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MORREY TYPE TEICHMÜLLER SPACE AND HIGHER BERS MAPS

GUANGMING HU, YUTONG LIU, YI QI AND QINGTIAN SHI ∗

(Communicated by S. Li)

Abstract. In this paper, we focus on the set of univalent analytic functions f with log f ′ ∈ H2
K .

Motivated by the study of BMO-Teichmüller spaces and Morrey type spaces, we establish serval
equivalent characterizations of Morrey type domains. Furthermore, we show that the higher
Bers maps, induced by the higher Schwarzian differential operators, are holomorphic in Morrey
type Teichmüller spaces. Finally, one of connected components in the small pre-logarithmic
derivative model of the Morrey type Teichmüller space is also obtained.

1. Introduction

Let D = {z : |z| < 1} be the unit disc in the extended complex plane Ĉ . Denote
by D∗ the exterior of D and S1 = ∂D the boundary of D . Here use A (D) to denote
the set of all analytic functions defined in D . Throughout this paper, the notation a � b
stands for the fact that there is a constant C > 0 such that a <Cb and the notation a ≈ b
indicates that a � b � a . Let M(D∗) be the open unit ball of the Banach space L∞(D∗)
of all Beltrami differentials μ(z) on D∗ , which have finite L∞ -norms. For μ(z) ∈
M(D∗) , there exists a unique quasiconformal mapping f μ : Ĉ → Ĉ whose complex
dilatation is μ in D∗ and is zero in D , normalized by

f μ(0) = ( f μ)′(0)−1 = ( f μ)′′(0) = 0.

We say that two Beltrami coefficients μ1 and μ2 in M(D∗) are equivalent and denoted
by μ1 ∼ μ2 , if f μ1 |D = f μ2 |D . Then the universal Teichmüller space T is the space of
equivalent classes and can be represented as

T = M(D∗)/ ∼= {[μ ] : μ ∈ M(D∗)},

where [μ ] is the equivalent class among μ ∈ M(D∗) .
A Beltrami differential μ(z) ∈ M(D∗) is vanishing at the boundary of D∗ , if for

any ε > 0, there exists r > 1 such that ‖μ ||z|<r‖∞ < ε . Moreover, the small Teichmüller
space is defined by

T 0 = {[μ ] : μ ∈ M0(D∗)}.
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It is a subspace of the universal Teichmüller space T , where M0(D∗) consists of all
vanishing Beltrami differentials.

Denote by SQ the class of all univalent analytic functions f in D normalized by
f (0) = f ′(0)−1 = 0, which can be quasiconformal extended to Ĉ . It is known that

T (1) = {log f ′ : f belongs to SQ}
is an alternative model called the pre-logarithmic derivative model of universal Te-
ichmüller space. In [29], T (1) is a disconnected subset of Bloch space B1 . The
connected components of T (1) include Tb = {log f ′ ∈ T (1) : f (D) is bounded} and
Tθ = {log f ′ ∈ T (1) : f (eiθ ) = ∞} , θ ∈ [0,2π) . Analogously, the small pre-logarithmic
derivative model of universal Teichmüller space is defined by

T 0(1) = {log f ′ ∈ T (1) : log f ′ ∈ B1
0}.

It is well known that log f ′ is in the small Bloch space B1
0 if and only if its complex

dilatation μ f (z) belongs to M0(D∗) .
Recently, some other subspaces of Teichüller spaces, combined with BMO spaces,

VMO spaces, QK spaces, F(p,q,s) spaces and Dirichlet Morrey spaces, have been
widely studied (see [1], [4], [5], [8], [9], [19], [12], [25], [20] and [21] for more details).

In this paper, motivated by the study of BMO Teichmüller spaces and Morrey type
spaces, we introduce Morrey type Teichmüller spaces as follows.

Let K : [0,∞) → [0,∞) be a right-continuous and nondecreasing function satisfy-
ing K(t) = K(1) for t � 1, K(2t) ≈ K(t) and the following conditions:

∫ 1
e

0
K

(
log

1
r

)
dr < ∞; (1.1)

∫ 1

0
ϕK(s)

ds
s

< ∞; (1.2)

and ∫ ∞

1
ϕK(s)

ds
s1+p < ∞, 0 < p < 2; (1.3)

where
ϕK(s) = sup

0<t�1
K(st)/K(t), 0 < s < ∞. (1.4)

It is not difficult to verify that K(t) = tq,0 � q � 1, satisfies (1.1)− (1.3) .
For 1 � n < ∞, the Hardy space Hn consists of all f ∈ A (D) with

‖ f‖n
Hn = sup

0<r<1

1
2π

∫ 2π

0
| f (reiθ )|ndθ < ∞.

The Morrey type space H2
K consists of all functions f ∈ H2 with

‖ f‖H2
K

= sup
I⊂∂D

(
1

K(|I|)
∫

I
| f (ζ )− fI |2 |dζ |

2π

) 1
2

< ∞,
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where

fI =
1
|I|

∫
I
f (ζ )

|dζ |
2π

is the average of f over I and

|I| = 1
2π

∫
I
|dζ |

is the length of subarc I ⊂ S1 .
The small Morrey type space H2

K,0 consists of all functions f ∈ H2
K satisfying

lim
|I|→0

1
K(|I|)

∫
I
| f (ζ )− fI |2 |dζ |

2π
= 0.

The analytic Morrey (small Morrey) space is the Morrey (small Morrey) type space
when K(t) = tλ (0 < λ � 1) . Specially, H2

K = BMOA and H2
K,0 = VMOA when

K(t) = t . The properties of analytic Morrey spaces can be found in [14, 15, 24].
Next, we introduce (vanishing) K -Carleson measures and α -Bloch (small α -

Bloch) spaces.
Let

SD(I) = {rζ ∈ D : 1−|I|� r < 1,ζ ∈ I}
and

SD∗(I) = {rζ ∈ D
∗ : 1 � r < 1+ |I|,ζ ∈ I}

be Carleson squares in D and D∗ , respectively.
A non-negative measure μ on D is called K -Carleson measure if

‖μ‖D,K = sup
I⊂∂D

(
μ(SD(I))
K(|I|)

) 1
2

< ∞.

Moreover, if in addition

lim
|I|→0

(
μ(SD(I))
K(|I|)

)
= 0,

μ is called vanishing K -Carleson measure on D . When K(t) = tλ (0 < λ � 1) , the
(vanishing) K -Carleson measure is the (vanishing) λ -Carleson measure. In particular,
it is the classical Carleson measure when K(t) = t . Similarly, we can define the (vanish-
ing) K -Carleson measure on D∗ . Let CMK(D) (CMK,0(D)) and CMK(D∗) (CMK,0(D∗))
be the set of all (vanishing) K -Carleson measures on D and D∗ , respectively.

For α ∈ (0,∞) , the α -Bloch space Bα [28] is defined as

Bα :=
{

h ∈ A (D) : ‖h‖Bα := sup
z∈D

|h′(z)|(1−|z|2)α < ∞
}

.

The small α -Bloch space Bα
0 [28] is the subspace of Bα consisting of functions h

satisfying
lim

|z|→1−
|h′(z)|(1−|z|2)α = 0.
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Clearly, Bα (Bα
0 ) is the classical Bloch (small Bloch) space when α = 1.

In [23], a characterization of pre-logarithmic derivatives log f ′ in the Morrey space
is described by Schwarzian derivatives S f for univalent analytic functions f in D ,
which are defined as

S f (z) = N′
f (z)−

1
2
N2

f (z),

where

Nf (z) = (log f ′)′(z) =
f ′′(z)
f ′(z)

are pre-Schwarz derivatives of f .

THEOREM A. ([23]) Let K(t) = tλ (0 < λ � 1) and f be a univalent analytic
function in D . Then the following statements hold.

(1) If log f ′ ∈ H2
K(H2

K,0) , then log f ′ ∈ B1 and

|S f (z)|2(1−|z|2)3dxdy ∈CMK(D)(CMK,0(D));

(2) If |S f (z)|2(1−|z|2)3dxdy ∈CMK(D)(CMK,0(D)) and log f ′ ∈ B1
0 , then log f ′ ∈

H2
K(H2

K,0) .

In this paper, we generalize Theorem A to

THEOREM 1.1. Let K : [0,∞) → [0,∞) be a right-continuous and nondecreasing
function satisfying K(t) = K(1) for t � 1 , K(2t) ≈ K(t) and (1.1)− (1.3) . Suppose
that f is a univalent analytic function in D . Then the following statements hold.

(1) If log f ′ ∈ H2
K(H2

K,0) , then log f ′ ∈ B1 and

|S f (z)|2(1−|z|2)3dxdy ∈CMK(D)(CMK,0(D));

(2) If |S f (z)|2(1−|z|2)3dxdy ∈CMK(D)(CMK,0(D)) and log f ′ ∈ B1
0 , then log f ′ ∈

H2
K(H2

K,0) .

Let f be a univalent analytic function in D , normalized by f (0) = f ′(0)−1 = 0,

which can be extended to a quasiconformal mapping in the extended complex plane Ĉ .
There is a quasisymmetric homeomorphism h = f−1◦g : S1 → S1 , called the conformal
welding corresponding to f [13], if g : D∗ → Ĉ− f (D) is a conformal mapping with
g(∞) = ∞ .

For a quasisymmetric homeomorphism h : S1 → S1 , there are two important kernel
functions [11]:

φh(ζ ,z) =
1

2π i

∫
S1

h(w)
(1− ζw)2(1− zh(w))

dw, (ζ ,z) ∈ D×D

and

U( f ,ζ ,z) =
f ′(ζ ) f ′(z)

[ f (ζ )− f (z)]2
− 1

(ζ − z)2 , (ζ ,z) ∈ D×D,
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where the kernel U( f ,ζ ,z) is called Grunsky kernel function. Let

φh(z) =
(

1
π

∫
D

|φh(ζ ,z)|2dξdη
) 1

2

, z ∈ D

and

U( f ,z) =
(

1
π

∫
D

|U( f ,ζ ,z)|2dξdη
) 1

2

, z ∈ D.

One of main results is the following

THEOREM 1.2. Let K be the same as that in Theorem 1.1. Suppose that f is a
univalent analytic function in D , normalized by f (0) = f ′(0)− 1 = 0, which can be
extended to a quasiconformal mapping in the extended complex plane Ĉ and log f ′ ∈
B1

0 . Then the following statements are equivalent:

(1) log f ′ ∈ H2
K(H2

K,0);

(2) |S f (z)|2(1−|z|2)3dxdy ∈CMK(D)(CMK,0(D));

(3) f can be extended to a quasiconformal mapping to the whole plane such that its

complex dilatation μ satisfies |μ(z)|2
(|z|2−1)dxdy ∈CMK(D∗)(CMK,0(D∗));

(4) U2( f ,z)(1−|z|2)dxdy ∈CMK(D)(CMK,0(D));

(5) φ2
h (z)(1− |z|2)dxdy ∈ CMK(D)(CMK,0(D)), where h is the conformal welding

corresponding to f .

According to Theorem 1.2, we introduce the Morrey type Teichmüller space as
follows. Let L (D∗) be the Banach space of all essentially bounded measurable func-

tions μ on D∗ with λμ = |μ(z)|2
|z|2−1

dxdy being K -Carleson measures. The norm of

μ ∈ L (D∗) is defined by the form as

‖μ‖L = ‖μ‖∞ +‖λμ‖D∗,K < ∞.

We set
M(D∗) = M(D∗)∩L (D∗) and M0(D∗) = M0(D∗)∩L (D∗).

Then, μ belongs to M(D∗) if and only if

‖μ‖M = ln

(
1+‖μ‖∞

1−‖μ‖∞

)
+‖λμ‖D∗,K < ∞.

Here,

TMT = {[μ ] ∈ T : μ ∈ M(D∗)} and T 0
MT = {[μ ] ∈ T 0 : μ ∈ M0(D∗)}

are called the Morrey type Teichmüller space and the small Morrey type Teichmüller
space, respectively.
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The higher Bers maps are studied in [3], which are defined by higher Schwarzian
derivatives introduced in [18]. The higher Schwarzian derivatives σn( f ) (n � 3) of a
univalent function f are generalizations of the classical Schwarzian derivative S f with
σ3( f ) = S f and

σn+1( f )(z) = σ ′
n( f )(z)− (n−1)Nf (z)σn( f )(z), n � 3.

Let NK,n (n � 3) be the space of all f ∈ A (D) satisfying

‖ f‖2
NK,n

= sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

| f (z)|2(1−|z|2)2n−3 (1−|a|2)
|1−az|2 dxdy < ∞.

The holomorphy of higher Bers map in the BMO Teichmüller space is obtained in
[22] as follows.

THEOREM B. ([22]) Let K(t) = t and n � 3 . Then the higher Bers map βn :
M(D∗) → NK,n is holomorphic. Moreover, the differential D0βn at the origin is given
by the following correspondence

μ �→ (−1)nn!
π

∫
D∗

μ(w)
(z−w)n+1 dudv.

Analogously, the higher Bers maps are well-defined in the Morrey type Teichmüller
space and we obtain their holomorphy as the following theorem, which generalizes The-
orem B.

THEOREM 1.3. Let K be the same as that in Theorem 1.1 and n � 3 . Then the
higher Bers map βn : M(D∗) → NK,n is holomorphic. Moreover, the differential D0βn

at the origin is given by the following correspondence

μ �→ (−1)nn!
π

∫
D∗

μ(w)
(z−w)n+1 dudv.

Here we call the space

T 0
MT (1) := {log f ′ ∈ T 0(1) : log f ′ ∈ H2

K},
the small pre-logarithmic derivative model of the Morrey type Teichmüller space. Then
we draw the following conclusion.

THEOREM 1.4. The small pre-logarithmic derivative model T 0
MT (1) has a con-

nected component

T 0
MT,b(1) = {log f ′ ∈ T 0

MT (1) : f (D) is bounded}.
The structure of this paper is arranged as follows. Firstly, serval equivalent char-

acterizations of Morrey type domains are obtained in Theorem 1.1 and Theorem 1.2
and their proofs are given in section 2. In section 3, the well-defined of higher Bers
maps in the Morrey type Teichüller space are discussed (refer to Theorem 1.3), which
generalizes Theorem B. Next, we draw one connected component of T 0

MT (1) which is
the small pre-logarithmic derivative model of the Morrey type Teichmüller space, and
see Theorem 1.4 for details. Finally, some remarks are presented in Section 5.
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2. Morrey type Teichmüller space

In this section, we shall prove Theorem 1.1 and 1.2. Some lemmas are needed.
The following results, due to [26], give some characterizations of the space H2

K .

LEMMA 2.1. [26] Let K be the same as that in Theorem 1.1. Suppose f ∈ H2 .
Then f ∈ H2

K (H2
K,0) if and only if dμ(z) = | f ′(z)|2(1− |z|2)dxdy is a K -Carleson

measure (vanishing K -Carleson measure) .

LEMMA 2.2. [26] Let K be the same as that in Theorem 1.1. Then dμ(z) is a
K -Carleson measure if and only if

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 dμ(z) < ∞;

dμ(z) is a vanishing K -Carleson measure if and only if

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 dμ(z) < ∞

and

lim
|a|→1−

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 dμ(z) = 0.

LEMMA 2.3. [26] Let K be the same as that in Theorem 1.1 and let f ∈ H2 .
Then dμ(z) = | f (z)|2(1−|z|2)dxdy is a (vanishing) K -Carleson measure if and only
if dν(z) = | f ′(z)|2(1−|z|2)3dxdy is a (vanishing) K -Carleson measure. Moreover,

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 | f (z)|

2(1−|z|2)dxdy ≈

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 | f

′(z)|2(1−|z|2)3dxdy.

We will need the following lemma in our proof of Theorem 1.2.

LEMMA 2.4. [2] Let f be a univalent analytic function in D with ∂ f (D) being
a Jordan curve in Ĉ and log f ′ ∈ B1

0 . Then f can be extended to a quasiconformal

mapping f̃ to the extended plane Ĉ whose complex dilatation satisfies

|μ(z)| = 1
2

∣∣∣∣S f

(
1
z

)∣∣∣∣
(

1− 1
|z|2

)2

, 1 < |z| < R < 2.

In [11], it is also introduced the following kernel:

ϕh(ζ ,z) =
1

2π i

∫
S1

h(w)
(ζ −w)2(1− zh(w))

dw, (ζ ,z) ∈ D×D.
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Then two operators are defined as follows:

T−
h (η(ζ )) =

1
π

∫
D

φh(ζ ,z)η(z)dxdy, η ∈ H 2,ζ ∈ D,

T+
h (η(ζ )) =

1
π

∫
D

ϕh(ζ ,z)η(z)dxdy, η ∈ H 2,ζ ∈ D,

where H 2 is analytic Hilbert space with respect to the inner product:

〈ϕ ,φ〉 =
1
π

∫
D

ϕ(w)φ(w)dudv.

It is proved in [11] that T−
h and T+

h are bounded operators.
The following results, which establish the relationship between Schwarzaian deriva-

tives, kernel functions and complex dilations, are important in our proof of Theorem
1.2.

LEMMA 2.5. [19] Let h be the conformal welding corresponding to f . Then

U( f ,z) � φh(z) � ‖T+
h ‖U( f ,z), z ∈ D.

LEMMA 2.6. [19] Let h be the conformal welding corresponding to f . Denote
by ν the complex dilatation of a quasiconformal extension of h−1 to D . Then

(1−|z2|)2

36
|S f (z)|2 � U2( f ,z) � φ2

h (z) � 1
π

∫
D

|ν(w)|2
1−|ν(w)|2

1
|1− zw|4 dudv.

The following result [27] will be very useful in our proof of Theorem 1.2.

LEMMA 2.7. [27] Suppose that k >−1 , r,t > 0 , and r+ t−k > 2 . If t < k+2 <
r , then there exists a universal constant C > 0 such that for all z,ζ ∈ D ,

∫
D

(1− | w |2)k

| 1−wz |r| 1−wζ |t dudv � C
(1− | z |2)2+k−r

| 1− ζz |t ,

where w = u+ iv .

We now start our proof of Theorem 1.1 and 1.2.

Proof of Theorem 1.1. Since f is a univalent analytic function in D , it always
has the famous distortion theorem |Nf (z)|(1− |z|2) � 6 [17]. Using S f (z) = N′

f (z)−
1
2N2

f (z) , we get |S f (z)|2 � |N′
f (z)|2 + |Nf (z)|4 by Cauchy-Schwarzian inequality. This

implies that

|S f (z)|2(1−|z|2)3 � |N′
f (z)|2(1−|z|2)3 + |Nf (z)|4(1−|z|2)3

� |N′
f (z)|2(1−|z|2)3 + |Nf (z)|2(1−|z|2).
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Note that log f ′ ∈ H2
K(H2

K,0) , then |Nf (z)|2(1− |z|2)dxdy is a K -Carleson measure

(vanishing K -Carleson measure) by Lemma 2.1. Using Lemma 2.3, |N′
f (z)|2(1−

|z|2)3dxdy is a K -Carleson measure (vanishing K -Carleson measure). Therefore,
|S f (z)|2(1−|z|2)3dxdy is K -Carleson measure (vanishing K -Carleson measure). That
is |S f (z)|2(1−|z|2)3dm(z) ∈CMK(D)(CMK,0(D)).

Conversely, set

J =
1

K(|I|)
∫

SD(I)
|N′

f (z)|2(1−|z|2)3dxdy.

Note that

S f (z) = N′
f (z)−

1
2
N2

f (z),

so

J � 1
K(|I|)

∫
SD(I)

|S f (z)|2(1−|z|2)3dxdy+
1

K(|I|)
∫

SD(I)
|Nf (z)|4(1−|z|2)3dxdy.

Since log f ′ ∈B1
0 , for any ε > 0, there exists 0 < rε < 1 such that |Nf (z)|(1−|z|2) < ε

as |z| > rε . By Lemma 2.3, it has

1
K(|I|)

∫
SD(I)∩{z:|z|>rε}

|Nf (z)|4(1−|z|2)3dxdy � ε2 1
K(|I|)

∫
SD(I)

|Nf (z)|2(1−|z|2)dxdy

� ε2 1
K(|I|)

∫
SD(I)

|N′
f (z)|2(1−|z|2)3dxdy.

By |Nf (z)|(1−|z|2) � 6, we have

1
K(|I|)

∫
SD(I)∩{z:|z|�rε}

|Nf (z)|4(1−|z|2)3dxdy�64 1
K(|I|)

∫
SD(I)∩{z:|z|�rε}

(1−|z|2)−1dxdy

�
∫
SD(I) dxdy

K(|I|)
1

1− r2
ε

� 1
1− r2

ε
.

Here we choose sufficiently small ε > 0 such that

(1−Cε2)J � 1
K(|I|)

∫
SD(I)

|S f (z)|2(1−|z|2)3dxdy+
1

1− r2
ε
,

where C is a positive constant depending on the above inequalities. Since |S f (z)|2(1−
|z|2)3dxdy ∈ CMK(D)(CMK,0(D)) , then |N′

f (z)|2(1− |z|2)3dxdy is K -Carleson mea-
sure (vanishing K -Carleson measure). By Lemma 2.1, 2.2 and 2.3, it is obtained
log f ′ ∈ H2

K(H2
K,0) .

Proof of Theorem 1.2. Note that (1) ⇔ (2) by Theorem 1.1. And it follows from
Lemma 2.5 that (4)⇔ (5) . Lemma 2.6 gives (5)⇒ (2) . Thus it remains to show that
(2) ⇒ (3) and (3) ⇒ (5) .
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Here (2) ⇒ (3) is proved. By log f ′ ∈ B1
0 and Lemma 2.4, f can be extended

to a quasiconformal mapping f̃ to the extended plane Ĉ and its complex dilatation
satisfies

|μ(z)| = 1
2

∣∣∣∣S f

(
1
z

)∣∣∣∣
(

1− 1
|z|2

)2

, 1 < |z| < R < 2.

Then

|μ(z)|2
|z|2−1

=

∣∣S f
(

1
z

)∣∣2 (|z|2 −1)3

4|z|8 �
∣∣∣∣S f

(
1
z

)∣∣∣∣2 (|z|2 −1)3, 1 < |z| < R < 2.

From |S f (z)|2(1−|z|2)3dxdy∈CMK(D)(CMK,0(D)) , we have |S f ( 1
z )|2(|z|2−1)3dxdy∈

CMK(D∗)(CMK,0(D∗)). Therefore, we obtain

|μ(z)|2
|z|2 −1

dxdy ∈CMK(D∗)(CMK,0(D∗)).

Then it shows that (3) ⇒ (5) . Since f is a univalent function in D and can
be extended to a quasiconformal mapping to the extended plane Ĉ such that its com-

plex dilatation μ satisfies |μ(z)|2
(|z|2−1)dxdy ∈CMK(D∗)(CMK,0(D∗)) . Next

|μ( 1
z )|2

(1−|z|2)dxdy ∈
CMK(D)(CMK,0(D)) needs to be proved. For I ⊂ ∂D and |I| > 1

2 , it has

1
K(|I|)

∫
SD(I)

|μ( 1
z )|2

1−|z|2 dxdy

� 1

K( 1
2)

∫
{z∈SD(I):|z|< 1

2}
|μ( 1

z )|2
1−|z|2 dxdy+

1

K( 1
2 )

∫
{z∈SD(I):|z|� 1

2 }
|μ( 1

z )|2
1−|z|2 dxdy

� C+
1

K( 1
2 )

∫
SD∗ (S1)

|μ(z)|2
|z|2 −1

1
|z|2 dxdy � C+

1

K( 1
2 )

∫
SD∗(S1)

|μ(z)|2
|z|2−1

dxdy.

For |I|� 1
2 , a new subarc J ⊂ ∂D has the same midpoint with I and satisfies |J|= 2|I| .

Then, if z ∈ SD(I) , it has 1
z ∈ SD∗(I) . According to K(2t) ≈ K(t) , then we have

1
K(|I|)

∫
S(I)

|μ( 1
z )|2

1−|z|2 dxdy � 1
K(|J|)

∫
SD∗ (J)

|μ(z)|2
|z|2−1

1
|z|2 dxdy

� 1
K(|J|)

∫
SD∗ (J)

|μ(z)|2
|z|2−1

dxdy.

In summary, it has
| μ( 1

z ) |2
(1−|z|2)dxdy ∈CMK(D)(CMK,0(D)).

Denote by H̃ = g−1 ◦ f a quasiconformal extension of h−1 to D∗ . Notice that
H̃ has the same complex dilation μ as f̃ , where f̃ = g−1 ◦ f |D∗ is a quasiconformal
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mapping of D∗ onto itself. Note that Ĥ = j ◦ H̃ ◦ j , where j(z) = 1
z . By a simple com-

putation, then Ĥ is a quasiconformal extension of h−1 to D with its complex dilatation

ν(z) satisfying |ν(z)| = |μ( 1
z )| . Therefore, |ν(z)|2

1−|z|2 dxdy ∈ CMK(D)(CMK,0(D)) . Then

φ2
h (z)(1− |z|2)dxdy ∈ CMK(D)(CMK,0(D)) needs to be proved. Here setγa = a−z

1−az ,
where a ∈ D . By Lemma 2.1 and a simple computation, it is only proved that

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

φ2
h (w)(1−|γa(w)|2)dudv < ∞

when |ν(z)|2
1−|z|2 dxdy ∈CMK(D) and in addition

lim
|a|→1−

(1−|a|2)
K(1−|a|)

∫
D

φ2
h (w)(1−|γa(w)|2)dudv = 0,

when |ν(z)|2
1−|z|2 dxdy ∈CMK,0(D) . By Lemma 2.6, we obtain

(1−|a|2)
K(1−|a|)

∫
D

φ2
h (w)(1−|γa(w)|2)dudv

� 1
π

(1−|a|2)
K(1−|a|)

∫
D

(1−|γa(w)|2)dudv
∫

D

|ν(z)|2
1−|ν(z)|2

1
|1− zw|4 dxdy

� (1−|a|2)
K(1−|a|)

∫
D

|ν(z)|2
1−|z|2

1−|a|2
|1−az|2 dxdy

×
∫

D

(1−|γa(w)|2)|1−az|2(1−|z|2)
(1−|a|2)|1− zw|4 dudv.

From Lemma 2.7, it has

(1−|a|2)
K(1−|a|)

∫
D

φ2
h (w)(1−|γa(w)|2)dudv � (1−|a|2)

K(1−|a|)
∫

D

|ν(z)|2
1−|z|2

1−|a|2
|1−az|2 dxdy.

By Lemma 2.1, it is obtained that φ2
h (z)(1−|z|2)dxdy ∈CMK(D)(CMK,0(D)) . There-

fore, this theorem is proved completely.

Next, we recall that the Douady-Earle extension w = E(h)(z) of the quasisymmet-
ric homeomorphism h is defined as the equation, for z,w ∈ D ,

F(z,w) =
1
2π

∫
S1

(h(t)−w)(1− | w |2)
(1−wh(t)) | z− t |2 | dt |= 0,

(see [6]).
In [10], they obtained the upper bound for the maximal dilatation of E(h) in terms

of the cross-ratio distortion of h . Given a quadruple Q = {a,b,c,d} consisting of
four points a,b,c and d on the unit circle S1 arranged in counterclockwise order, one
cross-ratio of Q is defined by

cr(Q) =
(b−a)(d− c)
(c−b)(d−a)

.
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Given a quasisymmetric homeomorphism h , the cross-ratio distortion norm of h is
defined as

‖h‖cr = sup
cr(Q)=1

| lncr(h(Q))|,

where

cr(h(Q)) =
(h(b)−h(a))(h(d)−h(c))
(h(c)−h(b))(h(d)−h(a))

.

LEMMA 2.8. For any quasisymmetric homeomorphism h of S1 , there exists a
universal constant C > 0 such that the maximal dilatation

ln

(
1+‖μE(h)‖∞

1−‖μE(h)‖∞

)
� C‖h‖cr,

where E(h)(z) is the Douady-Earle extension of h.

Let ν(w) be the complex dilatation of the inverse mapping E(h)−1 of the Douay-
Earle extension E(h) of quasisymmetric homeomorphism h .

PROPOSITION 1. Let K be the same as that in Theorem 1.1. Let h be a quasisym-
metric homeomorphism h of S1 and ν be the complex dilatation of the inverse mapping
E(h)−1 of the Douay-Earle extension E(h) of h. Then there exists a universal constant
B > 0 such that

‖ν‖M � B(‖h‖cr +‖(1−|w|2)φ2
h (w)‖D,K)

Proof. It follows from [4] and [11] that there is a constant A > 0 which depends
only on the quasisymmetric constant of h such that

|ν(w)|2
1−|ν(w)|2 � A(1−|w|2)2φ2

h (w).

Then we have ‖λμ‖D∗,K � A‖(1−|w|2)φ2
h (w)‖D,K . Since the maximal dilatation of the

inverse mapping E(h)−1 is equal to the maximal dilatation of E(h) , using Lemma 2.8,
there exists a universal constant C > 0 such that

ln

(
1+‖ν‖∞

1−‖ν‖∞

)
= ln

(
1+‖μE(h)‖∞

1−‖μE(h)‖∞

)
� C‖h‖cr

Therefore, there is a universal constant B > 0 such that

‖ν‖M � B(‖h‖cr +‖(1−|w|2)φ2
h (w)‖D,K),

where B = max{A,C} .
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3. The holomorphy of higher Bers maps

In order to prove Theorem 1.3, the following result is needed.

LEMMA 3.1. Let K be the same as that in Theorem 1.1. If μ ∈ M(D∗) , then
σn( f μ) ∈ NK,n for n � 3 .

Proof. Owing to μ ∈ M(D∗) , there exists a quasiconformal mapping f satisfied
with Condition (3) of Theorem 1.2. According to the proof of Theorem 1.2 and
Lemma 2.1, it is obtained that σ3(z) ∈ NK,3 . Suppose that σn( f μ) ∈ NK,n,n � 3. By
Lemma 2.2 and 2.3, we have

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 |σ

′
n(z)|2(1−|z|2)2n−1dxdy < ∞.

Since σn+1( f )(z) = σ ′
n( f )(z)− (n−1)Nf (z)σn( f )(z),n � 3, it has

|σn+1(z)| � |σ ′
n( f )(z)|+ |(n−1)Nf (z)σn( f )(z)|.

Therefore

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 |σn+1(z)|2(1−|z|2)2n−1dxdy

�sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 |σ

′
n(z)|2(1−|z|2)2n−1dxdy

+ sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 |Nf (z)σn( f )(z)|2(1−|z|2)2n−1dxdy

Since f is a univalent analytic function in D , we have |Nf (z)|(1−|z|2) � 6. Therefore,
it has σn+1( f μ) ∈ NK,n+1 . Using the mathematical induction, this lemma is proved
completely.

Next, we will generalize the following lemma:

LEMMA C. ([19]) Let K(t) = t . Then the Bers map β3 : M(D∗) → NK,3 is
continuous and for any μ ,ν ∈ M(D∗) , it has

‖β3(μ)−β3(ν)‖NK,3 � ‖μ −ν‖L .

The following general result shows that the Bers map β3 : M(D∗) → NK,3(D) is
Lipschitz continuous.

LEMMA 3.2. Let K be the same as that in Theorem 1.1. Then the Bers map
β3 : M(D∗) → NK,3 is continuous and for any μ ,ν ∈ M(D∗) , it has

‖β3(μ)−β3(ν)‖NK,3 � ‖μ −ν‖L .
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Proof. In [1], it is proved that for any two elements μ ,ν ∈ M(D∗) , it has

|β3(μ)−β3(ν)|2(1−|z|2)2 �
∫

D∗
|μ(ζ )−ν(ζ )|2 +‖μ −ν‖2

∞|μ(ζ )|2
|ζ − z|4 dξdη .

Therefore, we have

‖β3(μ)−β3(ν)‖2
NK,3

=sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

|β3(μ)−β3(ν)|2(1−|z|2)3 (1−|a|2)
|1−az|2 dxdy

�sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

(∫
D∗

|μ(ζ )−ν(ζ )|2
|ζ − z|4 dξdη

)
(1−|z|2) (1−|a|2)

|1−az|2 dxdy

+‖μ −ν‖2
∞ sup

a∈D

(1−|a|2)
K(1−|a|)

∫
D

(∫
D∗

|μ(ζ )|2
|ζ − z|4 dξdη

)
(1−|z|2) (1−|a|2)

|1−az|2 dxdy.

Let ζ = 1
τ . Then it has

‖β3(μ)−β3(ν)‖2
NK,3

�sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

|μ( 1
τ )−ν( 1

τ )|2
1−|τ|2

1−|a|2
|1−aτ|2 dudv

×
∫

D

(1−|z|2)(1−|τ|2)|1−aτ|2
|1− τz|4|1−az|2 dxdy

+‖μ −ν‖2
∞ sup

a∈D

(1−|a|2)
K(1−|a|)

∫
D

|μ( 1
τ )|2

1−|τ|2
1−|a|2
|1−aτ|2 dudv

×
∫

D

(1−|z|2)(1−|τ|2)|1−aτ|2
|1− τz|4|1−az|2 dxdy.

By Lemma 2.7 and the proof of (3) ⇒ (5) in Theorem 1.2, we obtain

‖β3(μ)−β3(ν)‖NK,3 � ‖μ −ν‖L .

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof of Theorem 1.3 is organized two parts. The
continuality of the higher Bers map is first proved. Then it shows that the higher Bers
map is holomorphic.

For any μ ,ν ∈M(D∗) , let f denote the quasiconformal mapping whose complex
dilatation is equal to μ in D∗ and is zero in D , and let g denote the quasiconformal
mapping whose complex dilatation is equal to ν in D

∗ and is zero in D , both normal-
ized

f (0) = f ′(0)−1 = f ′′(0) = 0 and g(0) = g′(0)−1 = g′′(0) = 0.

By the definition of the higher Schwarzian derivative, we have

‖σn+1( f )−σn+1(g)‖NK,n+1 �‖σ ′
n( f )−σ ′

n(g)‖NK,n+1+(n−1)‖Nf σn( f )−Ngσn(g)‖NK,n+1 .
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By Lemma 2.2 and 2.3, it has

‖σ ′
n( f )−σ ′

n(g)‖NK,n+1 ≈ ‖σn( f )−σn(g)‖NK,n .

Since f is a univalent analytic function in D, we obtain

‖Nf ‖B1 = sup
z∈D

(1−|z|2)|Nf (z)| � 6.

Note that

|Nf σn( f )−Ngσn(g)| � |Nf ||σn( f )−σn(g)|+ |σn(g)||Nf −Ng|.

Consequently, it has

‖Nf σn( f )−Ngσn(g)‖NK,n+1 �‖Nf ‖B1‖σn( f )−σn(g)‖NK,n +‖σn(g)‖NK,n‖Nf−Ng‖B1 .

By Theorem 3.1 in Chapter II in [13], there is a constant C > 0 such that

‖Nf −Ng‖B1 � C‖μ −ν‖∞.

By Lemma 3.1, we have

‖σn+1( f )−σn+1(g)‖NK,n+1 � ‖σn( f )−σn(g)‖NK,n +‖μ −ν‖∞.

Repeating this process n−3 times, it has

‖σn+1( f )−σn+1(g)‖NK,n+1 � ‖σ3( f )−σ3(g)‖NK,3 +‖μ −ν‖∞.

By Lemma 3.2, we obtain

‖σn+1( f )−σn+1(g)‖NK,n+1 � ‖μ −ν‖L .

Therefore, the higher Bers map is continuous.
Then, it needs to show that the higher Bers map βn : M(D∗) → NK,n(D) is holo-

morphic. That is sufficient to show that for any μ ∈ M(D∗) and ν ∈ L (D∗) , βn(μ +
tν) is holomorphic in a small neighborhood of t = 0 in the complex plane. By μ ∈
M(D∗) , there exists a positive constant ε such that for any t with |t| < 2ε ,

‖μ + tν‖∞ < 1 and ‖μ + tν‖L < ∞.

Here abbreviate the function βn(μ + tν) by ψ(t) . For fixed z ∈ D , the function ψ(t)
is holomorphic in |t| < 2ε [3]. For |t| < ε , |t0| < ε , it follows from Cauchy’s formula
that ∣∣∣∣ψ(t)(z)−ψ(t0)(z)

t− t0
− d

dt
|t=t0ψ(t)(z)

∣∣∣∣ =
|t− t0|

2π

∣∣∣∣
∫
|s|=2ε

ψ(s)(z)
(s− t)(s− t0)2 ds

∣∣∣∣
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� |t− t0|
2πε3

∫
|s|=2ε

|ψ(s)(z)||ds|.

Consequently, by Fubini’s theorem, it has

(1−|a|2)
K(1−|a|)

∫
D

∣∣∣∣ψ(t)(z)−ψ(t0)(z)
t− t0

− d
dt
|t=t0ψ(t)(z)

∣∣∣∣2 (1−|z|2)2n−3 (1−|a|2)
|1−az|2 dxdy

� (1−|a|2)
K(1−|a|)

|t− t0|2
4π2ε6

∫
D

(∫
|s|=2ε

|ψ(s)(z)||ds|
)2

(1−|z|2)2n−3 (1−|a|2)
|1−az|2 dxdy

�|t − t0|2 (1−|a|2)
K(1−|a|)

∫
D

∫
|s|=2ε

|ψ(s)(z)|2|ds|(1−|z|2)2n−3 (1−|a|2)
|1−az|2 dxdy

=|t − t0|2
∫
|s|=2ε

(1−|a|2)
K(1−|a|)

∫
D

|ψ(s)(z)|2(1−|z|2)2n−3 (1−|a|2)
|1−az|2 dxdy|ds|

�|t − t0|2.
Thus, it deduces that the limit

lim
t→t0

ψ(t)−ψ(t0)
t − t0

=
d
dt
|t=t0ψ(t)

exists in NK,n . This implies that βn : M(D∗) → NK,n is holomorphic.
It was shown by Buss in Theorem 3.4 in [3] that

d
dt
|t=0ψ(t)(z) =

(−1)nn!
π

∫
D∗

μ(w)
(z−w)n+1 dudv

This theorem is proved completely.

4. The connected component T 0
MT,b(1) of T 0

MT (1)

In this section, we will proveTheorem 1.4. Since the small pre-logarithmic deriva-
tive model T 0

MT (1) is a subset of T 0(1) , each f ∈ T 0
MT (1) is a univalent analytic func-

tion in D , normalized by f (0) = f ′(0)−1 = 0, which can be extended to a quasicon-
formal mapping in Ĉ . Here assume f (z0) = ∞ for z0 ∈ D∗ . Consider the pre-Bers
projection mapping Lz0 on M0(D∗) by setting Lz0(μ) = log( f μ)′ . Then the following
lemma is natural.

LEMMA 4.1. ∪z0∈D∗Lz0(M
0(D∗)) = T 0

MT (1) .

Proof. For any μ ∈ M0(D∗) ⊂ M0(D∗) , there exists a unique quasiconformal
mapping f μ : Ĉ → Ĉ whose complex dilatation is equal to μ in D∗ and is zero in
D , normalized by f μ(0) = ( f μ)′(0)− 1 = 0 and f (z0) = ∞ for z0 ∈ D∗ . It is known
that log( f μ)′ ∈ B1

0. It follows from Theorem 1.2 that log( f μ)′ ∈ H2
K . Therefore, it

has log( f μ)′ ∈ T 0
MT (1) .
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Conversely, for log f ′ ∈ T 0
MT (1) ⊂ T 0(1) , we show that its complex dilatation

μ f (z) satisfies μ f (z) ∈ M0(D∗) in D∗ , normalized by f μ(0) = ( f μ)′(0)− 1 = 0. By
Theorem 1.2 and log( f μ)′ ∈ H2

K , we can know that its complex dilatation μ f (z) sat-

isfies
|μ f (z)|2
(|z|2−1)dxdy ∈ CMK(D∗) . Since log f ′ ∈ T 0(1) ⊂ B1

0, it has μ f (z) ∈ M0(D∗) .
Further, we have μ f (z) ∈ M0(D∗) . Here we assume f (z0) = ∞ for z0 ∈ D∗ . It has
log f ′ ∈ Lz0(M

0(D∗)) . This lemma is proved completely.
To prove Theorem 1.4, we need the following result which has its own interest.

THEOREM 4.1. Let K satisfy (1.1)− (1.4) . For z0 ∈ D∗ , the pre-Bers projection
mapping Lz0 : M0(D∗) → H2

K is holomorphic.

Proof. It follows from Lemma 4.1 that the mapping Lz0 : M0(D∗) → H2
K is well

defined. First it shows that Lz0 : M0(D∗) → H2
K is continuous. For μ ,ν ∈ M0(D∗) , it

follows from Theorem 3.1 in Chapter II in [13] that

sup
z∈D

(1−|z|2)
∣∣∣∣ ( f μ)′′

( f μ)′
− ( f ν )′′

( f ν )′

∣∣∣∣ � ‖μ −ν‖∞.

By Lemma 3.2, it has

‖β3(μ)−β3(ν)‖NK,3 � ‖μ −ν‖L .

It follows from Lemmas 2.1, 2.2 and 2.3 that

‖ log( f μ)′ − log( f ν )′‖2
H2

K

≈sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2

∣∣∣∣ ( f μ)′′

( f μ )′
− ( f ν )′′

( f ν )′

∣∣∣∣2 (1−|z|2)dxdy

≈sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2

∣∣∣∣
(

( f μ)′′

( f μ )′

)′
−

(
( f ν )′′

( f ν )′

)′∣∣∣∣
2

(1−|z|2)3dxdy

�sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2

∣∣S f μ −S f ν
∣∣2 (1−|z|2)3dxdy

+ sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2

∣∣∣∣∣
(

( f μ)′′

( f μ)′

)2

−
(

( f ν )′′

( f ν )′

)2
∣∣∣∣∣
2

(1−|z|2)3dxdy

�‖β3(μ)−β3(ν)‖2
NK,3

+ sup
z∈D

{
(1−|z|2)2

∣∣∣∣( f μ)′′

( f μ )′
− ( f ν )′′

( f ν )′

∣∣∣∣2
}

× sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2

∣∣∣∣( f μ)′′

( f μ )′
+

( f ν )′′

( f ν )′

∣∣∣∣2 (1−|z|2)dxdy

�‖μ −ν‖2
L +‖μ −ν‖2

∞(‖ log( f μ)′‖2
H2

K (D) +‖ log( f ν )′‖2
H2

K(D))

�‖μ −ν‖2
L .
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Therefore, Lz0 : M0(D∗) → H2
K is continuous.

Then, it needs to show that the pre-Bers projection mapping Lz0 : M0(D∗) → H2
K

is holomorphic. That is sufficient to show that for any μ ∈ M0(D∗) and ν ∈ L (D∗) ,
βn(μ + tν) is holomorphic in a small neighborhood of t = 0 in the complex plane. By
μ ∈ M0(D∗) , there exists a positive constant ε such that for any t with |t| < 2ε ,

‖μ + tν‖∞ < 1 and ‖μ + tν‖L < ∞.

Here abbreviate the function Lz0(μ + tν) by φ(t) . For fixed z ∈ D , the function φ(t)
is holomorphic in |t|< 2ε [16]. For |t|< ε , |t0|< ε , it follows from Cauchy’s formula
that ∣∣∣∣φ(t)(z)−φ(t0)(z)

t − t0
− d

dt
|t=t0φ(t)(z)

∣∣∣∣ =
|t− t0|

2π

∣∣∣∣
∫
|s|=2ε

φ(s)(z)
(s− t)(s− t0)2 ds

∣∣∣∣
� |t− t0|

2πε3

∫
|s|=2ε

|φ(s)(z)||ds|.

Consequently, by Lemma 2.1 and Fubini’s theorem, it has

(1−|a|2)
K(1−|a|)

∫
D

∣∣∣∣φ(t)(z)−φ(t0)(z)
t− t0

− d
dt
|t=t0φ(t)(z)

∣∣∣∣2 (1−|z|2) (1−|a|2)
|1−az|2 dxdy

� (1−|a|2)
K(1−|a|)

|t− t0|2
4π2ε6

∫
D

(∫
|s|=2ε

|φ(s)(z)||ds|
)2

(1−|z|2) (1−|a|2)
|1−az|2 dxdy

� (1−|a|2)
K(1−|a|) |t− t0|2

∫
D

∫
|s|=2ε

|φ(s)(z)|2|ds|(1−|z|2) (1−|a|2)
|1−az|2 dxdy

=|t − t0|2
∫
|s|=2ε

(1−|a|2)
K(1−|a|)

∫
D

|φ(s)(z)|2(1−|z|2) (1−|a|2)
|1−az|2 dxdy|ds|

�|t − t0|2.
Thus, it deduces that the limit

lim
t→t0

φ(t)−φ(t0)
t− t0

=
d
dt
|t=t0φ(t)

exists in H2
K . This implies that Lz0 : M0(D∗) → H2

K is holomorphic.
We now start our proof of Theorem 1.4.

Proof of Theorem 1.4. For log f ′ ∈ T 0
MT (1) , by Theorem 1.2, f can be extended

to a quasiconformal mapping to the whole plane such that its complex dilatation μ
satisfies |μ(z)|2

(|z|2−1)dxdy∈CMK(D∗). Let f t be the quasiconformalmapping in Ĉ satisfied

with f−1(∞) = ( f t )−1(∞) and its complex dilatation μ f t = tμ f . Consider the mapping
t �−→ log( f t)′,0 � t � 1. Since ‖ log( f μ)′ − log( f ν )′‖H2

K
� ‖μ − ν‖L , we obtain

‖ log( f t)′ − log f ′‖H2
K

� |1− t| · ‖μ‖L . Due to log f ′ ∈ H2
K , it has log( f t )′ ∈ H2

K . For

f t1 , f t2 , we conclude from Theorem 4.2 that

‖ log( f t1)′ − log( f t2 )′‖H2
K

� |t1 − t2| · ‖μ‖L .
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On the other hand, by Theorem 3.1 in Chapter II in [13], we get

‖ log( f t1)′ − log( f t2 )′‖B � |t1− t2| · ‖μ‖∞.

Thus, we deduce that

‖ log( f t1 )′ − log( f t2)′‖B,H2
K

� |t1− t2| · ‖μ‖L .

This means that the path t �−→ log( f t )′,0 � t � 1 is continuous in B0 ∩H2
K(D) .

Therefore, the mapping t �−→ log( f t )′,0 � t � 1, is continuous in T 0
MT (1). Conse-

quently, each log f ′ ∈ T 0
MT (1) can be connected by a continuous path to a Möbius

transformation γ satisfied with logγ ′ ∈ T 0
MT (1) . Since γ(D) is bounded, we have

logγ ′ ∈ T 0
MT (1) . Moreover, it has the path ρ �−→ logγ ′ρ connecting the point logγ ′

to the point 0 in T 0
MT (1) by [1], where γρ = γ(ρz) . Therefore, T 0

MT,b(1) = {log f ′ ∈
T 0
MT (1) : f (D) is bounded} is a connected component of T 0

MT (1) .

5. Some remarks

In this section, we consider the higher Bers map in the QK Teichmüller space
and study the mutual relations between the QK Teichmüller space and the Morrey type
Teichmüller space.

Let K be the same as that in Theorem 1.1. The QK space consists of all f ∈A (D)
for which

‖ f‖QK = sup
a∈D

(∫
D

| f ′(z)|2K(
1−|γa(z)|2)dxdy

) 1
2

< ∞.

Then for any positive integer n ∈ N , an analytic function f belongs to QK if and only
if

sup
a∈D

(∫
D

| f (n)(z)|2(1−|z|2)2n−2K
(
1−|γa(z)|2)dxdy

) 1
2

< ∞.

Here, the QK,n space consists of all f ∈ A (D) with

‖ f‖QK,n = sup
a∈D

(∫
D

| f (z)|2(1−|z|2)2n−2K
(
1−|γa(z)|2)dxdy

) 1
2

< ∞.

A non-negative measure μ on D is called the K -type Carleson measure if

‖μ‖D,K-type = sup
I⊂∂D

(∫
SD(I)

K

(
1−|z|
|I|

)
dμ

) 1
2

< ∞.

Similarly, the K -type Carleson measure on D
∗ can be defined as above.

It is known that a positive measure μ on D is a K -type Carleson measure if and
only if [26]

sup
a∈D

(∫
D

K
(
1−|γa(z)|2)dμ

) 1
2

< ∞.
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In addition, an analytic function f belongs to QK if and only if |f (n)(z)|2(1−|z|2)2n−2dxdy
is a K -type Carleson measure.

Let L ′(D∗) the Banach space of all essentially bounded measurable functions

μ on D∗ with λμ = |μ(z)|2
|z|2−1

dxdy being K -type Carleson measures. The norm of μ ∈
L ′(D∗) is defined by

‖μ‖L ′ = ‖μ‖∞ +‖λμ‖D∗,K-type < ∞.

The QK -Teichmüller space TQk is defined by

TQk = {[μ ] ∈ T : μ ∈ M′(D∗)},
where

M′(D∗) = M(D∗)∩L ′(D∗).

LEMMA 5.1. Let K be the same as that in Theorem 1.1. If μ ∈ M′(D∗) , then
σn( f μ) ∈ QK,n−1 for n � 3 .

Proof. Using the proof of [25, Theorems 1] and similar to the proof of Lemma
3.1, Lemma 5.1 is proved easily. Here we omit its proof.

LEMMA 5.2. Let K be the same as that in Theorem 1.1. Then the Bers map
β3 : M′(D∗) → QK,2 is continuous and for any μ ,ν ∈ M′(D∗) , it has

‖β3(μ)−β3(ν)‖QK,2 � ‖μ −ν‖L ′ .

Proof. Using the proof of [12, Theorems 2.2] and similar to the proof of Lemma
3.2, Lemma 5.2 is proved easily. Here we also omit its proof.

Owing to Lemmas 5.1 and 5.2, we have the following Theorem which is similar
to Theorem 1.3 and also omit the proof.

THEOREM 5.1. Let K be the same as that in Theorem 1.1 and n � 3 . Then the
higher Bers map βn : M′(D∗) → QK,n−1 is holomorphic. Moreover, the differential
D0βn at the origin is given by the following correspondence

μ �→ (−1)nn!
π

∫
D∗

μ(w)
(z−w)n+1 dudv.

Next, the mutual relations of higher Schwarzian derivatives between the QK Teichmüller
space and the Morrey type Teichmüller space are discussed. We need to introduce the
fractional order derivative of f . For b > 1, the α -order derivative is defined as follows:

f (α)(z) =
Γ(b+ α)

Γ(b)

∫
D

(1−|w|2)b−1

(1−wz)b+α w[α−1] f ′(w)dudv, b+ α > 0,

where Γ denotes the Gamma function and let [α] be the smallest integer which is
larger than or equal to α . It is known that f (α) is just the derivative of order n of f
for α = n ∈ N . The following lemmas are needed.
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LEMMA 5.3. [7] Let K be the same as that in Theorem 1.1. Then there exists a
weight K1 ≈ K such that, for a small enough q1, 0 < q1 < p, K1(t)

tq1 is non-decreasing.

LEMMA 5.4. [26] Let K be the same as that in Theorem 1.1. Then there exists a
q2, 0 < q2 < p, such that K(t)

tq2 is non-increasing.

LEMMA 5.5. [26] Suppose that K is the same as that in Theorem 1.1, b+ α �
1+ p, b � max{p, (1+p)

2 } and α > 1
2 . Let ψ be measurable on D and an operator on

L2(D) is defined as:

Ψ(ψ)(z) =
∫

D

(1−|w|2)b−1

(1−wz)b+α |ψ(w)|dudv.

If dμ(z) = |ψ(z)|2dxdy is a K -type Carleson measure, then

|Ψ(ψ)(z)|2(1−|z|2)2(α−1)dxdy

is a K -type Carleson measure.

THEOREM 5.2. Let K be the same as that in Theorem 1.1.

(1) If μ ∈ M(D∗) , then the fractional order derivative σ ( q1+1
2 )

n ( f μ) ∈ QK,n for n �
3 .

(2) If μ ∈ M′(D∗) , then the fractional order derivative σ ( 3−q2
2 )

n ( f μ) ∈ NK,n+1 for
n � 3 .

Proof. First, we show (1). If μ ∈ M(D∗) , then σn( f μ) ∈ NK,n for n � 3 and

sup
a∈D

(1−|a|2)
K(1−|a|)

∫
D

1−|a|2
|1−az|2 |σn( f μ)|2(1−|z|2)2n−3dxdy < ∞.

Using Lemma 2.2, we have

sup
I∈∂D

1
K(|I|)

∫
SD(I)

|σn( f μ)|2(1−|z|2)2n−3dxdy < ∞.

For any I ∈ ∂D , using Lemma 5.3,

∫
SD(I)

|σn( f μ )|2(1−|z|2)2n−3−q1K

(
1−|z|
|I|

)
dxdy

�
∫

SD(I)
|σn( f μ )|2(1−|z|2)2n−3−q1K1

(
1−|z|
|I|

)
dxdy

� 1
|I|q1

∫
SD(I)

|σn( f μ)|2(1−|z|2)2n−3dxdy
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� 1
K(|I|)

∫
SD(I)

|σn( f μ)|2(1−|z|2)2n−3dxdy

� sup
I∈∂D

1
K(|I|)

∫
SD(I)

|σn( f μ)|2(1−|z|2)2n−3dxdy < ∞.

Then |σn( f μ)|2(1− |z|2)2n−3−q1dxdy is a K -type Carleson measure. Similar to [26,

Theorems 3.2], using Lemma 5.5,

∣∣∣∣∣σ
(

q1+1
2

)
n ( f μ)

∣∣∣∣∣
2

(1−|z|2)2n−2dxdy is a K -type Car-

leson measure. Therefore, we have

σ
(

q1+1
2

)
n ( f μ) ∈ QK,n.

Next, (2) is needed to show. If μ ∈ M′(D∗) , then σn( f μ) ∈ QK,n−1 for n � 3
and

sup
a∈D

∫
D

|σn( f μ)|2(1−|z|2)2n−4K
(
1−|γa(z)|2)dxdy < ∞.

Using the above result, we have

sup
I∈∂D

∫
SD(I)

|σn( f μ)|2(1−|z|2)2n−4K

(
1−|z|
|I|

)
dxdy < ∞.

For any I ∈ ∂D , using Lemmas 5.4 and 5.5,

1
K(|I|)

∫
SD(I)

∣∣∣∣∣σ
(

3−q2
2

)
n ( f μ)

∣∣∣∣∣
2

(1−|z|2)2n−1dxdy

� |I|q2

K(|I|)
∫

SD(I)

∣∣∣∣∣σ
(

3−q2
2

)
n ( f μ)

∣∣∣∣∣
2

(1−|z|2)2n−1−q2K

(
1−|z|
|I|

)
dxdy

�
∫

SD(I)

∣∣∣∣∣σ
(

3−q2
2

)
n ( f μ)

∣∣∣∣∣
2

(1−|z|2)2n−1−q2K

(
1−|z|
|I|

)
dxdy

�
∫

SD(I)
|σn( f μ)|2(1−|z|2)2n−4K

(
1−|z|
|I|

)
dxdy

� sup
I∈∂D

∫
SD(I)

|σn( f μ)|2(1−|z|2)2n−4K

(
1−|z|
|I|

)
dxdy < ∞.

Therefore, we have

σ
(

3−q2
2

)
n ( f μ) ∈ NK,n+1.
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