism h of S* and v be the complex dilatation of the inverse mapping
E(h)~! of the Douay-Earle extension E(h) of h. Then there exists a universal constant
B > 0 such that

1Vllan < B(|IAller +11(1 = 1) (7) [p.x)

Proof. 1t follows from [4] and [1 1] that there is a constant A > 0 which depends
only on the quasisymmetric constant of / such that

lv(w)|? _
T— VP <AL= w2 e; (W).

Then we have || Ay ||p+ x < A[/(1—|w|*)¢2(%)|p.x- Since the maximal dilatation of the
inverse mapping E(h)™" is equal to the maximal dilatation of E (%), using Lemma 2.8,
there exists a universal constant C > 0 such that

1 o
ln<1+vw):m< e | )<C”h||cr
L=Vl =l

Therefore, there is a universal constant B > 0 such that
VIl < B(|-ler+ 1| (1= [w*) 97 (W) |p.&)

where B =max{A,C}.
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3. The holomorphy of higher Bers maps

In order to prove Theorem 1.3, the following result is needed.

LEMMA 3.1. Let K be the same as that in Theorem 1.1. If n € M(D*), then
o,(f*) € Nk n for n=3.

Proof. Owing to u € M(D*), there exists a quasiconformal mapping f satisfied
with Condition (3) of Theorem 1.2. According to the proof of Theorem 1.2 and
Lemma 2.1, it is obtained that 03(z) € 4% 3. Suppose that 6, (f*) € Ak n,n > 3. By
Lemma 2.2 and 2.3, we have

(1—laP)

1—|a\2 12 2\2n—1
su —— 0, (2)|7(1 — |z|7)™" "dxdy < oo.
D T T e OH P (1 [y

Since 0,41(f)(z) = 6,(f)(z) = (n = 1)Nf(2)0u(f)(2),n = 3, it has

|0n+1(2)| < 10,(F)(@)[ +](n— 1)Nf(2)ou (f) (2)]-

Therefore

(l—la\z)/ 1—|af? ) .

e =01 (2)]P (1 22> dxd

SUP KT lal) Jo [Tz Ot (=)™ dxdy
(l—la\z)/ T P

Ssu —lon (@) (1~ 2> dxd

S0 KT Jal) Jo TT—azp | O (1= )™ dady

(1—|a2)/ L —la? 2 2201

+su N¢(z)0, AR — 122727 dxd

D o) o T e V@R~ 2y

Since f is a univalent analytic function in D, we have |Nf(z)|(1 —|z?) < 6. Therefore,
it has 0,41(f*) € Axnt1. Using the mathematical induction, this lemma is proved
completely.

Next, we will generalize the following lemma:

LEMMA C. ([19]) Let K(t) =t. Then the Bers map B3 : M(D*) — Ak 3 is
continuous and for any [,v € M(D*), it has

[1B3(1) = B3 (V) lags S Ml = V|-

The following general result shows that the Bers map 33 : M(D*) — Ak 3(ID) is
Lipschitz continuous.

LEMMA 3.2. Let K be the same as that in Theorem 1.1. Then the Bers map
B3 : M(D*) — Ak 3 is continuous and for any u,v € M(D*), it has

[1B3(1) = B3 (V) lags S Ml = V|-
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Proof. In [1], it is proved that for any two elements u,v € M(D*), it has

|ﬁ3(,ll) —ﬁ3(V)‘2(1 _ |Z‘2)2 < ‘“(C) — V(C)|2+ Hnu_ VHEO‘.U(C)P

dédn.
D 1§ —2[* san
Therefore, we have
183 (1) = Bs(V) 1%
(1—1a) / 3 (1=lal)
=su 1— ~———~dxd
sup D [ 1Ba() ~ Ba(v) (1~ e e asay

(1 Ja) Q) — V(D) (1 JaP)
225K<1—|a>/m></»« T d’sd”)“‘z'z’|l—az|2d"dy

_lal? 2 _lal?
= vizsp e E 1 (S azan ) - ) (= aas

uE]D)K |l—LlZ‘

Let { = % Then it has

1B3(10) = Bs(V) |24z
(1—laP) \u -V 1-]aP
ach K(1—a]) 1—|T|2 1 —ar|?
X/ (-2 )(I—W 21 —arP
D |1 —Tz|*|1 —az|?
2 2 2
= 1-
ol vPsup (1—laP?) 1 |u(3 )I2 \a|2
acb K(1—la) Jo 1= 7P [1—ar]
X/ (1= |z~ |zt —az?
D

|1 —Tz|*|1 —az|?

dudy

~

dxdy

dudyv

dxdy.

By Lemma 2.7 and the proof of (3) = (5) in Theorem 1.2, we obtain
[1B3(1) = B3 (V) lags S Ml = V|-

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof of Theorem 1.3 is organized two parts. The
continuality of the higher Bers map is first proved. Then it shows that the higher Bers
map is holomorphic.

For any p,v € M(D*), let f denote the quasiconformal mapping whose complex
dilatation is equal to p in D* and is zero in D, and let g denote the quasiconformal

mapping whose complex dilatation is equal to v in D* and is zero in D, both normal-
ized

f0)=f(0)-1=f"(0)=0 and g(0)=g'(0)—1=g"(0)=0.
By the definition of the higher Schwarzian derivative, we have

16041 (£) = Gt (&)t s SN0 (F) =0 (&)t + (= D) [N O (f) =N O (&) A 1 -
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By Lemma 2.2 and 2.3, it has
16,(£) = 0a(&) |t i1 = 10w(F) = Ou(@) s
Since f is a univalent analytic function in D, we obtain

INFllss+ = sup(1 — [z]*)|Nf (2)| < 6.
z€eD

Note that

NG (f) — NgGu(8)| < INf|[6u(f) — Gu(g)] +[Gu(g) [Ny — Nel.
Consequently, it has
N7 Gu () =N O (@)l s s SIINFlI82 1100 () =G (@)l Ak, 110 (&) |t [N =Nl 32
By Theorem 3.1 in Chapter Il in [13], there is a constant C > 0 such that

[N = Nellr <Cllp— Ve

By Lemma 3.1, we have

160-+1(f) = Oni1 (&) sgnir S N1Ou(f) — Ou(@) sk, + 11t = Voo
Repeating this process n — 3 times, it has

1Gn+1(f) = On1 (&)t i S N03(F) = 03(&) s + 11t = Voo
By Lemma 3.2, we obtain

1G0+1(f) = Gt 1 (&) A S I = Vl.2-

Therefore, the higher Bers map is continuous.

Then, it needs to show that the higher Bers map f3, : M(D*) — A% (D) is holo-
morphic. That is sufficient to show that for any p € 9(D*) and v € Z(D*), B, (1 +
tv) is holomorphic in a small neighborhood of 7 = 0 in the complex plane. By u €
M(D*), there exists a positive constant € such that for any ¢ with |¢] < 2¢,

lu+tv]e <1 and |u+1v|y <ee.

Here abbreviate the function f3,(u +1v) by y(r). For fixed z € D, the function y(z)
is holomorphic in |¢| < 2€ [3]. For |¢| < €, |to| < €, it follows from Cauchy’s formula

that
|t —1o] v(s)(z)
/|s\:2£ (S—t)(s—to)zds

2n

V(&) ~y()E) d
T gy
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|t — o]
= 2med Ji=2e

w(s)(2)]|ds|-

Consequently, by Fubini’s theorem, it has

(1=laP) [|w)E)-y)(z) d ? 2203 (1= a’)
— — = t 1— " Zdxd
K(1—|a\) D t—to dt|f—t0u/( )(Z) ( |Z| ) |1—Ez\2 xay
(ol i / (1 a3 U= lal?)
< d 1— " 2 dxd
K<1_|a\> e Jo o WO@as] ) (1= PP = vy
3 (1=1a]?)
<l — o2 |a‘ // ds|(1 — o230 =lad) g
S0P R 1als o e WORPIaSI(1 P =y
2 —lal?) / 2203 (1—lal?)
=t —1t ———dxdy|d
‘ 0| ~/|S\=2£ l—|a\ | ‘Z|) ‘I—EZP X y‘ S|
N
Thus, it deduces that the limit
. t [f d
i Y —w(o) _ L)

t—to r— [0

exists in .4k ,,. This implies that 3, : 9(D*) — A% , is holomorphic.
It was shown by Buss in Theorem 3.4 in [3] that

Loy = C B gy

T

This theorem is proved completely.

4. The connected component 7)., (1) of T\, (1)

In this section, we will prove Theorem 1.4. Since the small pre-logarithmic deriva-
tive model 7)), (1) is a subset of T°(1), each f € Ty, (1) is a univalent analytic func-
tion in D, normalized by f(0) = f(0) — 1 = 0, which can be extended to a quasicon-
formal mapping in C. Here assume f(z9) = oo for zg € D*. Consider the pre-Bers
projection mapping L, on 9°(D*) by setting L, (1) = log(f*)’. Then the following
lemma is natural.

LEMMA 4.1. UZOEWLZO(WO(D*)) = Tyr(1).

Proof. For any u € IM°(D*) c M°(D*), there exists a unique quasiconformal
mapping f* : C — C whose complex dilatation is equal to g in D* and is zero in
D, normalized by f*(0) = (f*)'(0) —1=0 and f(z9) = o for zg € D*. It is known
that log(f*)’ € B]. It follows from Theorem 1.2 that log(f*)’' € H%. Therefore, it
has log(f*) € T, (1).
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Conversely, for logf’ € Ty, (1) C T°(1), we show that its complex dilatation
Ur(z) satisfies pr(z) € MO(D*) in D*, normalized by f*(0) = (f*)'(0) —1=0. By
Theorem 1.2 and log(f*)" € HZ, we can know that its complex dilatation ps(z) sat-

2
isfies iﬁ{z(i)ll)dxdy € CM (D). Since logf' € TO(1) C B), it has py(z) € MO(D¥).

Further, we have pi¢(z) € M%(D*). Here we assume f(z9) = o for zo € D*. It has
log f' € L, (9M°(D*)). This lemma is proved completely.
To prove Theorem 1.4, we need the following result which has its own interest.

THEOREM 4.1. Let K satisfy (1.1) — (1.4). For zo € D*, the pre-Bers projection
mapping Ly, : MO(D*) — HE is holomorphic.

Proof. Tt follows from Lemma 4.1 that the mapping L, : 9°(D*) — HZ is well
defined. First it shows that L, : M%(D*) — HZ is continuous. For u,v € MY(D*), it
follows from Theorem 3.1 in Chapter I in [13] that

i ANl

sup(1 — ‘Z|2) (Fuy vy

z€eD

Slu = vlle.

~

By Lemma 3.2, it has

1B3(1) = Bs(V) [l ages S e — vl 2
It follows from Lemmas 2.1, 2.2 and 2.3 that
llog(£*)" —log(f*) I3

o (1—laP) [ 1—]aP -
NEEBK(I—MI)/DII—EZP oy 7YY

T 1(<1<1_ —|a:|)>/m Ill:ﬁaz|22 K((J;;)))_ (%)

1—|a|? 1—|al?
§sup( | ‘)/D i |Sfu—va|2(1—\z|2)3dxdy

2

(f“)// (fv)// (1—|z|2)dxdy

2
(1= |2I?) dxdy

S KT Jal) Jo [T
+sup (l—laP)/ 1—a? ((f”)”)z_((fv)”>22(1—|2|2)3dxdy
S KT Jal) Jo TP |\ (77 )~ \ (7Y '
" v |2
S1Bs (1) Ba(w) Py, +sup{ (1= [0 - 0
Py P |6 e
ST ) Jo T | Gy oy | (1 <y

<l = I + = VIR o8l I3 ) + 08 (7Y 22 5)

2
Sl = vl
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Therefore, L, : M°(D*) — HZ is continuous.

Then, it needs to show that the pre-Bers projection mapping L, : mo(D*) — HE
is holomorphic. That is sufficient to show that for any u € M%(D*) and v € £ (D*),
Bn(t+1Vv) is holomorphic in a small neighborhood of ¢ = 0 in the complex plane. By
u € MO (D*), there exists a positive constant & such that for any ¢ with |¢| < 2,

lu+tv]e <1 and |u+1v|y <ee.

Here abbreviate the function L, (1 +1v) by ¢(z). For fixed z € D, the function ¢ ()
is holomorphicin || < 2¢ [16]. For |t| < €, || < €, it follows from Cauchy’s formula

that
60D~ 9l0)0) d li—af 6())
OO0 L) oa| =G [
|t — 1o

10(s)(2)]|ds].

AN
2med Jjs=2e

Consequently, by Lemma 2.1 and Fubini’s theorem, it has

(1—lal*) o(t)(z) —9)(z) d : (1—al?)
K(1—la|) Jo t—1o = =09 () (1—\z|2)mdxdy
(1=lal?) |t =1 2 (1—1a?)
<xroiep ae (o “’(Z"‘“') (=) =g
o (1—1al’) S (1= 1a?)
Sk o|2//‘| OO @Plds| (1~ 2 )ﬁdxdy
—|r — (—laP) oy (=la?) cdvlds
= [ KT / DI ~1aP) T dntoas
<|r —1o]*.
Thus, it deduces that the limit
lim ¢(t)—9() _ |t S00)

1=t t—1p

exists in Hz. This implies that L, : I°(D*) — le( is holomorphic.
We now start our proof of Theorem 1.4.
Proof of Theorem 1.4. For log f' € T\y7(1), by Theorem 1.2, f can be extended

to a quasiconformal mapping to the whole plane such that its complex dilatation u

(\‘ul( 2)? -
with f~!(eo) = (") 7! (c0) and its complex dilatation pty =t/is. Consider the mapping

t— log(f"),0 <t < 1. Since |[log(f*) —log(f")’Hle{ < ||u = v||.¢, we obtain
log(f)' —log f'llzz < |1 —1]-[|1]|.¢- Dueto logf" € HZ, it has log(f")' € HE. For
f, f, we conclude from Theorem 4.2 that

satisfies dxdy € CMk(DD*). Let f* be the quasiconformal mapping in C satisfied

[1og (") =log(f2)'ll2 < It — 2] - ] -
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On the other hand, by Theorem 3.1 in Chapter Il in [13], we get

[og(f")" —log(f2) |l < lt1 — 2] - | 1t]]o-

Thus, we deduce that
[1og (") —log(f)'llgs sz < It1 =12l - [l1t]l.2-

This means that the path ¢+ — log(f')’,0 < ¢ < 1 is continuous in By N HZ(D).
Therefore, the mapping ¢ — log(f')’,0 <t < 1, is continuous in 7)), (1). Conse-
quently, each log ' € TA(,}T(I) can be connected by a continuous path to a Mobius
transformation y satisfied with logy’ € T\, (1). Since y(D) is bounded, we have
logy € Ty (1). Moreover, it has the path p — logy, connecting the point logy
to the point 0 in Ty (1) by [1], where ¥, = ¥(pz). Therefore, T));,(1) = {log f’ €
70 (1) : (D) is bounded} is a connected component of Ty, (1).

5. Some remarks

In this section, we consider the higher Bers map in the Qg Teichmiiller space
and study the mutual relations between the Qx Teichmiiller space and the Morrey type
Teichmiiller space.

Let K be the same as that in Theorem 1.1. The Qk space consists of all f € &7 (D)
for which

Il =sup ([ 1F @FK(1- [P @P)dsay) <

Then for any positive integer n € N, an analytic function f belongs to Qg if and only
if

1

sup ( L0 @Pa [ 2K (1 - Iaf“(z)lz)dxdy) -

acD
Here, the 2k, space consists of all f € o7 (D) with

1

1125, =sop ([ AR 122" 2K (1~ [ P)dsay ) <o

A non-negative measure [ on D is called the K-type Carleson measure if

1
H“”D,K—type: sup </ K<1_|Z>du>2 < oo,
1cop \ /s (1) 1]

Similarly, the K -type Carleson measure on D* can be defined as above.
It is known that a positive measure ¢ on D is a K-type Carleson measure if and
only if [26]

sup(/DK(l— |)ﬂ(z)|2)du> -

acD



800 G.M. Hu, Y. T.L1u, Y. Q1 AND Q. T. SHI

In addition, an analytic function f belongsto Q if and only if |[f")(z)|?(1—|z|?)*" 2dxdy
is a K-type Carleson measure.
Let .#'(D*) the Banach space of all essentially bounded measurable functions

u on D* with A4y, = ““ p i rdxdy being K-type Carleson measures. The norm of u €

Z'(D*) is defined by

[llzr = lltllee + 1A [+ k-type < -

The Qg -Teichmiiller space Tp, is defined by
To, = {lu] € T p € M(D")},

where
' (D*) = M(D*) N.L (D).

LEMMA 5.1. Let K be the same as that in Theorem 1.1. If € 9 (D*), then
ou(f*) € Lxp-1 for n=3.

Proof. Using the proof of [25, Theorems 1] and similar to the proof of Lemma
3.1, Lemma 5.1 is proved easily. Here we omit its proof.

LEMMA 5.2. Let K be the same as that in Theorem 1.1. Then the Bers map
B3 : M (D*) — Pk, is continuous and for any w,v € M (D*), it has

1Bs(1) = B3(V)ll 2x, S Mt =Vl -

Proof. Using the proof of [12, Theorems 2.2] and similar to the proof of Lemma
3.2, Lemma 5.2 is proved easily. Here we also omit its proof.

Owing to Lemmas 5.1 and 5.2, we have the following Theorem which is similar
to Theorem 1.3 and also omit the proof.

THEOREM 5.1. Let K be the same as that in Theorem 1.1 and n > 3. Then the
higher Bers map B, : ' (D*) — 2k ,—1 is holomorphic. Moreover; the differential
Do, at the origin is given by the following correspondence

u— (—1)"n!/*( ) dudv.

T Z—w )n+1

Next, the mutual relations of higher Schwarzian derivatives between the Qx Teichmiiller
space and the Morrey type Teichmiiller space are discussed. We need to introduce the
fractional order derivative of f. For b > 1, the ¢ -order derivative is defined as follows:

To+o) r(1—|w?)’ '
(@) = / WU (w)dudv, b+a>0
NS ['(b) (1- wz)”*"‘ f(w)dudy, —b+a>0,
where T" denotes the Gamma function and let [o] be the smallest integer which is
larger than or equal to . It is known that f (@) s just the derivative of order n of f

for oo = n € N. The following lemmas are needed.
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LEMMA 5.3. [7] Let K be the same as that in Theorem 1.1. Then there exists a

weight K| = K such that, for a small enough qi, 0 < q; < p, Ktl,,(lt) is non-decreasing.

LEMMA 5.4. [26] Let K be the same as that in Theorem 1.1. Then there exists a
q2, 0 < ga < p, such that % is non-increasing.

LEMMA 5.5. [26] Suppose that K is the same as that in Theorem 1.1, b+ ot >

1+p, b > max{p, Hp }and o > 2 Let @ be measurable on D and an operator on
L?>(D) is defined as:

w2y
) = [

If du(z) = |w(z)|>dxdy is a K -type Carleson measure, then

¥ (y) ()P (1 = [2*)* @ Vaxdy

is a K -type Carleson measure.

THEOREM 5.2. Let K be the same as that in Theorem 1.1.
arl
(1) If u € M(D*), then the fractional order derivative G,E 2 )(f“) € Qi forn>
3.
3-qp
(2) If u € M (D*), then the fractional order derivative G,S (f”) € Nk n+1 for
n>3.

Proof. First, we show (1). If u € (D), then o, (f*) € Ak, for n >3 and

(1—\a|2)/ 1—|af? D) 2\2n—3
su o 1— "2 dxdy < oo.
sup e [ o1 ~ <Py

Using Lemma 2.2, we have

|G (/)P (L= |2 dxdy < eo.

1
sup ———
o K(IT)) /smm

For any I € D, using Lemma 5.3,
n—3— -z
/ o=z (A avay

_a_ 1—-1|z

<|,|7 / = Py
Sp
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1 / 2 2\2n-3
< G (M) 2(1 — |22 >3 dxdy
Ty [ OR = P

1
Soup b [ o ()R~ P dady < o
1ean K(|11) Jsp (1)

Then |0, (f*)>(1 —|2|*)>" 3~ 9dxdy is a K—typ;: Carleson measure. Similar to [26,
o (1—1z?)?"2dxdy is a K -type Car-

()
Theorems 3.2], using Lemma 5.5, |o; Vi)

leson measure. Therefore, we have

qr+1

G,,(T)(f“) € 2k,

Next, (2) is needed to show. If u € M'(D*), then o, (f*) € Lk for n >3
and
sup | |0 (f*)P (1= [2) K (1= |[¥*(2) P dxdy < eo.
ac
Using the above result, we have

sup [ low(/M)P(1 |z|2>2"41<(
19D/ Sp()

1 — [z
u

)dxdy < oo,

For any I € D, using Lemmas 5.4 and 5.5,

! ()l e

— I M (1= z)* Ydxdy

KD oot ) (=E=F

2

7] / (*52) e (1—z|)
S On O (L=|z7)™" " PRK | —— |dxdy
K1) Jsyin 5] A=) 1

3-a 2 o

S on( : )(f“) (1—z|2)2"_1_q2K<1—Z|)dxdy

Sp(D) ||

S/ o (f*)P(1 - |z|2)2"—41<<1 _ Z|>dxdy
Sp() 11|

l_
< sup Gn(f”)2(1—|1|2)2"_4K< 'Z)dxdyoo.
I1coDJ/Sp(I)

Therefore, we have
372(12

Gn< >(f“) GJW(,nJrL
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