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ON HERMITE–HADAMARD TYPE

INEQUALITIES FOR F –CONVEX FUNCTIONS
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(Communicated by A. Witkowski)

Abstract. In this paper we give two different Hermite-Hadamard type inequalities for F -convex
functions. As special cases of it we get known and new Hermite-Hadamard type inequalities for
different concepts of convexity.

1. Introduction

In this paper by I we denote a nonempty and open interval of R . It is well known
that for a convex function f : I → R the following inequality is true

f

(
x+ y

2

)
� 1

y− x

∫ y

x
f (u)du � f (x)+ f (y)

2
(1)

for all x,y ∈ I (x �= y). This is the classical Hermite-Hadamard inequality [7] (see also
[9] for interesting historical remarks). This inequality constitutes a crucial element of
convex analysis and it has a vast literature concerning its generalizations, refinements,
applications and concepts of convexity (cf. e.g. [5, 8, 12] with the references therein).
One of the concepts of convex functions was introduced by Polyak [16]. Namely, a
function f : I → R is called strongly convex with modulus c > 0 if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)(x− y)2

for all x,y ∈ I and t ∈ [0,1] . Since strong convexity is an essential strengthening of
convexity (cf. [14]), we can expect a better estimation of the integral mean for strongly
convex functions than (1). In [10] the authors proved that for a strongly convex function
with modulus c > 0, f : I →R , the following Hermite-Hadamard type inequality is true

f

(
x+ y

2

)
+

c
12

(x− y)2 � 1
y− x

∫ y

x
f (u)du � f (x)+ f (y)

2
− c

6
(x− y)2

for all x,y ∈ I (x �= y). Notice that by following the proof of this result, the assumption
”c > 0” is not essential – we can assume that c ∈ R . In [1], as a generalization of
strongly convex functions, we can find the concept of F -convex functions. We adopt
the following definition.
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DEFINITION 1. Let F : R→R be a fixed function. A function f : I →R is called
F -convex if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F(x− y) (2)

for all x,y ∈ I and t ∈ [0,1] .

Such functions were defined in the context of strongly convex functions. But note that
from F -convexity we can also obtain another concepts of convexity:

• for F(x)=−cx2 we get the definition of c-convex functions introduced by J.P. Vial
(see [18]);

• for F(x) =−c|x| with c > 0 we get approximate convex functions introduced by
H.V. Ngai, D.T. Luc and M. Théra (see [11]);

• for F(x) = −c|x|p with c > 0 and p > 0 we get approximately convex functions
of order p introduced by K. Nikodem and Zs. Páles (see [13]);

• for F(x) = −|x|ω(|x|) with nondecreasing, upper-semicontinuous function ω :
[0,+∞) → [0,+∞) such that ω(0) = 0 we obtain the definition of semiconvex
functions introduced by G. Alberti, L. Ambrosio and P. Cannarsa (see [4]).

2. Useful tools

From the result presented in [2] (Theorem 1 and its proof) we conclude:

THEOREM 1. Let F : R → R be a fixed function. If an F -convex function f : I →
R is one-sided differentiable at a point x0 ∈ I and f ′−(x0) � f ′+(x0) , then the following
inequality is true

f (x) � F(x− x0)+a(x− x0)+ f (x0), x ∈ I,

where a is an arbitrary number such that f ′−(x0) � a � f ′+(x0) .

In paper [3] we find the following results:

THEOREM 2. Let F : R → R be a fixed function. If a function f : I → R is F -
convex, then it is continuous.

THEOREM 3. Let F : R → R be a fixed function. If

liminf
x→0

F(x)
x2 > −∞,

then every F -convex function f : I → R has one-sided derivatives at each point x ∈ I
and f ′−(x) � f ′+(x) .
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THEOREM 4. Let F : R → R be a fixed function. If

−∞ < liminf
x→0

F(x)
x2 < +∞,

then every F -convex function f : I → R is c-convex (in the sense of Vial), where c =
liminfx→0

F(x)
x2 .

3. Main results

We start with three lemmas. The first one sets an upper bound of integral mean
for an F -convex function. Further lemmas give two different lower bounds of integral
mean for an F -convex function, respectively.

LEMMA 1. Let F : R→R be a fixed function. If a function f : I →R is F -convex,
then

1
y− x

∫ y

x
f (u)du � f (x)+ f (y)

2
− 1

6
F(x− y) (3)

for all x,y ∈ I (x �= y).

Proof. From Theorem 2 each F -convex function f : I → R must be continuous;
thus it is also integrable. Now, integrating side-by-side inequality (2) with respect to t
over interval [0,1] we conclude inequality (3).

LEMMA 2. Let F : R → R be a fixed function integrable on each compact subin-
terval of (−α,α) , where α = sup I−inf I

2 . If an F -convex function f : I →R is one-sided
differentiable and f− � f+ , then we have the inequality

f

(
x+ y

2

)
+

1
y− x

∫ y

x
F

(
u− x+ y

2

)
du � 1

y− x

∫ y

x
f (u)du (4)

for all x,y ∈ I (x �= y).

Proof. Fix x,y ∈ I (x �= y). From Theorem 1 we conclude the inequality

f

(
x+ y

2

)
+a

(
tx+(1− t)y− x+ y

2

)
+F

(
tx+(1− t)y− x+ y

2

)

� f (tx+(1− t)y), t ∈ [0,1].

Integrating this inequality side-by-side with respect to t over interval [0,1] we obtain
(4).

REMARK 1. Using Theorem 3 we can replace the assumption ” f : I → R is one-
sided differentiable and f− � f+ ” in Theorem 2 by ”liminfx→0

F(x)
x2 > −∞”.
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REMARK 2. For an even function F and its primitive function G such that G(0)=
0 inequality (4) takes the form

f

(
x+ y

2

)
+

2
y− x

G

(
y− x

2

)
� 1

y− x

∫ y

x
f (u)du

for all x,y ∈ I (x �= y).

Without Theorem 1, but applying methods from paper [6], we get a lower bound
of the integral mean other than (4).

LEMMA 3. Let F : R → R be a fixed function integrable on each compact subin-
terval of (−α,α) , where α = sup I − inf I . If f : I → R is an F -convex function,
then

f

(
x+ y

2

)
+

1
4(y− x)

∫ y

x
F (x+ y−2u)du � 1

y− x

∫ y

x
f (u)du (5)

for all x,y ∈ I (x �= y).

Proof. From F -convexity of a function f and the identity

x+ y
2

=
tx+(1− t)y+(1− t)x+ ty

2

we get

f

(
x+ y

2

)
= f

(
tx+(1− t)y+(1− t)x+ ty

2

)

� f (tx+(1− t)y)+ f ((1− t)x+ ty)
2

− 1
4
F ((2t−1)(x− y))

for all x,y ∈ I and t ∈ [0,1] . Thus

f

(
x+ y

2

)
+

1
4
F ((2t−1)(x− y)) � f (tx+(1− t)y)+ f ((1− t)x+ ty)

2
(6)

for all x,y ∈ I and t ∈ [0,1] . Fixing different x,y ∈ I and integrating side-by-side with
respect to t over interval [0,1] inequality (6) we obtain

f

(
x+y
2

)
+

1
4

∫ 1

0
F ((2t−1)(x−y))dt � 1

2

∫ 1

0
( f (tx+(1−t)y)+ f ((1−t)x+ty))dt.

Which with substitutions ”(1− t)x+ ty = u” for the integrals

∫ 1

0
F ((2t−1)(x− y))dt,

∫ 1

0
f ((1− t)x+ ty)dt

and ”tx+(1− t)y = u” for the integral

∫ 1

0
f (tx+(1− t)y)dt
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gives

f

(
x+ y

2

)
+

1
4(y− x)

∫ y

x
F (x+ y−2u)du � 1

y− x

∫ y

x
f (u)du.

REMARK 3. For an even function F and its primitive function G such that G(0)=
0 inequality (5) takes the form

f

(
x+ y

2

)
+

G(y− x)
4(y− x)

� 1
y− x

∫ y

x
f (u)du

for all x,y ∈ I (x �= y).

The presented lemmas result in two theorems of Hermite-Hadamard type inequal-
ities for F -convex functions.

THEOREM 5. Let F : R → R be a fixed function integrable on each compact
subinterval of (−α,α) , where α = sup I−inf I

2 . If an F -convex function f : I → R is
one-sided differentiable and f− � f+ , then we have the inequality

f

(
x+ y

2

)
+

1
y− x

∫ y

x
F

(
u− x+ y

2

)
du � 1

y− x

∫ y

x
f (u)du

� f (x)+ f (y)
2

− 1
6
F(x− y)

(7)

for all x,y ∈ I (x �= y).

THEOREM 6. Let F : R → R be a fixed function integrable on each compact
subinterval of (−α,α) , where α = sup I − inf I . If f : I → R is an F -convex func-
tion, then

f

(
x+ y

2

)
+

1
4(y− x)

∫ y

x
F (2u− x− y)du � 1

y− x

∫ y

x
f (u)du

� f (x)+ f (y)
2

− 1
6
F(x− y)

(8)

for all x,y ∈ I (x �= y).

Notice that for the zero function F we get the classical Hermite-Hadamard in-
equality, for F(x) = cx2 with c > 0 we get a Hermite-Hadamard type inequality for
strongly convex functions, and inequalities (7) and (8) are the same. In general, one of
them could be better than the other – it depends on the function F . More precisely, it
depends on the expressions:

1
y− x

∫ y

x
F

(
u− x+ y

2

)
du

and
1

4(y− x)

∫ y

x
F (2u− x− y)du.
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In particular, for power functions F(x) = c|x|p with c ∈ R and p > 0 they take the
forms:

1
y− x

∫ y

x
F

(
u− x+ y

2

)
du =

c
4(p+1)

|y− x|p

and
1

4(y− x)

∫ y

x
F (2u− x− y)du =

c
2p(p+1)

|y− x|p.

Which means that for functions F(x) = c|x|p with c < 0 and p < 2 inequality (8) is
stronger than inequality (7); for c > 0 and p < 2 inequality (8) seems to be weaker
than inequality (7) – but in this case, there are no F -convex function (see [3]); if c < 0
and p > 2 inequality (8) also seems to be weaker than inequality (7) – but in this case
each F -convex functions must be convex (see [3]) and we have the classical Hermite-
Hadamard inequality which in such case is stronger than inequality (7); for c ∈ R and
p = 2 (also c = 0 and p > 0) inequalities are equivalent. So, for power function
F(x) = cxp with c ∈ R and p > 0 inequality (8) is better.

Observe that for H(z) = 1
2z

∫ z
−z F(t)dt the integrals obtained on the left sides of

(7) and (8) take the forms

1
y− x

∫ y

x
F

(
u− x+ y

2

)
du = H

(
y− x

2

)

and
1

4(y− x)

∫ y

x
F (2u− x− y)du =

1
4
H(y− x),

which may be better for further analysis of Hermite-Hadamard type inequalities.
In [3] the author proved that an F -convex function f : I → R is c-convex (in the

sense of Vial) as long as

−∞ < liminf
x→0

F(x)
x2 < ∞, (9)

moreover, the postulated real number c in the definition of c-convex functions is equal
”− liminfx→0

F(x)
x2 ”. Thus, we conclude that if (9) holds, then an F -convex function is

also with c(·)2 -convex with c = liminfx→0
F(x)
x2 . Therefore, we get (from Theorem 5

or Theorem 6) the following corollary.

COROLLARY 1. Let F : R → R be a fixed function. If a function f : I → R is
F -convex and −∞ < liminfx→0

F(x)
x2 < ∞ , then

f

(
x+ y

2

)
+

c
12

(x− y)2 � 1
y− x

∫ y

x
f (u)du � f (x)+ f (y)

2
− c

6
(x− y)2 (10)

for all x,y ∈ I (x �= y) and c = liminfx→0
F(x)
x2 .

Notice that inequality (10) was obtained for strongly convex functions with mod-
ulus c > 0 by N. Merentes and K. Nikodem in [10]. Their result is also derived from
the above corollary – it is enough to take F(x) = cx2 .
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Having regard to considerations for inequalities (7) and (8) and power functions
F we conclude that for approximately convex functions of order p (in the sense of
Nikodem and Páles) inequality (8) is better than (7). Therefore, from Theorem 6 we get
the following Hermite-Hadamard type inequality for approximately convex functions
of order p .

COROLLARY 2. Let c > 0 and p > 0 . If f : I → R is an approximately convex
functions of order p i.e.

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+ ct(1− t)|x− y|p

for all x,y ∈ I and t ∈ [0,1] , then

f

(
x+ y

2

)
− c

4(p+1)
|y− x|p � 1

y− x

∫ y

x
f (u)du � f (x)+ f (y)

2
+

c
6
|x− y|p (11)

for all x,y ∈ I (x �= y).

Comparing Corollary 1 and Corollary 2, we conclude that for approximately con-
vex functions of orders p > 2 we have a stronger inequality than inequality (11), namely
the classical Hermite-Hadamard inequality – which in this case is stronger than inequal-
ity (11).
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