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SHARP COEFFICIENTS BOUNDS FOR CLASS OF

ALMOST STARLIKE MAPPINGS OF ORDER α IN C
n

LIANGPENG XIONG

(Communicated by S. Hencl)

Abstract. Let Ω be the bounded starlike circular domain. In this paper, we obtain the sharp
bounds for the Fekete-Szegö functional |A3 − μA2

2| of the class A S ∗
α (Ω) of almost starlike

mappings of order α in Cn (n � 2) , where μ ∈ R , and A2 , A3 are the first two coefficients
of the homogeneous expansion of mappings f ∈ A S ∗

α (Ω) . Our results can be regarded as
the extensions of corresponding works from the case in one dimension to the case in higher
dimensions.

1. Introduction

Let S be the family of univalent functions f of the unit disk U, normalized in
such a way that

f (z) = z+a2z
2 +a3z

3 + . . . . (1)

A classical theorem of Fekete-Szegö (see [5]) states that for f ∈ S , we have

∣∣∣a3− μa2
2

∣∣∣ �

⎧⎪⎨
⎪⎩

3−4μ , i f μ � 0,

1+2exp(−2μ
1−μ ), i f 0 � μ � 1,

4μ −3, i f μ � 1.

The inequalities are sharp for each μ ∈ R. Let

Φμ(n, f ) = |a2n−1− μa2
n|, n � 2, f ∈ S (2)

denote the generalized Zalcman coefficient functional so that Φμ(2, f ) = Φμ( f ) is
the Fekete-Szegö functional (see, e.g. Li-Ponnusamy-Qiao [12], Li-Ponnusamy [13]).
Then it is quite natural to discuss the behavior of Φμ( f ) for kinds of subclasses of
normalized univalent functions in the unit disk U. This is called Fekete-Szegö problem.
It attracts a lot of attentions (see, e.g. [1, 2, 9, 11, 13, 16, 17, 18, 19, 21, 22]).
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Let S ∗(α) and A S ∗(α) denote classes of starlike and almost starlike univalent
functions of order α (0 � α < 1) , respectively, i.e.

f ∈ S ∗(α) ⇐⇒ f ∈ S , ℜ
z f ′(z)
f (z)

> α, z ∈ U (3)

and

f ∈ A S ∗(α) ⇐⇒ f ∈ S , ℜ
f (z)

z f ′(z)
> α, z ∈ U. (4)

We can note that A S ∗(0) = S ∗(0) = S ∗ represents standard class of starlike func-
tions.

The following Theorem A was obtained by Kanas-Darwish [10] in Theorem 2.4
with the parameters n = 0, b= 1−α (also, see Orhan-Deniz-Çağlar [18]) and Theorem
B was obtained by Xiong-Feng-Zhang [23] in Theorem 3 with the parameters n = 0,
b = 1, λ = 0, A1 = 2(1−α) and A2 = 2(α −1)(2α −1).

THEOREM A. (Kanas-Darwish, [10]) Suppose f ∈S ∗(α) is given by (1.1). Then
for any μ ∈ R ,

∣∣∣a3− μa2
2

∣∣∣ �

⎧⎪⎨
⎪⎩

(1−α)[2(1−α)(1−2μ)+1], i f μ � 1
2 ,

1−α, i f 1
2 � μ � 3−2α

2(1−α) ,

(1−α)[2(1−α)(2μ−1)−1], i f μ � 3−2α
2(1−α) .

The above estimates are sharp for each real μ .

THEOREM B. (Xiong-Feng-Zhang, [23]) Suppose f ∈A S ∗(α) is given by (1.1).
Then for any μ ∈ R ,

∣∣∣a3− μa2
2

∣∣∣ �

⎧⎪⎨
⎪⎩

(1−α)[3−4α−4(1−α)μ ], i f μ � 4α−2
4(α−1) ,

1−α, i f 4α−2
4(α−1) � μ � 1,

(1−α)[4α +4(1−α)μ−3], i f μ � 1.

The above estimates are sharp for each real μ .

QUESTION 1.1. For the class of almost starlike mappings of order α in Cn (n �
2) , whether or not we can give a higher dimensional version for Theorem B?

The Fekete-Szegö problem is related to the Bieberbach conjecture (see [3]). How-
ever, Cartan [4] stated that the Bieberbach conjecture does not hold in several complex
variables. Thus, compare with the case in C , it is more difficult to obtain the complete
results for the inequalities of homogeneous expansions for subclasses of biholomorphic
mappings in C

n (see, e.g. [6, 7, 8]).
The study of Fekete-Szegö problem in higher dimensions with a subclass of star-

like mappings defined on the unit ball in a complex Banach space or on the unit polydisk
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was firstly done by Xu-Liu [26], and some of sequels to Xu-Liu [26] have appeared in
the literature since then (see, e.g., [14, 24, 25, 26]). At present, these results mainly
consider the Fekete-Szegö problem for classes of strongly starlike mappings of order α
or starlike mappings of order α (0 � α < 1) in Cn when μ ∈ C.

Although there are some of significant results which cope with the Fekete-Szegö
problem for subclasses of starlike mapping or strongly starlike mappings in Cn (n � 2) ,
there exists no work directly concerning this problem for subclasses of almost starlike
mapping. Moreover, compare Theorem A with Theorem B, we note that the case for
class of almost starlike function is quite different from the case for class of starlike
function in one dimension. We think that this situation is similar for the class of almost
starlike mappings and starlike mappings in Cn . These stimulate us to consider Question
1.1.

In this paper, we shall try to give an affirmative answer to Question 1.1.

2. Preliminaries

Let 〈z,w〉 stand for the inner product in the complex n -dimensional space Cn

given by
〈z,w〉 = z1w1 + z2w2 + ...+ znwn,

where z = (z1,z2, . . . ,zn) and w = (w1,w2, ...,wn) are coordinate representations of z
and w in the standard base {e1,e2, ...,en} of C

n . Norm in C
n induced by the inner

product is denoted by ‖z‖ =
√〈z,z〉 . The open ball Bn = {z ∈ Cn : ‖z‖ < 1}. Denote

by U the unit disk in C . If f and g are analytic in U , we say that f is subordinate
to g , written f (z) ≺ g(z) , provided there exists an analytic function w(z) defined on U

with w(0) = 0 and |w(z)| < 1 satisfying f (z) = g(w(z)) .
Let Ω ⊂ Cn be a bounded starlike circular domain with 0∈ Ω , and its Minkowski

functional ρ(z) ∈ C 1 except for some lower dimensional manifolds in C
n . In partic-

ular, if Ω = Bn , then ρ(z) = ‖z‖ . Let Ω and ∂Ω represent the closure of Ω and the
boundary of Ω , respectively. We denote by H(Ω) the set of all holomorphic mappings
from Ω into Cn . Throughout this paper, we write a point z ∈ Cn as a column vector in
the following n×1 matrix form

z =

⎛
⎜⎜⎜⎝

z1

z2
...
zn

⎞
⎟⎟⎟⎠

and the symbol ′ stands for the transpose of vectors or matrices. For f ∈ H(Ω) , we
also write it as f = ( f1, f2, ..., fn)′ , where f j is a holomorphic function from Ω to
C, j = 1, ...,n. The derivative of f ∈ H(Ω) at a point a ∈ Ω is the complex Jacobian
matrix of f given by

Df (a) =
(

∂ fi
∂ z j

(a)
)

n×n
.

If f ∈ H(Ω) , we say that f is normalized if f (0) = 0 and Df (0) = In , where In is
the identity matrix. We say that f ∈ H(Ω) is locally biholomorphic on Ω if Df (z) is
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nonsingular at each z ∈ Ω . A holomorphic mapping f : Ω → Cn is said to be biholo-
morphic on Ω if the inverse f−1 exists and is holomorphic on the open set f (Ω). In
fact, if f ∈ H(Ω) , then

f (w) =
∞

∑
n=0

1
n!

Dn f (z)((w− z)n),

for all w in some neighborhood of z ∈ Ω , where Dn f (z) is the n th-Fr échet derivative
of f at z , and for n � 1,

Dn f (z)((w− z)n) = Dn f (z)(w− z, ...,w− z)︸ ︷︷ ︸
n

.

Suppose that Ω ⊂Cn is a bounded circular domain. The m (m > 2)-Fr échet derivative
of a mapping f ∈ H(Ω) at point z ∈ Ω is written as Dm f (z)(am−1, ·) . The matrix
representation (see, e.g. Xu-You [24]) is

Dm f (z)(am−1, ·) =

(
n

∑
l1,l2,...,lm−1=1

∂m fp(z)
∂ zk∂ zl1 ...∂ zlm−1

al1 ...alm−1

)
1�p,k�n

,

where f (z) = ( f1(z), f2(z), ..., fn(z))′,a = (a1,a2, ...,an)′ ∈ Cn.

DEFINITION 1. (Xu-Liu, [24]) Let A S ∗(Ω) denote the class of almost starlike
mappings of order α (0 � α < 1) on bounded starlike circular domain Ω , for ∀z ∈
Ω\{0} ,

f ∈ A S ∗
α (Ω) ⇐⇒ f ∈ H(Ω), ℜ

{
2 ∂ρ(z)

∂ z (Df (z))−1 f (z)
ρ(z)

}
> α, (5)

where f is normalized, (Df (z))−1 is the inverse matrix of Df (z) and

∂ρ(z)
∂ z

=
(

∂ρ(z)
∂ z1

,
∂ρ(z)
∂ z2

, ...,
∂ρ(z)
∂ zn

)
.

If Ω = Bn in (5), then we denote the class of almost starlike mappings of order α on
Bn by A S ∗

α (Bn) . It is easy to see that

f ∈ A S ∗
α (Bn) ⇐⇒ f ∈ H(Bn), ℜ

‖z‖2

〈(Df (z))−1 f (z),z〉 > α,∀z ∈ B
n\{0}.

If n = 1,Ω = U , then A S ∗
α (U) = A S ∗(α) .

The following Lemma is needed in the proof of Theorems 1 and 2.

LEMMA 1. (Liu-Ren, [15]) Ω ∈ Cn is a bounded starlike circular domain if and
only if there exists a unique real continuous function ρ : Cn →R , called the Minkowski
functional of Ω , such that (i) ρ(z)� 0, z∈C

n; ρ(z)= 0⇔ z = 0; (ii) ρ(tz)= |t|ρ(z),
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t ∈ C, z ∈ Cn; (iii) Ω = {z ∈ Cn : ρ(z) < 1}. Furthermore, the function ρ(z) has the
following properties:

2
∂ρ(z)

∂ z
z = ρ(z), z ∈ C

n,

2
∂ρ(z0)

∂ z
z0 = 1, z0 ∈ ∂Ω,

∂ρ(λ z)
∂ z

=
∂ρ(z)

∂ z
, λ ∈ (0,+∞),

∂ρ(eiθ z)
∂ z

= e−iθ ∂ρ(z)
∂ z

, θ ∈ R.

3. Main theorems and some corollaries

THEOREM 1. Suppose that mappings f ∈ A S ∗
α (Ω) and satisfy the following

condition

∂ρ(z)
∂ z

D2 f (0)
(
z,

D2 f (0)(z2)
2!

)
ρ(z) =

(∂ρ(z)
∂ z

D2 f (0)(z2)
)2

, z ∈ Ω. (6)

Then for z ∈ Ω\{0} , we have

∣∣∣A3− μA2
2

∣∣∣ �

⎧⎪⎨
⎪⎩

(1−α)[3−4α−4(1−α)μ ], i f μ � 4α−2
4(α−1) ,

1−α, i f 4α−2
4(α−1) � μ � 1,

(1−α)[4α +4(1−α)μ −3], i f μ � 1,

where

A3 = 2
∂ρ(z)

∂ z
D3 f (0)(z3)

3!ρ3(z)
, A2 = 2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!ρ2(z)

.

The above estimates are sharp for each real μ .

Proof. Fix z ∈ Ω\ {0} , and set z0 = z
h(z) . We define a function P : U → C by

P(ζ ) =

⎧⎨
⎩

ζ
2

∂ ρ(z0)
∂ z (Df (ζ z0))−1 f (ζ z0)

, ζ �= 0,

1, ζ = 0.
(7)

Then P ∈ H(U) . Furthermore, using (7), Lemma 1 and f ∈ A S ∗
α (Ω) , it gives that

ℜ(P(ζ )) = ℜ
ζ

2 ∂ρ(z0)
∂ z (Df (ζ z0))−1 f (ζ z0)

= ℜ
ρ(ζ z0)

2 ∂ρ(ξ z0)
∂ z (Df (ζ z0))−1 f (ζ z0)

<
1
α

, ζ ∈ U. (8)
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Since P(0) = ψ(0) = 1, following (8), it is easy to see that P(ζ ) ≺ ψ(ζ ) , where

ψ(ζ ) =
1+ ζ

1+(2α −1)ζ
, ζ ∈ U.

Thus, there is a function w(z) , such that P(ζ ) = ψ(w(ζ )), ζ ∈ U . Take a function

p(z) =
1+w(z)
1−w(z)

= 1+ r1z+ r2z
2 + ... ≺ 1+ z

1− z
, z ∈ U. (9)

We note that p(0) = 1 and p is a function with positive real part. By (8) and (9), it is
easy to obtain

P(ζ ) =ψ(w(ζ )) = 1+(1−α)r1ζ

+

(
(1−α)

(
r2 − r2

1

2

)
+

1
2
(α −1)(2α −1)r2

1

)
ζ 2 + ...,ζ ∈ U. (10)

Here, for later convenience, we set g(z) = (Df (z))−1 f (z),z ∈ Ω. Taking into account
the relations (7) and (10), we deduce that[

1+(1−α)r1ζ +

(
(1−α)

(
r2− r2

1

2

)
+

1
2
(α −1)(2α −1)r2

1

)
ζ 2 + . . .

]

×
(

ζ +2
∂h(z)

∂ z
D2g(0)(z0)2

2!
ζ 2 +2

∂h(z)
∂ z

D3g(0)(z0)3

3!
ζ 3 + . . .

)
= ζ , (11)

Comparing with the coefficient of two sides of the (11) in ξ 2 and ξ 3 , we obtain

(1−α)r1 = −2
∂ρ(z)

∂ z
D2g(0)(z0)2)

2!
(12)

and

(1−α)
(

r2 − r2
1

2

)
+

1
2
(α −1)(2α −1)r2

1

=
(
2

∂ρ(z)
∂ z

D2g(0)(z0)2

2!

)2−2
∂ρ(z)

∂ z
D3g(0)(z0)3

3!
. (13)

By (12), (13) and Lemma 2 in Xiong-Feng-Zhang [23] (also, see Pommerenke [20]),
we can get

∣∣r2 − 1
2
r2
1

∣∣ =
∣∣∣ 1
1−α

(
2

∂ρ(z)
∂ z

D2g(0)(z0)2

2!

)2− 2
1−α

∂ρ(z)
∂ z

D3g(0)(z0)3

3!

+
2α −1

2(1−α)2

(
2

∂ρ(z)
∂ z

D2g(0)(z0)2

2!

)2∣∣∣
�2− 1

2

(
2

∂ρ(z)
∂ z

D2g(0)(z0)2

2!

)2 1
(1−α)2 . (14)
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Let z0 be replaced by z
ρ(z) in (14). Then

∣∣∣(2∂ρ(z)
∂ z

D2g(0)(z2)
2!

)2−2
∂ρ(z)

∂ z
D3g(0)(z3)ρ(z)

3!
+

2α −1
2(1−α)

(
2

∂ρ(z)
∂ z

D2g(0)(z2)
2!

)2∣∣∣
�2(1−α)ρ4(z)− 1

2(1−α)

∣∣∣2∂ρ(z)
∂ z

D2g(0)(z2)
2!

∣∣∣2. (15)

On the other hand, since g(z) = (Df (z))−1 f (z) , we have

z+
D2 f (0)(z2)

2!
+

D3 f (0)(z3)
3!

+ . . .

=
(
I +D2 f (0)(z, .)+

D3 f (0)(z2, .)
2!

+ . . .
)
×(

Dg(0)z+
D2g(0)(z2)

2!
+

D3g(0)(z3)
3!

+ . . .
)
. (16)

Comparing with the homogeneous expansion of two sides of the (16), then we have

Jg(0)z = z,
D2g(0)(z2)

2!
= −D2 f (0)(z2)

2!
(17)

and

D3 f (0)(z3)
3!

=
D3g(0)(z3)

3!
+

D3 f (0)(z3)
2!

−D2 f (0)
(

z,
D2 f (0)(z2)

2!

)
. (18)

In view of (18), and using the conditions (6) and (17), we can give∣∣∣2∂ρ(z)
∂ z

D3 f (0)(z3)ρ(z)
3!

− μ
(
2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!

)2∣∣∣
=
∣∣∣− 1

2
2

∂ρ(z)
∂ z

D3g(0)(z3)ρ(z)
3!

+
1
2
2

∂ρ(z)
∂ z

(
D2 f (0)

(
z,

D2 f (0)(z2)
2!

))
ρ(z)

− μ
(
2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!

)2∣∣∣
=

1
2

∣∣∣−2
∂ρ(z)

∂ z
D3g(0)(z3)ρ(z)

3!
+(2−2μ)

(
2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!

)2∣∣∣
=

1
2

∣∣∣−2
∂ρ(z)

∂ z
D3g(0)(z3)ρ(z)

3!
+

(
2

∂ρ(z)
∂ z

D2g(0)(z2)
2!

)2

+
2α −1

2(1−α)

(
2

∂ρ(z)
∂ z

D2g(0)(z2)
2!

)2
+

( 4α −3
2(α −1)

−2μ
)(

2
∂ρ(z)

∂ z
D2g(0)(z2)

2!

)2∣∣∣
�1

2

(
2(1−α)ρ4(z)− 1

2(1−α)

∣∣∣2∂ρ(z)
∂ z

D2g(0)(z2)
2!

∣∣∣2
+

∣∣∣ 4α −3
2(α −1)

−2μ
∣∣∣∣∣∣2∂ρ(z)

∂ z
D2g(0)(z2)

2!

∣∣∣2). (19)
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According to the above equality (19), we consider the following four cases by using
Lemma 6 in Xu-Liu [24].
Case 1: If μ � 4α−2

4(α−1) , we have

∣∣∣2∂ρ(z)
∂ z

D3 f (0)(z3)ρ(z)
3!

− μ
(
2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!

)2∣∣∣
�1

2

(
2(1−α)ρ4(z)+

( 4α −3
2(α −1)

−2μ − 1
2(1−α)

)∣∣∣2∂ρ(z)
∂ z

D2g(0)(z2)
2!

∣∣∣2)
�1

2

(
2(1−α)ρ4(z)+4(1−α)2

( 4α −3
2(α −1)

−2μ − 1
2(1−α)

)
ρ4(z)

)
=(1−α)ρ4(z)[3−4α −4(1−α)μ ]. (20)

Case 2: If 4α−2
4(α−1) � μ � 4α−3

4(α−1) , then we have

∣∣∣2∂ρ(z)
∂ z

D3 f (0)(z3)ρ(z)
3!

− μ
(
2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!

)2∣∣∣
�1

2

(
2(1−α)ρ4(z)+4(1−α)2

( 4α −3
2(α −1)

−2μ − 1
2(1−α)

)
ρ4(z)

)
=(1−α)ρ4(z). (21)

Case 3: If 4α−3
4(α−1) � μ � 1, then we have

∣∣∣2∂ρ(z)
∂ z

D3 f (0)(z3)ρ(z)
3!

− μ
(
2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!

)2∣∣∣
�1

2

(
2(1−α)ρ4(z)+4(1−α)2

(
2μ − 4α −3

2(α −1)
− 1

2(1−α)

)
ρ4(z)

)
=(1−α)ρ4(z). (22)

Case 4: If μ � 1, then we have

∣∣∣2∂ρ(z)
∂ z

D3 f (0)(z3)ρ(z)
3!

− μ
(
2

∂ρ(z)
∂ z

D2 f (0)(z2)
2!

)2∣∣∣
�1

2

(
2(1−α)ρ4(z)+

(
2μ − 4α −3

2(α −1)
− 1

2(1−α)

)∣∣∣2∂ρ(z)
∂ z

D2g(0)(z2)
2!

∣∣∣2)
�1

2

(
2(1−α)ρ4(z)+4(1−α)2

(
2μ − 4α −3

2(α −1)
− 1

2(1−α)

)
ρ4(z)

)
=(1−α)ρ4(z)[4α +4(1−α)μ−3]. (23)

Finally, in order to see that the estimations of Theorem 1 are sharp, we can consider the
following mappings:
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If | 4α−3
2(α−1) −2μ |� 1

2(1−α) , 0 � α < 1, then

f (z) = zexp
∫ z1

r

0

[ 1+ t
1+(2α −1)t

−1
]1
t
dt =

⎧⎨
⎩zexp

∫ z1
r

0
2−2α

1+(2α−1)t dt, α �= 1
2 ,

zexp
∫ z1

r
0 dt, α = 1

2

=

⎧⎨
⎩
(
z1[1+(2α −1) z1

r ]
2(1−α)
2α−1 , . . . ,zn[1+(2α −1) z1

r ]
2(1−α)
2α−1

)
, α �= 1

2 ,(
z1e

z1
r , . . . ,zne

z1
r

)
, α = 1

2 .
(24)

If | 4α−3
2(α−1) −2μ |� 1

2(1−α) , 0 � α < 1, then

f (z) = zexp
∫ z1

r

0

[ 1+ t2

1+(2α −1)t2
−1

]1
t
dt =

⎧⎨
⎩zexp

∫ z1
r

0
2(1−α)t

1+(2α−1)t2 , α �= 1
2 ,

zexp
∫ z1

r
0 tdt, α = 1

2

=

⎧⎨
⎩
(
z1[1+(2α −1)( z1

r )2]
1−α
2α−1 , . . . ,zn[1+(2α −1)( z1

r )2]
1−α
2α−1

)
, α �= 1

2 ,(
z1e

1
2 ( z1

r )2 , . . . ,zne
1
2 ( z1

r )2
)
, α = 1

2 .
(25)

where r = sup{|z1| : z = (z1,0, . . . ,0)′ ∈ Ω}, z = (z1,z2, ...,zn) ∈ Ω.
We can check that the mappings in (24) and (25) belong to the class A S ∗

α (Ω) .
Indeed, if ψ(t) = 1+t

1+(2α−1)t and | 4α−3
2(α−1) −2μ |� 1

2(1−α) in (24), then

f (z) = zexp
∫ z1

r

0
(ψ(t)−1)

1
t
dt = z

r z1
r exp

∫ z1
r

0 (ψ(t)−1) 1
t dt

z1
= z

rF( z1
r )

z1
,

where F( z1
r ) = z1

r exp
∫ z1

r
0 (ψ(t)−1) 1

t dt . By straightforward calculation, we find that
ẑF ′(ẑ)
F(ẑ) = ψ(ẑ) ∈ ψ(U), ẑ ∈ U. Thus, we obtain f ∈ A S ∗

α (Ω) by Theorem 4 in Xu-Liu

[24]. Similarly, if ψ(t) = 1+t2

1+(2α−1)t2 and | 4α−3
2(α−1) − 2μ | � 1

2(1−α) , we also can give

f ∈ A S ∗
α (Ω) .

It is not difficult to verify that the f (z) defined in (24) and (25) satisfy the condition
of Theorem 1. Taking z = Ru(0 < R < 1), where u = (u1,u2, . . . ,un)′ ∈ ∂Ω,u1 = r, we
deduce that the equalities in (20) and (23) hold true when f is defined in (24). Also,
the equalities in (21) and (22) hold true when f is defined in (25). This completes the
proof of Theorem 1.

The following natural question arises:

OPEN QUESTION 3.1. Whether or not obtain the corresponding result in Theo-
rem 1 without using the condition (6)?

By checking the process of proof in Theorem 1, we find that it is difficult to solve the
Question 3.1. However, an interesting thing can be done along this line. Dropping off
the condtion (6), we can give an answer to the Question 3.1 for a subclass of almost
starlike mapping of order α .
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THEOREM 2. Suppose that f : Ω → C,F(z) = z f (z) ∈ A S ∗
α (Ω) . Then for z ∈

Ω\{0} , we have

∣∣∣A3− μA2
2

∣∣∣ �

⎧⎪⎨
⎪⎩

(1−α)[3−4α−4(1−α)μ ], i f μ � 4α−2
4(α−1) ,

1−α, i f 4α−2
4(α−1) � μ � 1,

(1−α)[4α +4(1−α)μ −3], i f μ � 1,

where

A3 = 2
∂ρ(z)

∂ z
D3F(0)(z3)

3!ρ3(z)
, A2 = 2

∂ρ(z)
∂ z

D2F(0)(z2)
2!ρ2(z)

.

The above estimates are sharp for each real μ .

Proof. Taking similar arguments as those in Theorem 7.1.14 by Graham-Kohr [6],
we have

(DF(z))−1 =
1

f (z)

(
I−

zD f (z)
f (z)

1+ Df (z)z
f (z)

)
, z ∈ Ω\ {0}. (26)

Hence, after some computations with (26), we have

ρ(z)

2 ∂ρ(z)
∂ z (DF(z))−1F(z)

= 1+
Df (z)z

f (z)
, z ∈ Ω\ {0}. (27)

Using (8) and (27), we have

P(ζ ) =
ρ(ζ z0)

2 ∂ρ(ζ z0)
∂ z (Df (ζ z0))−1 f (ζ z0)

= 1+
Df (ζ z0)ζ z0

f (ζ z0)
, ζ ∈ U. (28)

From (28), it yields

P(ζ ) f (ζ z0) = f (ζ z0)+Df (ζ z0)ζ z0. (29)

Considering the Taylor series expansions with ξ in (29), we have(
1+(1−α)r1ζ +

(
(1−α)

(
r2 − r2

1

2

)
+

1
2
(α −1)(2α −1)r2

1

)
ζ 2 + ...

)
·P

=P+

(
Df (0)(z0)ζ +D2 f (0)(z2

0)ζ 2 + ...

)
, (30)

where

P = 1+Df (0)(z0)ζ +
D2 f (0)(z2

0)
2

ζ 2 + . . . .

Comparing the homogeneous expansions of two sides in (30), we have

(1−α)r1 = Df (0)(z0) (31)
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and

(1−α)
(

r2 − r2
1

2

)
+

1
2
(α −1)(2α −1)r2

1 = D2 f (0)(z2
0)− (Df (0)(z0))2. (32)

Using the fact that z0 = z
ρ(z) , (31) and (32) imply that

Df (0)(z) = (1−α)r1ρ(z) (33)

and

D2 f (0)(z2) =
[
(1−α)

(
r2 − r2

1

2

)
+

1
2
(α −1)(2α −1)r2

1

]
ρ2(z)+ (1−α)2r2

1ρ2(z).
(34)

Also, since F(z) = z f (z) , it gives that

D3F(0)(z3)
3!

=
D2 f (0)(z2)

2!
z,

D2F(0)(z2)
2!

= Df (0)(z)z. (35)

From Lemma 1 and (35), we can know that

2
∂ρ(z)

∂ z
D3F(0)(z3)

3!
=

D2 f (0)(z2)ρ(z)
2!

(36)

and

2
∂ρ(z)

∂ z
D2F(0)(z2)

2!
= Df (0)(z)ρ(z) (37)

Following Lemma 2 in Xiong-Feng-Zhang [23], (31),(32), (36) and (37) give us

∣∣∣2∂ρ(z)
∂ z

D3F(0)(z3)ρ(z)
3!

− μ
(
2

∂ρ(z)
∂ z

D2F(0)(z2)
2!

)2∣∣∣
=
∣∣∣D2 f (0)(z2)ρ2(z)

2!
− μρ2(z)(Df (0)(z))2

∣∣∣
=

1
2

ρ2(z)
∣∣∣D2 f (0)(z2)−2μ(Df (0)(z))2

∣∣∣
=

1
2

ρ4(z)
∣∣∣(1−α)

(
r2 − r2

1

2

)
+

1
2
(α −1)(2α −1)r2

1 +(1−α)2r2
1 −2μ(1−α)2r2

1

∣∣∣
=

1−α
2

ρ4(z)
∣∣∣r2 − r2

1

2
− 1

2
(2α −1)r2

1 +(1−α)r2
1 −2μ(1−α)r2

1

∣∣∣
�1−α

2
ρ4(z)

(
2− 1

2
|r1|2 +

1
2
|r1|2|3−4α −4μ(1−α)|

)
. (38)

The rest of the proof is similar to the case in Theorem 1 (see, (19)), and thus, we omit
the details. The proof is completed.

If we take Ω = Bn , then ρ(z) = ‖z‖ . Following Lemma 1, it is easy to get the
corollary below by Theorems 1 and 2.
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COROLLARY 1. (i) Suppose that f ∈ A S ∗
α (Bn) and

1
2
D2 f (0)

(
z,

D2 f (0)(z2)
2!

)
z =

( 1
2‖z‖D2 f (0)(z2)z

)2
, z ∈ B

n. (39)

Then for z ∈ Bn\{0} and μ ∈ R , we have

∣∣∣A3− μA2
2

∣∣∣ �

⎧⎪⎨
⎪⎩

(1−α)[3−4α−4(1−α)μ ], i f μ � 4α−2
4(α−1) ,

1−α, i f 4α−2
4(α−1) � μ � 1,

(1−α)[4α +4(1−α)μ −3], i f μ � 1,

where

A3 = 2
1

‖z‖4

D3 f (0)(z3)
3!

z, A2 =
1

‖z‖3

D2 f (0)(z2)
2!

z.

The above estimates are sharp for each real μ .
(ii) Suppose that f : B

n → C,F(z) = z f (z) ∈ A S ∗
α (Bn) . Then for z ∈ B

n\{0} and
μ ∈ R , we have

∣∣∣A3− μA2
2

∣∣∣ �

⎧⎪⎨
⎪⎩

(1−α)[3−4α−4(1−α)μ ], i f μ � 4α−2
4(α−1) ,

1−α, i f 4α−2
4(α−1) � μ � 1,

(1−α)[4α +4(1−α)μ −3], i f μ � 1.

where

A3 = 2
1

‖z‖4

D3F(0)(z3)
3!

z, A2 =
1

‖z‖3

D2F(0)(z2)
2!

z.

The above estimates are sharp for each real μ .

REMARK 1. If we take Ω = U in Theorems 1 and 2, then the results coincide
with Theorem B in one dimension.
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