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COMPLETE MOMENT CONVERGENCE FOR (α,β )–MIXING

RANDOM VARIABLES AND ITS APPLICATION

JIANGFENG HAO ∗ AND KAN CHEN

(Communicated by X. Wang)

Abstract. In this paper, the complete moment convergence for weighted sums of (α ,β) -mixing
random variables is investigated. The result improves and extends the corresponding one of Wu
et al. (2017). As a corollary, the complete convergence for weighted sums of (α ,β) -mixing
random variables is obtained, which is applied to establish the complete consistency for the P-C
estimator in a nonparametric regression model.

1. Introduction

Up to now, the research on the convergence is still an important topic in probabil-
ity limit theory. Recently, the complete moment convergence received more and more
attention of scholars since it is much stronger than other types of convergence such as
convergence in probability, almost sure convergence, Lr convergence (or namely, mean
convergence), and complete convergence. The concept of complete moment conver-
gence was first introduced by Chow (1988) as follows:

Let {Xn,n � 1} be a sequence of random variables and an > 0,bn > 0,q > 0 . If

∞

∑
n=1

anE{b−1
n |Xn|− ε}q

+ < ∞, for all ε > 0,

then {Xn,n � 1} is said to be complete moment convergence.
It is easy to check that the complete moment convergence can derive the com-

plete convergence, the concept of which was proposed by Hsu and Robbins (1947) as
follows:

A sequence {Xn,n � 1} of random variables converges completely to a constant
C if for all ε > 0 ,

∞

∑
n=1

P(|Xn−C| > ε) < ∞.

By the Borel-Cantelli lemma, the inequality above implies that Xn →C almost surely
(a.s., for short).
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The complete convergence is a powerful tool not only in establishing the strong
law of large numbers, but also characterizing the convergence rate of partial sums of
random variables. Therefore, this topic was studied continuously by many scholars in
the past decades. We refer the readers to Erdös (1949), Baum and Katz (1965), Chow
(1973), Bai and Cheng (2000), Liang and Jing (2005), Sung (2013), Wang et al. (2014),
Shen (2016), Chen and Sung (2018), among others. For more details about the complete
moment convergence, we refer the readers to Wang and Hu (2014), Wu et al. (2014),
Liang et al. (2010), Shen et al. (2016), Wu and Wang (2018) among others.

Recently, Wu et al. (2017) obtained the following result on complete moment
convergence for weighted sums of ρ∗ -mixing random variables, which improves the
corresponding result of Sung (2010).

THEOREM A. Let r > 0 , γ > 1/2 and γ p � 1 . Let {X ,Xn,n � 1} be a sequence
of identically distributed ρ∗ -mixing random variables with EX = 0 if p∨ r � 1 . As-
sume that {ani,1 � i � n,n � 1} is an array of constants satisfying ∑n

i=1 |ani|q � n for
some q > p∨ r . Then ⎧⎪⎨

⎪⎩
E|X |p < ∞, i f r < p,

E|X |p log |X | < ∞, i f r = p,

E|X |r < ∞, i f r > p,

implies that

∞

∑
n=1

nγ p−2−αrE

(
max

1�k�n

∣∣∣∣∣
k

∑
i=1

aniXi

∣∣∣∣∣− εnγ

)r

+

< ∞, for all ε > 0.

In this paper, we will further study the complete moment convergence for weighted
sums of (α,β )-mixing random variables under the condition of stochastic domination.
Therefore, in what follows, we need to recall the concept of (α,β )-mixing random
variables and stochastic domination.

The concept of (α,β )-mixing random variables was first introduced by Bradley
(1985) as follows.

Let {Xn,n � 1} be a sequence of random variables defined on a fixed probability
space (Ω,F ,P) . Denote Sn = ∑n

i=1 Xi,n � 1, and S0 = 0. Let n and m be positive
integers. Write Fm

n = σ(Xi,n � i � m) . Given σ -algebras A and B in F , let

λ (A ,B) = sup
X∈L1/α (A ),Y∈L1/β (B)

|EXY −EXEY |
‖X‖1/α‖Y‖1/β

,

where 0 < α,β < 1,α + β = 1, and ‖X‖p = (E|X |p)1/p . Define the (α,β )-mixing
coefficients by

λ (n) = sup
k�1

λ (F k
1 ,F∞

k+n), n � 0.
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DEFINITION 1.1. A sequence {Xn,n � 1} of random variable is said to be (α,β )-
mixing if λ (n) ↓ 0 as n → ∞.

Since the concept of (α,β )-mixing was introduced by Bradley (1985), many limit
theorems were established. For more results, one can refer to Shao (1989), Cai (1991),
Lu and Lin (1997), Shen et al. (2011), Gao (2016), Yu (2016), Samura et al. (2019),
and so on.

The concept of stochastic domination below will be used in the paper.

DEFINITION 1.2. A sequence {Xn,n � 1} of random variables is said to be stochas-
tically dominated by a random variable X , if there exists a positive constant C such that

P(|Xn| > x) � CP(|X | > x)

for all x � 0 and n � 1.
An array {Xni, i � 1,n � 1} of random variables is said to be stochastically domi-

nated by a random variable X , if there exists a positive constant C such that

P(|Xni| > x) � CP(|X | > x)

for all x � 0, i � 1 and n � 1.
This paper mainly investigates the complete moment convergence for double in-

dexed weighted sums of (α,β )-mixing random variables with stochastic domination.
As an application, we further study the complete consistency for the P-C estimator in a
nonparametric regression model and get some new results.

This paper is organized as follows. Some preliminary lemmas are provided in
Section 2. Main results and their proofs are stated in Section 3. An application to
nonparametric regression models is presented in Section 4. Throughout this paper, C
represents some positive constant whose value may vary in different places. Let logx =
lnmax(x,e) , and I(A) be the indicator function of the set A . Denote x+ = xI(x � 0) .
a � b means that there exists some positive constant c such that a � cb . a∨b stands
for max(a,b) and a∧b means min(a,b) .

2. Preliminary lemmas

To prove the main results of the paper, we need the following important lemmas.
The first lemma is essential in proving our main results, which can be seen in Wu et al.
(2017).

LEMMA 2.1. Let {Yi,1 � i � n} and {Zi,1 � i � n} be two sequences of random
variables. Then for any q > r > 0 , ε > 0 , and a > 0 , the following inequality holds:

E

(∣∣∣∣∣
n

∑
i=1

(Yi +Zi)

∣∣∣∣∣− εa

)r

+

� Cr

(
ε−q +

r
q− r

)
ar−qE

∣∣∣∣∣
n

∑
i=1

Yi

∣∣∣∣∣
q

+CrE

∣∣∣∣∣
n

∑
i=1

Zi

∣∣∣∣∣
r

,

where Cr = 1 if 0 < r � 1 or Cr = 2r−1 if r > 1 .

The next lemma concerns the Rosenthal type inequality and Marcinkiewicz-
-Zygmund type inequality for (α,β )-mixing random variables. The first inequality
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comes from Yu (2016) while the second inequality can be obtained by the first one and
the method used in Chen et al. (2014).

LEMMA 2.2. Let {Xi, i � 1} be a sequence of (α,β )-mixing random variables

with EXi = 0 , E|Xi|p < ∞ for some p � 1 and ∑∞
n=1(λ (n))

1
2α ∧ 1

2β < ∞ , where 0 <
α,β < 1 and α + β = 1. Assume that {ani,1 � i � n,n � 1} is an array of real num-
bers. Then there exists a positive constant C depending only on α, β and λ (·) such
that if p � 2 ,

E

∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣
p

� C

⎧⎨
⎩

n

∑
i=1

|ani|pE|Xi|p +

(
n

∑
i=1

a2
niEX2

i

)p/2
⎫⎬
⎭ ,

and if 1 � p < 2 ,

E

∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣
p

� C
n

∑
i=1

|ani|pE|Xi|p.

The following two lemmas can be seen in Chen and Sung (2018).

LEMMA 2.3. Let α > 0 , s > 0 , p > 0 and X be a random variable. Assume that
∑n

i=1 |ani|q � n for some q > p∨ s, then

∞

∑
n=1

nα p−αs−2
n

∑
i=1

E|aniX |sI(|aniX | > nα) �

⎧⎪⎨
⎪⎩

E|X |p, i f s < p,

E|X |p log |X |, i f s = p,

E|X |s, i f s > p.

LEMMA 2.4. Let α > 0 , p > 0 and X be a random variable. Assume that
∑n

i=1 |ani|q � n for some q > p, then

∞

∑
n=1

nα p−αq−2
n

∑
i=1

E|aniX |qI(|aniX | � nα) � E|X |p.

By using the definition of stochastic domination and integration by parts, one can
easily establish the following important property of stochastic domination, which can
also be found in Wu (2006).

LEMMA 2.5. Let {Xni, i � 1,n � 1} be an array of random variables which is
stochastically dominated by a random variable X . For any α > 0 and b > 0 , the
following two statements hold:

E|Xni|α I (|Xni| � b) � C1 [E|X |αI (|X | � b)+bαP(|X | > b)] ,
E|Xni|α I (|Xni| > b) � C2E|X |αI (|X | > b) ,

where C1 and C2 are positive constants. Thus, E|Xni|α � CE|X |α , where C is a posi-
tive constant.
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3. Main results

Our main results and proofs are presented as follows.

THEOREM 3.1. Let r > 0 , γ > 1/2 and γ(p∨ r) � 1 . Let {Xni,1 � i � n,n � 1}
be an array of rowwise (α,β )-mixing random variables stochastically dominated by a

random variable X with ∑∞
n=1(λ (n))

1
2α ∧ 1

2β < ∞ , where 0 < α,β < 1 and α + β = 1 .
Assume further that EXni = 0 if p∨ r � 1 . Let {ani,1 � i � n,n � 1} be an array of
constants satisfying ∑n

i=1 |ani|q � n for some q > p∨ r . Then

⎧⎪⎨
⎪⎩

E|X |p < ∞, i f r < p,

E|X |p log |X | < ∞, i f r = p,

E|X |r < ∞, i f r > p,

(1)

implies that

∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXni

∣∣∣∣∣− εnγ

)r

+

< ∞. (2)

Proof. We may assume without loss of generality that ∑n
i=1 |ani|q � n . It follows

from Hölder’s inequality that ∑n
i=1 |ani|s � n for any 0 < s < q . For fixed n � 1, denote

for 1 � i � n that

Yni = aniXniI(|aniXni| � nγ),
Zni = aniXni−Yni = aniXniI(|aniXni| > nγ).

Now we will consider the following three cases.
Case 1. 0 < p∨ r < 1.
Take θ = q∧1. It follows from Cr inequality and Lemmas 2.3-2.5 that

∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXni

∣∣∣∣∣− εnγ

)r

+

�
∞

∑
n=1

nγ p−γθ−2E

∣∣∣∣∣
n

∑
i=1

Yni

∣∣∣∣∣
θ

+
∞

∑
n=1

nγ p−2−γrE

∣∣∣∣∣
n

∑
i=1

Zni

∣∣∣∣∣
r

�
∞

∑
n=1

nγ p−γθ−2
n

∑
i=1

E|aniXni|θ I(|aniXni|�nγ)+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniXni|rI(|aniXni|>nγ)

�
∞

∑
n=1

nγ p−γθ−2
n

∑
i=1

E|aniX |θ I(|aniX | � nγ)+
∞

∑
n=1

nγ p−2
n

∑
i=1

P(|aniX | > nγ)

+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX | > nγ)
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�
∞

∑
n=1

nγ p−γθ−2
n

∑
i=1

E|aniX |θ I(|aniX | � nγ)+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX | > nγ)

< ∞.

Case 2. 1 � p∨ r < 2.
It follows from (1) that E|X |p∨r < ∞ . Moreover, by ∑n

i=1 |ani|q � n we can see
that ∑n

i=1 |ani|p∨r � n and max1�i�n |ani| � n1/q . Therefore, we have by EXni = 0,
Lemma 2.5, and the Dominated Convergence Theorem that

n−γ

∣∣∣∣∣
n

∑
i=1

EYni

∣∣∣∣∣= n−γ

∣∣∣∣∣
n

∑
i=1

EZni

∣∣∣∣∣
� n−γ

n

∑
i=1

E|aniXni|I(|aniXni| > nγ)

� Cn−γ
n

∑
i=1

E|aniX |I(|aniX | > nγ)

� Cn−γ(p∨r)
n

∑
i=1

E|aniX |p∨rI(|aniX | > nγ)

� Cn1−γ(p∨r)E|X |p∨rI(|X | > nγ−1/q)

� CE|X |p∨rI(|X | > nγ−1/q) → 0, as n → ∞. (3)

Hence, |∑n
i=1 EYni| � εnγ/2 for all n large enough. Take ϑ = q∧ 2. Similar to the

proof of Case 1, we have by Lemmas 2.1-2.5, Cr -inequality and Jensen’s inequality
that if 0 < r < 1,

∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXni

∣∣∣∣∣− εnγ

)r

+

�
∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

(Yni−EYni +Zni)

∣∣∣∣∣− εnγ/2

)r

+

�
∞

∑
n=1

nγ p−γϑ−2E

∣∣∣∣∣
n

∑
i=1

(Yni−EYni)

∣∣∣∣∣
ϑ

+
∞

∑
n=1

nγ p−2−γrE

∣∣∣∣∣
n

∑
i=1

Zni

∣∣∣∣∣
r

�
∞

∑
n=1

nγ p−γϑ−2
n

∑
i=1

E|aniX |ϑ I(|aniX | � nγ)+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX | > nγ)

< ∞,

and if 1 � r < 2,

∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXni

∣∣∣∣∣− εnγ

)r

+

�
∞

∑
n=1

nγ p−γϑ−2E

∣∣∣∣∣
n

∑
i=1

(Yni−EYni)

∣∣∣∣∣
ϑ

+
∞

∑
n=1

nγ p−2−γrE

∣∣∣∣∣
n

∑
i=1

(Zni −EZni)

∣∣∣∣∣
r
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�
∞

∑
n=1

nγ p−γϑ−2
n

∑
i=1

E|aniX |ϑ I(|aniX | � nγ)+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX | > nγ)

< ∞.

Case 3. p∨ r � 2.
Note that EY 2

ni � EX2
ni �CEX2 and in the case we always have EX2 < ∞ . Choose

μ > q∨ (γ p− 1)/(γ − 1/2) such that γ p− γμ − 2+ μ/2 < −1. Hence, we have by
Lemmas 2.1-2.5, (3), Cr -inequality and Jensen’s inequality that if 0 < r < 1,

∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣− εnγ

)r

+

�
∞

∑
n=1

nγ p−γμ−2E

∣∣∣∣∣
n

∑
i=1

(Yni−EYni)

∣∣∣∣∣
μ

+
∞

∑
n=1

nγ p−2−γrE

∣∣∣∣∣
n

∑
i=1

Zni

∣∣∣∣∣
r

�
∞

∑
n=1

nγ p−γμ−2

⎧⎨
⎩

n

∑
i=1

E|Yni|μ +

(
n

∑
i=1

EY 2
ni

)μ/2
⎫⎬
⎭+

∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX |>nγ)

�
∞

∑
n=1

nγ p−γμ−2
n

∑
i=1

E|aniX |μ I(|aniX | � nγ)+
∞

∑
n=1

nγ p−γμ−2+μ/2(EX2)μ/2

+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX | > nγ) < ∞,

if 1 � r � 2,

∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣− εnγ

)r

+

�
∞

∑
n=1

nγ p−γμ−2E

∣∣∣∣∣
n

∑
i=1

(Yni−EYni)

∣∣∣∣∣
μ

+
∞

∑
n=1

nγ p−2−γrE

∣∣∣∣∣
n

∑
i=1

(Zni −EZni)

∣∣∣∣∣
r

�
∞

∑
n=1

nγ p−γμ−2

⎧⎨
⎩

n

∑
i=1

E|Yni|μ +

(
n

∑
i=1

EY 2
ni

)μ/2
⎫⎬
⎭+

∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX |>nγ)

�
∞

∑
n=1

nγ p−γμ−2
n

∑
i=1

E|aniX |ϑ I(|aniX | � nγ)+
∞

∑
n=1

nγ p−γμ−2+μ/2(EX2)μ/2

+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX | > nγ) < ∞,

and if r > 2,

∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣− εnγ

)r

+

�
∞

∑
n=1

nγ p−γμ−2E

∣∣∣∣∣
n

∑
i=1

(Yni −EYni)

∣∣∣∣∣
μ

+
∞

∑
n=1

nγ p−2−γrE

∣∣∣∣∣
n

∑
i=1

(Zni −EZni)

∣∣∣∣∣
r
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�
∞

∑
n=1

nγ p−γμ−2

⎧⎨
⎩

n

∑
i=1

E|Yni|μ +

(
n

∑
i=1

EY 2
ni

)μ/2
⎫⎬
⎭

+
∞

∑
n=1

nγ p−γr−2

⎧⎨
⎩

n

∑
i=1

E|Zni|r +

(
n

∑
i=1

EZ2
ni

)r/2
⎫⎬
⎭

�
∞

∑
n=1

nγ p−γμ−2
n

∑
i=1

E|aniX |ϑ I(|aniX |� nγ)+
∞

∑
n=1

nγ p−γμ−2+μ/2(EX2)μ/2

+
∞

∑
n=1

nγ p−2−γr
n

∑
i=1

E|aniX |rI(|aniX | > nγ)+
∞

∑
n=1

nγ p−γr−2

(
n

∑
i=1

EZ2
ni

)r/2

�
∞

∑
n=1

nγ p−γr−2

(
n

∑
i=1

EZ2
ni

)r/2

.

Therefore, we only need to deal with ∑∞
n=1 nγ p−γr−2

(
∑n

i=1 EZ2
ni

)r/2
when r > 2. Actu-

ally, if p � 2, we have

∞

∑
n=1

nγ p−γr−2

(
n

∑
i=1

EZ2
ni

)r/2

�
∞

∑
n=1

nγ p−γrp/2−2

(
n

∑
i=1

E|aniXni|pI(|aniXni| > nγ)

)r/2

�
∞

∑
n=1

nγ p−γrp/2−2

(
n

∑
i=1

|ani|pE|X |p
)r/2

�
∞

∑
n=1

n−1+(γ p−1)(1−r/2) (E|X |p)r/2 < ∞

since −1+(γ p− 1)(1− r/2) < −1 and E|X |p < ∞ . If 0 < p < 2, we also have by
γ p−2− (γr−1)r/2 < −1+ γ p− γr < −1 that

∞

∑
n=1

nγ p−γr−2

(
n

∑
i=1

EZ2
ni

)r/2

�
∞

∑
n=1

nγr−γr2/2−2

(
n

∑
i=1

E|aniXni|rI(|aniXni| > nα)

)r/2

�
∞

∑
n=1

nγ p−γr2/2−2

(
n

∑
i=1

|ani|rE|X |r
)r/2

�
∞

∑
n=1

nγ p−2−(γr−1)r/2 (E|X |r)r/2 < ∞.
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Combining the aforementioned three cases, we can complete the proof of (2) .
This completes the proof of the theorem. �

REMARK 3.1. Comparing Theorem 3.1 with Theorem A, we not only extend
their result from ρ∗ -mixing random variables to (α,β )-mixing random variables, but
also improve the single indexed variables with identical distribution to double indexed
variables with stochastic domination. If we consider the maximum weighted sums,
the moment conditions would be slightly stronger since the moment inequalities for
(α,β )-mixing random variables are inferior to that of ρ∗ -mixing random variables. In
addition, the proof is simpler than that of Theorem A.

By Theorem 3.1, we can obtain the following result on complete convergence.

THEOREM 3.2. Let γ > 1/2 and γ p � 1 . Let {Xni,1 � i � n,n � 1} be an ar-
ray of rowwise (α,β )-mixing random variables stochastically dominated by a random

variable X with ∑∞
n=1(λ (n))

1
2α ∧ 1

2β < ∞ , where 0 < α,β < 1 and α + β = 1 . Assume
further that EXni = 0 if p � 1 . Let {ani,1 � i � n,n � 1} be an array of constants
satisfying ∑n

i=1 |ani|q � n for some q > p. Then E|X |p < ∞ implies that

∞

∑
n=1

nγ p−2P

(∣∣∣∣∣
n

∑
i=1

aniXni

∣∣∣∣∣> εnγ

)
< ∞. (4)

Proof. We only need to show that (2) implies (4) with r < p . Actually, it can be
easily obtained that

∞ >
∞

∑
n=1

nγ p−2−γrE

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣− εnγ

)r

+

=
∞

∑
n=1

nγ p−2−γr
∫ ∞

0
P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣− εnγ > t1/r

)
dt

�
∞

∑
n=1

nγ p−2−γr
∫ εrnγr

0
P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣− εnγ > t1/r

)
dt

� εr
∞

∑
n=1

nγ p−2P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> 2εnγ

)
,

which yields (4) immediately by the arbitrariness of ε > 0. �

4. An application to the nonparametric regression model

4.1. Complete consistency for the P-C estimator

Consider the following nonparametric regression model:

Yni = g(xni)+ εni, i = 1,2, · · · ,n, n � 1, (1)
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where g is an unknown function defined on the interval [0,1] , and εni,1 � i � n,n � 1
are random errors with zero mean. Without loss of generality, we assume that 0 = x0 �
xn1 � · · ·� xn,n−1 � xnn = 1. Then, Priestley-Chao (P-C, for short) estimator of g(x) is
given by

gn(x) =
n

∑
i=1

Yni
xni− xn,i−1

hn
K

(
x− xni

hn

)
, (2)

where K(u) is a measurable function and 0 < hn → 0 as n → ∞ .
Priestley and Chao (1972) first proposed the estimator (2) and established the

weak consistency for the estimator based on independent and identically distributed
(i.i.d., for short) samples; Benedetti (1977) further studied the strong consistency and
asymptotic normality for the estimator based on i.i.d. samples; Yang and Wang (1999)
improved and generalized the strong consistency from i.i.d. samples to NA samples
without identical distribution. Wu et al. (2020) obtained the rates of strong consis-
tency, complete consistency, and the mean consistency for the estimator based on END
random samples.

Let δn = max1�i�n(xni − xn,i−1) , the following assumptions are indispensable.
(A1) g(x) satisfies the Lipschitz condition of order α(> 0) on [0,1] ;
(A2) (i) K(·) satisfies the Lipschitz condition of order β (> 0) ; (ii) K(·) is bounded
in R

1 ; (iii)
∫ +∞
−∞ K(u)du = 1; (iv)

∫+∞
−∞ |K(u)|du < ∞ ;

(A3) hn → 0, δn → 0 and h−1
n {(δn/hn)β + δ α

n }→ 0 as n → ∞ .

REMARK 4.1. (A1)− (A3) are basic assumptions and have been adopted in Yang
and Wang (1999), Wu et al. (2020) and so on.

THEOREM 4.1. In model (1) , assume that {εni,1 � i � n,n � 1} is an array of
rowwise (α,β )-mixing random errors stochastically dominated by a random variable

ε with Eεni = 0 , E|ε|p < ∞ for some 2 < p < 4 and ∑∞
n=1(λ (n))

1
2α ∧ 1

2β < ∞ , where
0 < α,β < 1 and α + β = 1 . Suppose that conditions (A1) − (A3) hold, and

n

∑
i=1

(
xni− xn,i−1

hn

)q

� n1−2q/p for some q > p. (3)

Then for any x ∈ (0,1) ,

gn(x) → g(x) completely.

Proof. Note that for any x ∈ (0,1) ,

|gn(x)−g(x)| � |gn(x)−Egn(x)|+ |Egn(x)−g(x)|. (4)

Similar to the proof of Lemma 3 in Yang and Wang (1999), we obtain by (A1) − (A3)
that

|Egn(x)−g(x)| → 0 as n → ∞,
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which together with (4) derives that, to finish the proof, we only need to show

gn(x)−Egn(x) =
n

∑
i=1

xni − xn,i−1

hn
K

(
x− xni

hn

)
εni → 0 completely,

or equivalently, for all ε > 0,

∞

∑
n=1

P

(∣∣∣∣∣
n

∑
i=1

xni − xn,i−1

hn
K

(
x− xni

hn

)
εni

∣∣∣∣∣> ε

)
< ∞. (5)

Apply Theorem 3.2 with γ = 2/p , and Xni = εni , ani = n2/p xni−xn,i−1
hn

K
(

x−xni
hn

)
. In

what follows, we will verify the condition ∑n
i=1 |ani|q � n for some q > p in Theorem

3.2. Actually, it is easy to obtain by the boundedness of K(·) and (3) that

n

∑
i=1

|ani|q = n2q/p
n

∑
i=1

(
xni− xn,i−1

hn

)q ∣∣∣∣K
(

x− xni

hn

)∣∣∣∣
q

� n2q/p
n

∑
i=1

(
xni− xn,i−1

hn

)q

� n.

Hence, the desired result (4) follows from Theorem 3.2 immediately. The proof is
completed. �

COROLLARY 4.1. In model (1) , assume that {εni,1 � i � n,n � 1} is an array of
rowwise (α,β )-mixing random errors stochastically dominated by a random variable

ε with Eεni = 0 , E|ε|p < ∞ for some 2 < p < 4 and ∑∞
n=1(λ (n))

1
2α ∧ 1

2β < ∞ , where
0 < α,β < 1 and α +β = 1 . Suppose that conditions (A1) − (A3) hold, and δn/hn �
n−2/p , then for any x ∈ (0,1) ,

gn(x) → g(x) completely.

Proof. In view of Theorem 4.1, we only need to check that (3) holds. In fact, it
can be easily obtained that

n

∑
i=1

(
xni− xn,i−1

hn

)q

�
n

∑
i=1

(
δn

hn

)q

� n1−2q/p.

Therefore, Corollary 4.1 follows directly from Theorem 4.1. �

4.2. Numerical analysis

In this section, we will carry out a simulation to study the numerical performance
of the complete consistency for the P-C estimator gn(x) based on (α,β )-mixing sam-
ples.
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For fixed positive integer m , let ei
i.i.d.∼ N(0,σ2) , where σ2 = 1/(m+1) . Let εni =

∑m
j=0 en,i+ j for each 1� i � n , then it is easy to see that {εni,1� i � n,n� 1} is an array

of rowwse (α,β )-mixing random variables with εni ∼N(0,1) . Let m = 5, hn = n−1/3 ,
and xni = i/n for all 1 � i � n . Taking the sample size n as n = 50,100,200,400,
respectively, we use R software to compute gn(x) for 1000 times to obtain the plots
with g(x) = sin2πx , g(x) = e−2x , and g(x) = x− cos2 x . The results are presented in
Figures 1-3. We also calculate the mean bias and the MSE of gn(x) under different
sample sizes and functions. These results are shown in Table 1.
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Figure 1: The plots of gn(x) with g(x) = sin2πx .
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Figure 2: The plots of gn(x) with g(x) = e−2x .

Table 1: The Bias and the MSE of the estimator
g(x) Differences n=50 n=100 n=200 n=400
sin2x Bias 0.0012 -0.0002 0.0007 -0.00005

MSE 0.279 0.1817 0.1093 0.0613
e−2x Bias -0.1069 -0.0859 -0.00685 -0.054

MSE 0.1152 0.0819 0.0573 0.0398
x− cos2 x Bias 0.0548 0.0379 0.0269 0.001903851

MSE 0.1663 0.1129 0.0768 0.007267938
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Figure 3: The plots of gn(x) with g(x) = x− cos2 x .

Figures 1-3 are the plots of gn(x) with g(x) = sin2πx , g(x) = e−2x , and g(x) =
x− cos2 x , respectively. We can see that under the three functions, the estimator gn(x)
fits better and better to the true function as the sample size n increases. Specifically, one
can see in Table 1 that the mean bias fluctuates to zero and the MSE of gn(x) decreases
markedly as n increases. We are convinced that the estimator will fit better to the true
function if n becomes larger. These results mainly agree with the theoretical results.
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