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Abstract. In this paper, by using a dual gap functional and some working hypotheses, the so-
lution set is investigated for a variational-type inequality governed by (ρ,b,d) -convex path-
independent curvilinear integral functional.

1. Introduction

By using gap-type functions, in accordance with Ferris and Mangasarian [5] and
following Hiriart-Urruty and Lemaréchal [6], Alshahrani et al. [1] studied the minimum
and maximum principle sufficiency properties associated with nonsmooth variational
inequalities. Also, based on the works of Burke and Ferris [3], Patriksson [11] and
following Marcotte and Zhu [10], the notion of weak sharp solution in variational-type
inequalities has been strongly studied by many researchers. We make a dishonesty by
mentioning only a part: Hu and Song [7], Liu and Wu [9], Zhu [20] and Jayswal and
Singh [8].

Optimization problems subject to nonlinear equality and inequality constraints
have been formulated and studied by many researchers. But, since so many phenomena
are subject to laws involving partial differential equations (PDE)/partial differential in-
equations (PDI), it generates the need for a consistent analysis of scalar/multiobjective
optimization problems with PDE/PDI constraints and multiple/curvilinear integral ob-
jective functionals. In the last few years, several multidimensional optimization prob-
lems governed by multiple and/or curvilinear integral objective functionals have been
investigated, with remarkable results, by Treanţă [16]-[19].

In this paper, motivated and inspired by the aforementioned research works and by
taking into account some variational techniques developed in Ansari [2], Clarke [4] and
Treanţă [12]-[15], we introduce a new class of variational-type inequalities governed
by (ρ ,b,d)-convex path-independent curvilinear integral functionals (a new concept
introduced in this paper). Concretely, under some working hypotheses and using a dual
gap functional, we provide some characterizations of their solution sets. The extended
concept of normal cone, firstly introduced by Marcotte and Zhu [10], represents an-
other novelty of this paper, which plays a crucial role in our investigations. As it is
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well known, the path-independent curvilinear integrals are very important in applica-
tions due to their physical meaning (mechanical work). Thus, this paper becomes a
relevant research work both from theoretical and practical reasoning. Also, the ideas
and techniques developed in this paper may stimulate further research in this dynamic
field.

The present paper is structured as follows. Section 2 contains some preliminaries
and problem formulation. The main results of this paper are included in section 3.
More exactly, the solution set is investigated for an extended variational-type inequality
involving (ρ ,b,d)-convex path-independent curvilinear integral functional. Finally,
section 4 provides the conclusions of this study.

2. Preliminaries and problem description

In this paper, in order to introduce our study, consider the following notations and
mathematical objects:

� Ω ⊂ R
m is a compact domain and the point Ω � t = (tβ ), β = 1,m , is consid-

ered as a multiple parameter of evolution;
� consider Ω ⊃ C : t = t(τ), τ ∈ [a,b] , a piecewise smooth curve joining the

different points t1 =
(
t11 , . . . ,tm1

)
, t2 =

(
t12 , . . . ,tm2

)
in Ω ;

� let X be the space of piecewise smooth functions x : Ω → R
n , endowed with

the Euclidean inner product

〈x,y〉 =
∫
C

x(t) · y(t)dtβ =
∫
C

n

∑
i=1

xi(t)yi(t)dtβ

=
∫
C

n

∑
i=1

xi(t)yi(t)dt1 + · · ·+
∫
C

n

∑
i=1

xi(t)yi(t)dtm, ∀x,y ∈ X

and the induced norm;
� denote by X a nonempty, closed and convex subset of X , defined as

X =
{
x ∈ X : x(t) ∈ E ⊂ R

n, x(t1) = x1 = given, x(t2) = x2 = given
}

;

� throughout this paper, the summation over the repeated indices is assumed and

x, xα are the simplified notations for x(t), xα(t) and xα(t) =
∂x
∂ tα (t) ;

� consider the real-valued continuously differentiable functions (closed Lagrange
1-form densities)

fβ ,gβ ,hβ : J1(Rm,Rn) → R, β = 1,m,

(see J1(T,M) as the first-order jet bundle associated to T and M ) which generate the
following path-independent curvilinear integral functionals:

F : X → R, F(x) =
∫
C

fβ (t,x,xα)dtβ ,

G : X → R, G(x) =
∫
C

gβ (t,x,xα)dtβ ,
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H : X → R, H(x) =
∫
C

hβ (t,x,xα)dtβ .

Let ρ be a real number, b(x,y) a symmetric positive real-valued functional on
X ×X and d(x,y) a real-valued functional on X ×X .

DEFINITION 2.1.

(i) The scalar functional F : X → R, F(x) =
∫
C

fβ (t,x,xα)dtβ , is called (ρ ,b,d)-

convex on X if, for any x,y ∈ X ,

F(x)−F(y) �b(x,y)
∫
C

[∂ fβ
∂x

(t,y,yα)(x− y)+
∂ fβ
∂xα

(t,y,yα )Dα(x− y)
]
dtβ

+ ρb(x,y)d(x,y),

where Dα denotes the total derivative operator.

(ii) The functional F is said to be strongly b-convex, b-convex, or weakly b-convex
on X , according to ρd > 0, ρd = 0, or ρd < 0.

DEFINITION 2.2. The variational (functional) derivative
δβ F

δx
of the path-inde-

pendent curvilinear integral functional F : X → R, F(x) =
∫
C

fβ (t,x,xα)dtβ , is de-

fined as
δβ F

δx
=

∂ fβ
∂x

(t,x,xα)−Dα
∂ fβ
∂xα

(t,x,xα) ∈ X

and, for any ψ ∈ X with ψ(t1) = ψ(t2) = 0, it satisfies the following relation〈δβ F

δx
,ψ

〉
=

∫
C

δβ F

δx
(t) ·ψ(t)dtβ = lim

ε→0

F(x+ εψ)−F(x)
ε

.

Throughout this paper, it is assumed that the inner product between the variational
derivative associated with a path-independent curvilinear integral functional and an el-
ement ψ ∈ X is accompanied by the condition ψ(t1) = ψ(t2) = 0.

By using the previous mathematical tools, we formulate the following extended
variational-type inequality problem: for some given ρ ,b,d (introduced as above), find
y ∈ X such that

(EVIP) b(x,y)
∫
C

[∂ fβ
∂x

(t,y,yα)(x− y)+
∂ fβ
∂xα

(t,y,yα )Dα(x− y)
]
dtβ

+ ρb(x,y)d(x,y) � 0,

for any x ∈ X . The dual extended variational-type inequality problem associated to
(EVIP) is formulated as follows: for some given ρ ,b,d (introduced as above), find
y ∈ X such that

(DEVIP) b(x,y)
∫
C

[∂ fβ
∂x

(t,x,xα)(x− y)+
∂ fβ
∂xα

(t,x,xα)Dα(x− y)
]
dtβ
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+ ρb(x,y)d(x,y) � 0,

for any x ∈ X .

Denote by X ∗ and X∗ the solution set associated with (EVIP) and (DEVIP) ,
respectively, and assume they are nonempty.

REMARK 2.1. As can be easily seen, the above extended variational-type inequal-
ity problems can be reformulated as follows: for some given ρ ,b,d (introduced as
above), find y ∈ X such that

(EVIP) b(x,y)
[〈δβ F

δy
,x− y

〉
+ ρd(x,y)

]
� 0, ∀x ∈ X ,

respectively: for some given ρ ,b,d (introduced as above), find y ∈ X such that

(DEVIP) b(x,y)
[〈δβ F

δx
,x− y

〉
+ ρd(x,y)

]
� 0, ∀x ∈ X

if and only if

dU := Dα

[∂ fβ
∂xα

(x− y)
]
dtβ

is an exact total differential and it is satisfied the condition U(t1) = U(t2) . Throughout
this paper, this working hypothesis is assumed.

Further, in order to investigate the solution set X ∗ , we introduce the following
gap functionals.

DEFINITION 2.3. For x ∈ X , the primal gap functional associated to (EVIP) is
defined as

G(x) = max
y∈X

{
b(x,y)

∫
C

[∂ fβ
∂x

(t,x,xα)(x− y)+
∂ fβ
∂xα

(t,x,xα )Dα(x− y)
]
dtβ

+ρb(x,y)d(x,y)
}

and, similarly, the dual gap functional associated to (EVIP) is defined as

H(x) = max
y∈X

{
b(x,y)

∫
C

[∂ fβ
∂x

(t,y,yα)(x− y)+
∂ fβ
∂xα

(t,y,yα )Dα(x− y)
]
dtβ

+ρb(x,y)d(x,y)
}

.

From now onwards, for x ∈ X , consider the following notations:

A(x) =
{

z ∈ X : G(x) = b(x,z)
∫
C

[∂ fβ
∂x

(t,x,xα)(x− z)+
∂ fβ
∂xα

(t,x,xα)Dα(x− z)
]
dtβ
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+ρb(x,z)d(x,z)
}

,

Z(x) =
{

z ∈ X : H(x) = b(x,z)
∫
C

[∂ fβ
∂x

(t,z,zα )(x− z)+
∂ fβ
∂xα

(t,z,zα)Dα(x− z)
]
dtβ

+ρb(x,z)d(x,z)
}

.

REMARK 2.2. By using the previous notations, we can observe the following:

(i)

G(x) = max
y∈X

{
b(x,y)

[〈δβ F

δx
,x− y

〉
+ ρd(x,y)

]}
,

H(x) = max
y∈X

{
b(x,y)

[〈δβ F

δy
,x− y

〉
+ ρd(x,y)

]}
;

(ii) A(x) = argmax
y∈X

{
b(x,y)

[〈δβ F

δx
,x− y

〉
+ ρd(x,y)

]}
, where

argmax
y∈X

{
b(x,y)

[〈δβ F

δx
,x− y

〉
+ ρd(x,y)

]}

denotes the (possibly empty) solution set of max
y∈X

{
b(x,y)

[〈δβ F

δx
,x−y

〉
+ρd(x,y)

]}
;

(iii) Z(x) = argmax
y∈X

{
b(x,y)

[〈δβ F

δy
,x− y

〉
+ ρd(x,y)

]}
;

(iv) if A(x) = /0 , then G(x) = sup
y∈X

{
b(x,y)

[〈δβ F

δx
,x− y

〉
+ ρd(x,y)

]}
; similarly,

if Z(x) = /0 , then H(x) = sup
y∈X

{
b(x,y)

[〈δβ F

δy
,x− y

〉
+ ρd(x,y)

]}
.

In order to formulate and prove the main results of this paper, in accordance with Mar-
cotte and Zhu [10], we introduce the following relevant concepts.

DEFINITION 2.4. The polar set X ◦ associated to X is defined as follows

X ◦ =
{
y ∈ X : 〈y,x〉 � 0, ∀x ∈ X

}
.

DEFINITION 2.5. The projection of a point x ∈ X onto the set X is defined as

projX x = arg min
y∈X

‖ x− y ‖ .
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DEFINITION 2.6. The normal cone to X at x ∈ X , with respect to ρ ,b and d
(introduced as above), is defined as

Nρ ,b,d
X (x) =

{
y ∈ X : b(z,x) [〈y,z− x〉−ρd(z,x)] � 0, ∀z ∈ X

}
, x ∈ X ,

Nρ ,b,d
X (x) = /0, x 
∈ X

and the tangent cone to X at x∈X , with respect to ρ ,b and d (introduced as above),

is T ρ ,b,d
X (x) =

[
Nρ ,b,d

X (x)
]◦

.

REMARK 2.3. Taking into account the definition of normal cone at x ∈ X , we

notice that: x∗ ∈ X ∗ ⇐⇒−δβ F

δx∗
∈ Nρ ,b,d

X (x∗) .

3. Main results

In this section, the main results of this paper are formulated and proved. Further,
we establish some working assumptions.

Working hypotheses.

(i) The following equalities

d(x1,x2) = −d(x2,x1), ∀x1,x2 ∈ X ∗,
d(z,x∗) = −d(x∗,z), ∀z ∈ X , ∀x∗ ∈ X ∗,

are fulfilled.

(ii) For any y ∈ Z(x) and x,z ∈ X , the following relations

b(z,y)(z− y)−b(x,y)(x− y) = z− x, b(z,y)d(z,y)−b(x,y)d(x,y) = d(z,x)

are true.

(iii) For any x,v ∈ X and λ > 0, there exists

lim
λ→0

d(x+ λv,x)
λ

.

(iv) For any z ∈ Z(x∗), x ∈ A(x∗), x∗ ∈ X ∗ and x ∈ X , the following relations

b(x,z) = b(x,x∗) = b(z,x∗) = b(x ,x∗) [= 1],
d(x,z) = d(x,x∗), d(z,x) = d(x∗,x) = d(x∗, x)

are satisfied.
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THEOREM 3.1. Assume the scalar functional F(x) =
∫
C

fβ (t,x,xα)dtβ is (ρ ,b,d)-

convex on X . Then:

1. for any x1,x2 ∈ X ∗ , it follows

b(x1,x2)
∫
C

[∂ fβ
∂x

(
t,x2,x2

α
)
(x1 − x2)+

∂ fβ
∂xα

(
t,x2,x2

α
)
Dα(x1− x2)

]
dtβ

+ ρb(x1,x2)d(x1,x2) = 0;

2. the inclusion X ∗ ⊂ X∗ is true.

Proof. 1. By x1 ∈ X ∗ , we get

b(x,x1)
∫
C

[∂ fβ
∂x

(
t,x1,x1

α
)
(x− x1)+

∂ fβ
∂xα

(
t,x1,x1

α
)
Dα(x− x1)

]
dtβ

+ ρb(x,x1)d(x,x1) � 0, ∀x ∈ X .

Since x2 ∈ X ∗ ⊂ X , the previous inequality is rewritten as follows

b(x2,x1)
∫
C

[∂ fβ
∂x

(
t,x1,x1

α
)
(x2− x1)+

∂ fβ
∂xα

(
t,x1,x1

α
)
Dα(x2− x1)

]
dtβ

+ ρb(x2,x1)d(x2,x1) � 0. (3.1)

By hypothesis, the scalar functional F(x) =
∫
C

fβ (t,x,xα)dtβ is (ρ ,b,d)-convex on

X . Consequently, it results

F(x1)−F(x2)

�b(x1,x2)
∫
C

[∂ fβ
∂x

(
t,x2,x2

α
)
(x1 − x2)+

∂ fβ
∂xα

(
t,x2,x2

α
)
Dα(x1 − x2)

]
dtβ

+ ρb(x1,x2)d(x1,x2), (3.2)

or, equivalently,

F(x2)−F(x1)

�b(x2,x1)
∫
C

[∂ fβ
∂x

(
t,x1,x1

α
)
(x2 − x1)+

∂ fβ
∂xα

(
t,x1,x1

α
)
Dα(x2 − x1)

]
dtβ

+ ρb(x2,x1)d(x2,x1). (3.3)

Making the summation (3.2)+ (3.3) and using (3.1) , we obtain

b(x1,x2)
∫
C

[∂ fβ
∂x

(
t,x2,x2

α
)
(x1− x2)+

∂ fβ
∂xα

(
t,x2,x2

α
)
Dα(x1− x2)

]
dtβ
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+ ρb(x1,x2)d(x1,x2) � 0. (3.4)

Similarly as above, by x2 ∈ X ∗ , we can write

b(x1,x2)
∫
C

[∂ fβ
∂x

(
t,x2,x2

α
)
(x1− x2)+

∂ fβ
∂xα

(
t,x2,x2

α
)
Dα(x1− x2)

]
dtβ

+ ρb(x1,x2)d(x1,x2) � 0. (3.5)

Now, taking into account (3.4) and (3.5) , the proof is complete.
2. By x∗ ∈ X ∗ , it results

b(x,x∗)
∫
C

[∂ fβ
∂x

(t,x∗,x∗α)(x− x∗)+
∂ fβ
∂xα

(t,x∗,x∗α)Dα(x− x∗)
]
dtβ

+ ρb(x,x∗)d(x,x∗) � 0, ∀x ∈ X . (3.6)

As well, the (ρ ,b,d)-convexity property on X of the scalar functional F(x) (see the
summation (3.2)+ (3.3) and Working hypotheses) implies

b(x1,x2)
∫
C

[∂ fβ
∂x

(
t,x1,x1

α
)
(x1 − x2)+

∂ fβ
∂xα

(
t,x1,x1

α
)
Dα(x1 − x2)

]
dtβ

+ ρb(x1,x2)d(x1,x2)

�b(x1,x2)
∫
C

[∂ fβ
∂x

(
t,x2,x2

α
)
(x1 − x2)+

∂ fβ
∂xα

(
t,x2,x2

α
)
Dα(x1 − x2)

]
dtβ

+ ρb(x1,x2)d(x1,x2), ∀x1,x2 ∈ X . (3.7)

In the following, by using the relations (3.6) and (3.7) , we get

b(x,x∗)
∫
C

[∂ fβ
∂x

(t,x,xα)(x− x∗)+
∂ fβ
∂xα

(t,x,xα)Dα(x− x∗)
]
dtβ

+ ρb(x,x∗)d(x,x∗) � 0, ∀x ∈ X ,

and the proof is complete. �

REMARK 3.1. The continuity property of the variational derivative
δβ F

δx
implies

X∗ ⊂ X ∗ . By Theorem 3.1, we conclude X ∗ = X∗ . As well, the solution set X∗
associated to (DEVIP) is convex and, consequently, the solution set X ∗ associated to
(EVIP) is a convex set.

THEOREM 3.2. Assume the scalar functional H(x) is differentiable on X and
F(x) is strongly b-convex on X . Then, for any x,v ∈ X , y ∈ Z(x) , the following
ineguality 〈δβ H

δx
,v

〉
�

〈δβ F

δy
,v

〉
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is true.

Proof. By Definition 2.3, for x ∈ X , we have

H(x) =max
y∈X

{
b(x,y)

∫
C

[∂ fβ
∂x

(t,y,yα) (x− y)+
∂ fβ
∂xα

(t,y,yα)Dα(x− y)
]
dtβ

+ρb(x,y)d(x,y)
}

and, in accordance with Remark 2.2, we obtain

H(x) = max
y∈X

{
b(x,y)

[〈δβ F

δy
,x− y

〉
+ ρd(x,y)

]}
, ∀x ∈ X ,

or, obviously,

H(x) = b(x,y)
[〈δβ F

δy
,x− y

〉
+ ρd(x,y)

]
, ∀y ∈ Z(x). (3.8)

Moreover, for any y ∈ X , z ∈ X , the inequality

H(z) � b(z,y)
[〈δβ F

δy
,z− y

〉
+ ρd(z,y)

]
, (3.9)

is true and, using (3.8) , (3.9) and Working hypotheses, it follows

H(z)−H(x) �
〈δβ F

δy
,z− x

〉
+ ρd(z,x), ∀y ∈ Z(x), ∀x,z ∈ X .

For z = x+λv ∈ X , with λ > 0 and v(t1) = v(t2) = 0, the aforementioned inequality
becomes

H(x+ λv)−H(x) �
〈δβ F

δy
,λv

〉
+ ρd(x+ λv,x), ∀y ∈ Z(x), ∀x,v ∈ X

and, by dividing both sides with λ > 0, we get

H(x+ λv)−H(x)
λ

�
〈δβ F

δy
,v

〉
+

ρd(x+ λv,x)
λ

, ∀y ∈ Z(x), ∀x,v ∈ X .

Further, knowing that F is strongly b-convex on X and using Working hypotheses,
by taking the limit for λ → 0 of the previous inequality (and using Definition 2.2), the
proof is complete. �

THEOREM 3.3. Assume the scalar functional H(x) is differentiable on X ∗ and
the scalar functional F(x) is strongly b-convex on X . Also, for any x∗ ∈ X ∗, v ∈
X , z ∈ Z(x∗) , the following implication

〈δβ H

δx∗
,v

〉
�

〈δβ F

δ z
,v

〉
=⇒ δβ H

δx∗
=

δβ F

δ z
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is fulfilled. Then Z(x∗) = X ∗, ∀x∗ ∈ X ∗ .

Proof. ”⊂” Consider z ∈ Z(x∗) . In consequence, it follows

H(x∗) =b(x∗,z)
∫
C

[∂ fβ
∂x

(t,z,zα )(x∗ − z)+
∂ fβ
∂xα

(t,z,zα )Dα(x∗ − z)
]
dtβ

+ ρb(x∗,z)d(x∗,z), x∗ ∈ X ∗. (3.10)

By hypothesis, the scalar functional F(x) is strongly b-convex on X and x∗ ∈
X ∗ . According to Theorem 3.1 and Remark 3.1, we get x∗ ∈ X∗ , that is

b(x,x∗)
∫
C

[∂ fβ
∂x

(t,x,xα)(x− x∗)+
∂ fβ
∂xα

(t,x,xα)Dα(x− x∗)
]
dtβ

+ ρb(x,x∗)d(x,x∗) � 0, (3.11)

for any x ∈ X . By using (3.10), (3.11) and Working hypotheses, it results H(x∗) =
0, ∀x∗ ∈ X ∗ , or equivalently,

b(x∗,z)
∫
C

[∂ fβ
∂x

(t,z,zα ) (x∗ − z)+
∂ fβ
∂xα

(t,z,zα )Dα(x∗ − z)
]
dtβ

+ ρb(x∗,z)d(x∗,z) = 0, x∗ ∈ X ∗. (3.12)

Taking into account (3.12) , for any x ∈ X and using Working hypotheses, we obtain

b(x,z)
∫
C

[∂ fβ
∂x

(t,z,zα )(x− z)+
∂ fβ
∂xα

(t,z,zα)Dα(x− z)
]
dtβ + ρb(x,z)d(x,z)

=b(x,x∗)
∫
C

[∂ fβ
∂x

(t,z,zα) (x− x∗)+
∂ fβ
∂xα

(t,z,zα )Dα(x− x∗)
]
dtβ

+ ρb(x,x∗)d(x,x∗). (3.13)

Further, by definition of dual gap functional H(x) associated to (EVIP) , for any
λ ∈ [0,1] and x ∈ X , we can write as follows

H(x∗ + λ (x− x∗))−H(x∗)
λ

�
∫
C

[∂ fβ
∂x

(t,x∗,x∗α )(x− x∗)+
∂ fβ
∂xα

(t,x∗,x∗α)Dα(x− x∗)
]
dtβ .

By taking the limit for λ → 0 of the previous inequality and using Definition 2.2, we
get

〈δβ H

δx∗
,x− x∗

〉
�

∫
C

[∂ fβ
∂x

(t,x∗,x∗α) (x− x∗)+
∂ fβ
∂xα

(t,x∗,x∗α)Dα(x− x∗)
]
dtβ .

(3.14)
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According to Theorem 3.2 and using the hypothesis, we conclude
δβ H

δx∗
=

δβ F

δ z
. There-

fore, (3.14) becomes

〈δβ F

δ z
,x− x∗

〉
�

∫
C

[∂ fβ
∂x

(t,x∗,x∗α) (x− x∗)+
∂ fβ
∂xα

(t,x∗,x∗α)Dα(x− x∗)
]
dtβ ,

or
∫
C

[∂ fβ
∂x

(t,z,zα) (x− x∗)+
∂ fβ
∂xα

(t,z,zα )Dα(x− x∗)
]
dtβ

�
∫
C

[∂ fβ
∂x

(t,x∗,x∗α )(x− x∗)+
∂ fβ
∂xα

(t,x∗,x∗α)Dα(x− x∗)
]
dtβ ,

which involves

b(x,x∗)
∫
C

[∂ fβ
∂x

(t,z,zα )(x− x∗)+
∂ fβ
∂xα

(t,z,zα )Dα(x− x∗)
]
dtβ

+ ρb(x,x∗)d(x,x∗)

�b(x,x∗)
∫
C

[∂ fβ
∂x

(t,x∗,x∗α)(x− x∗)+
∂ fβ
∂xα

(t,x∗,x∗α )Dα(x− x∗)
]
dtβ

+ ρb(x,x∗)d(x,x∗). (3.15)

Combining (3.13) and (3.15) , it follows

b(x,z)
∫
C

[∂ fβ
∂x

(t,z,zα )(x− z)+
∂ fβ
∂xα

(t,z,zα )Dα(x− z)
]
dtβ + ρb(x,z)d(x,z)

�b(x,x∗)
∫
C

[∂ fβ
∂x

(t,x∗,x∗α) (x−x∗)+
∂ fβ
∂xα

(t,x∗,x∗α)Dα(x−x∗)
]
dtβ +ρb(x,x∗)d(x,x∗).

Since x∗ ∈ X ∗ , the previous inequality implies

b(x,z)
∫
C

[∂ fβ
∂x

(t,z,zα )(x− z)+
∂ fβ
∂xα

(t,z,zα)Dα(x− z)
]
dtβ

+ ρb(x,z)d(x,z) � 0, ∀x ∈ X ,

involving z ∈ X ∗ and, in consequence, Z(x∗) ⊂ X ∗ .
”⊃” Consider z,x∗ ∈ X ∗ . By Theorem 3.1, we get

b(x∗,z)
∫
C

[∂ fβ
∂x

(t,z,zα )(x∗−z)+
∂ fβ
∂xα

(t,z,zα)Dα(x∗−z)
]
dtβ +ρb(x∗,z)d(x∗,z) = 0.

Since H(x∗) = 0, ∀x∗ ∈ X ∗ , it results

H(x∗) =b(x∗,z)
∫
C

[∂ fβ
∂x

(t,z,zα )(x∗ − z)+
∂ fβ
∂xα

(t,z,zα )Dα(x∗ − z)
]
dtβ
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+ ρb(x∗,z)d(x∗,z),

involving z ∈ Z(x∗) . The proof is now complete. �
EXAMPLE 3.1. Let Ω be a square fixed by the diagonally opposite points 0 =

(0,0) and 2 = (2,2) in R
2 and consider C ⊂ Ω a piecewise smooth curve connecting

the distinct points 0 and 2 in Ω . Also, we introduce

X = {x : Ω → [−1,4] : x = piecewise smooth function} ,

X =
{
x ∈ X : x(t) ∈ [0,1] ⊂ [−1,4], x(0) = x(0,0) = 0, x(2) = x(2,2) = 0

}
and the vector-valued continuously differentiable function

f = ( f1, f2) : J1(R2,R) → R
2, f1 (t,x,xα ) = f2 (t,x,xα) = x2 +4x.

For β = 1,2, we consider the following variational inequality problem: for ρ ∈ R ,
b(x,y) = 1 and any real-valued functional d on X ×X satisfying

0 < ρd(x,y) = const. �
∫
C
(x− y)2dtβ , ∀x,y ∈ X ,

find y ∈ X such that

(VIP)
∫
C

[
( fβ )x (t,y,yα )(x− y)+ ( fβ )xα (t,y,yα)Dα(x− y)

]
dtβ + ρd(x,y) � 0,

for any x ∈ X .
By direct computation, we obtain the dual gap functional H : X → R ,

H(x)

=
∫
C

hβ (t,x,xα)dtβ

=max
y∈X

{∫
C

[
( fβ )x (t,y,yα) (x− y)+ ( fβ )xα (t,y,yα )Dα(x− y)

]
dtβ + ρd(x,y)

}

=max
y∈X

∫
C
(2y+4)(x− y)dtβ + ρd(x,y) =

⎧⎪⎨
⎪⎩

∫
C

4xdtβ + ρd(x,y), −1 � x < 2
∫
C

(x+2)2

2
dtβ + ρd(x,y), 2 � x � 4.

Also, since

F : X → R, F(x) =
∫
C

fβ (t,x,xα)dtβ ,

satisfies

F(x)−F(y)−
∫
C

[
( fβ )x (t,y,yα)(x− y)+ ( fβ )xα (t,y,yα)Dα(x− y)

]
dtβ −ρd(x,y)

=
∫
C
(x− y)2dtβ −ρd(x,y) � 0, ∀x,y ∈ X ,
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it follows that the path-independent curvilinear functional F is strongly b-convex on
X , as well.

The closeness conditions imposed for the aforementioned vector-valued functions

f = ( f1, f2) and h = (h1,h2) imply
∂x
∂ t1

=
∂x
∂ t2

. Consequently, this property must be

satisfied by all elements in X . Obviously, the functional H(x) is differentiable on X ∗

and, as it can be easily seen, we obtain

X ∗ = {y : Ω → [0,1] : y(t) = 0, ∀t ∈ Ω} ,

Z(x∗) = X ∗, ∀x∗ ∈ X ∗,
δβ F

δx
= 2x+4.

4. Conclusions

In this paper, taking into account the connections between mathematical program-
ming and some variational techniques developed in this paper, a new variational-type
inequality has been studied. More precisely, by using a dual gap functional and some
working hypotheses, the solution set is investigated for a variational-type inequality
governed by (ρ ,b,d)-convex path-independent curvilinear integral functional.
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