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SUBORDINATION FOR MEROMORPHIC HARMONIC FUNCTIONS

J. DZ10K

(Communicated by N. Elezovic)

Abstract. We introduce and study classes of meromorphic harmonic functions defined by sub-
ordination. In addition to finding certain analytic criteria, we obtain some topological properties
for the defined classes of functions. Some applications of these results are also given.

1. Introduction

A continuous function f = u+iv is a complex valued harmonic function in a
complex domain D if both u and v are real harmonic in D. If D is the exterior of
the unit disc i.e. D :={z€ C: || > 1}, then we say that f is meromorphic harmonic
function. Hengartner and Schober [4] showed that meromorphic harmonic, orientation
preserving, univalent mapping f, satisfying f(e0) = e, must admit the representation

f(z) =h(z) +g(z) +Aloglz] ¢))

where _ _
h(z)=az+ Y, anz " g(z) =bz+ Y buz " (z€D),

n=1 n=1
0 < |ag| < |bo|, A € C, and fz/f; is analytic and bounded by 1 in D. Let = (k) denote
the class of meromorphic harmonic functions f of the form

=3

f@R)=z+ (anz"+bz ") (z€D). )
n=k

and let X, (k) denote the class of functions f € X (k) which are univalent and orien-
tation preserving in .

Jahangiri and Silverman [6] investigated the class of meromorphic harmonic star-
like functions. A function f € X,/ (2) is meromorphic harmonic starlike in D (r) :=
{zeC:lz| >r}, r>1,if

0 .
5 (arg f (re")) 20 (0 <t < 2nm)
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or
Dy f (z)

ke f (@)

20 (jzl=r),

where

Dyf(z):=zh'(z) —z¢ (z) (z€D).

To obtain a generalization of these functions we use a concept of weak subordina-
tion. We say that a function f € (k) is weakly subordinate to a function F € Z(k),
and write f(z) < F(z) (or simply f < F) if there exists a complex-valued function
® which maps D into oneself with @(e) = oo, such that f(z) = F(w(z)) (z€D). In
particular, if F is univalent in D, we have the following equivalence

f(2) < F(z) <= {f(0) = F(O) A f(D) C F(D)}.

Let —-B<A<B<1, 0< o< 1. Motivated by Janowski [7] (see also [3]) we
define the following classes of functions.
Let X%, (k;A,B) denote the class of functions f € X 4 (k) such that

D;;af(z) A+z

— 3
f2 B+z )
and by X%, (k;A,B) we denote the class of functions f € X (k) such that

Dy (Dyf)(z) . A+z
Drf(2) B+z

Finally, let ¥, (k;A, B) denote the class of functions f € X, (k) such that

Dy f(2) LAtz

z B4z

We should notice, that the classes %, (k; &) := X%, (k;2ac — 1,1) and X%, (k; or) :=
2%, (k;20c — 1,1) are investigated by Jahangiri [5] in the case k = 2. The classes
%, (k) :=Z%,(k;0) and X9, (k) := X, (k;0) are the classes of functions f € X, (k)
which are starlike in U (r) or convex in U (r), respectively, for all r > 1 (see [6]). Itis
clear that

Xy (k;A,B) C Xy (k), S5 (k;A,B) C X%, (k).

In the paper we obtain some necessary and sufficient conditions for the defined
classes of functions. Some topological properties and extreme points of the classes
are also considered. By using extreme points theory we obtain coefficients estimates,
distortion theorems, integral mean inequalities for the classes of functions. Some ap-
plications of these results are also given.
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2. Analytic criteria

Let ¥ C X. Motivated by Ruscheweyh we define the dual set of ¥ by

v {fezf() A (f*q)(z) #0 (ZED)}-

qev

THEOREM 1.
‘v (k:AB) = {y : El=1}",

where

(B+A+28)z+ (AB+A)—¢&
(1-2)?
(B—A)Z— (AB—A)+¢&
(1-2)?

Ve(z) = (B—-A)z— 4)

—(2E+B+A)Z+

(zeD).

Proof. Let f € (k) be of the form (2). Then f € X¥, (k;A,B) if and only if it
satisfies (3) or equivalently

Dy(z) ,A+¢S _

g

S~

+

Since
b =he)s (4 7 ) Do) = (- ).

z—1 z—1)2

the above inequality yields

(B+E)Drf (2) - ( +6)/(
= (B+E)Dorh(2) — (A+E)h(2) — [(B+E)Drg @) + (A+E)h ()|

<B+§ ( 2) (A+E) (z+z_—1>)
2@+ (B+8) (- o= ) +@+ 0 (7 7))

=f(@)* e (2) #0 (zeD, [g[=1).

Thus, f€X, (k;A,B) if andonly if f (z) * ye (2) #0 for zeD, |§|=1i.e. X%, (k;A,B)
={ve: 18] =1}"

Similarly we prove

~—

THEOREM 2.
v (kiA,B) = {yg : El=1}",



942 J. DZI0K

where
Ve (2) = (B—A)z+z(B+A+25(>IZ:22)§+(7“9+A)
L2 +B+A)z s AZIZ:SLB N e,
THEOREM 3.
w (kAB) = {8 : [§| =1},
where
0z (z) == (B_A)Z_f_i"i-(B—I—é)Z—B—’_é (zeD).

1 z—1

LEMMA 1. [5] If afunction f € Z(k) of the form (2) satisfies the condition

2 nlan| +n|ba|) < (6)

then f is orientation preserving and univalent in [D.

THEOREM 4. Ifafunction f € (k) of the form (2) satisfies the condition

=

> {(n(1+B)+ (1+A))|an| + (n(1+B)— (1+A)) |bs|} <B—A, (7)
n=k

then f € X%, (k;A,B).

Proof. Since

n(l—|—B)+(1—|—A)> n(l+B)—(1+A)
B_A Z B_A

zn (nelNy), ®)

by (7) we get (6). Thus, by Lemma 1 the function f is univalent and orientation pre-
serving in ID. Therefore, f € X%, (k;A,B) if and only if there exists a complex-valued
function @, W(e) =0, |@(z)| > 1 (z € D) such that

Dyf(z) A+o(z)
fe)  B+o®)

(zeD),

or equivalently
Dyf(z)—f(2)
BDyf(2) —Af(2) (2)

Thus for z € D it suffices to show that

<1 (zeD). ©)

1D f(2) = f ()| = BD f (2) = f(2)| <O.
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Indeed, letting |z| = (r > 1) we have

\Def (2) = f(2)| = [BDf (2) — f(2)]

Y (n+1)az " =Y (n—1)byz "

n=k n=k

—|(B=A)z+ Y (Bn+A)az "+ Y, (Bn—A) b,z "
n=k n=k

2 (n+1)]an|r~ —|—2 (n=1)|by|r " —(B—A)r
n=k n=k

n=k

n(14B)+ (1+A4))|ay| + (n(1+B)— (1+A)) |ba|}r "' = (B—A) <0,

\I>—‘

i Bn+A) |an\r_”+z (Bn—A)|by|r™"
<l

whence f € L%, (k;A,B).

THEOREM 5. Ifafunction f € Z(k) of the form (2) satisfies the condition
T +B) (1t Al +(n(14B) = (L+4) o} <B =4, (10)

then f € X%, (k;A,B).
Let 7y (k) be the class of functions f =h+g € Z(k) so that

f=h+g=z+Y HMN|g, ;7" — D U= b 177" (ze D). (11)
n=k

and let
2, (kA B) = Ty (k)N Ey (kA,B), X5 (kA B) i= Ty (k) NZ5, (KA, B),
Xn(kA,B) 1 = Iy (k)NZyp (k;A,B).

Next we show that the condition (7) is also necessary for the functions f € Z (k) to be

in the class Xj (k;A, B)

THEOREM 6. Let f € T (k) be a function of the form (2). Then f € L} (k;A,B)
if and only if the condition (7) holds true.

Proof. The “if” part follows from Theorem 4. For the “only —if” part, assume
that f € X} (k;A, B), then by (9) we have

i {(n—l—l)anz "—(n—1)b, ’"}
n=k <1 (zeD).

(B—A)z— 3 {(Bn+A)ayz"— (Bn—A)byz "}

n=k
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Therefore, by (11) for z = re™ (r > 1), we obtain

(e Dlan] + (1= D oyl

_ <1. (12)
(B—A)— ;k{(Bn +A) |an|+ (Bn—A) |by|} 1

It is clear that the denominator of the left hand side cannot vanish for r > 1. Moreover,
it is positive for r = oo, and in consequence for » > 1. Thus, by (12) we have

oo

S {(n(1+B)+ (1+A4)) |an| + (n(1+B) — (1+A)) b} r "' <B-A.  (13)
n=k

The sequence of partial sums {S,} associated with the series of the left hand side of
(13) is non-decreasing sequence. Moreover, by (13) it is bounded by B—A. Hence, the
sequence {S,} is convergent and

3 {(1(14B)+ (14+4) as] + (n(1+ B) = (1 A) by} = lim 5, < B—4,
n=k

which yields the assertion (7).
The following result may be proved in much the same way as Theorem 6.

THEOREM 7. Let f € Z(k) be a function of the form (11). Then f € Xy(k;A,B)
if and only if
- B—-A

b)) < ——.
ng;cn(‘an“H n|) )

By Theorems 6 and 7 we have the following corollary.

COROLLARY 1. Let a= 14 and

1+B
02 =2+ Y (——2+——2) (eD) (14)
7) =72 ) P n+aZ z ,
a)(z)=Z+Z((n—a)z"+(n+a)2") (zeD).
n=k
Then
f €Zy(kA,B) & fx¢ € Xy (kA,B),
[ €L, (kAB) & f+w€Xy(kA,B).
In particular,

Ty (ki —1,B) = = (k;—1,B).
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3. Extreme points

The Krein-Milman theorem (see [8]) is fundamental in the theory of extreme
points. In particular, it implies the following lemma.

LEMMA 2. Let .F be a non-empty compact convex subclass of the class ¥ and
F X — R be areal-valued, continuous and convex functional on F. Then

max{ 7 (f): fe.F}=max{ 7 (f): f€ EZ},
where E.Z to denote the set of extreme points of F
Since X is a complete metric space, Montel’s theorem implies the following lemma.

LEMMA 3. A class % C X is compact if and only if F is closed and locally
uniformly bounded.

THEOREM 8. The class X (k;A,B) is convex and compact subset of X.

Proof. Let fi, fo € X (k;A, B) be functions of the form

=

fiR)=z+ Y, (wpz "+b1yz2 ") (z€D,IEN), (15)
n=k

0< y< 1. Since

YAE)+(1- —z+2{ Yaru+(1=9)az0) "+ Wb+ (1= Nbz)7 "}

and by Theorem 6 we have

=3

> (n(1+B)+ (1+A))[ya1n+ (1 —7)azal
n=k

=

+ Y (n(14+B)—(1+A))|[Ybia+(1—-7)
n=k

YZ{ (14B)+ (1+A4))[arn|+ (n(1+B) = (1+A4)) [bral}

2{ (L+B)+ (1+A4))|az |+ (n(1+B) — (14A)) |banl}

< Y(B—A)+ (1 —1)(B-A)=B-A,
the function ¢ = yfi + (1 —7)f2 belongs to the class X} (k;A, B). Hence, the class is
convex. Furthermore, for f € X} (k;A,B), |z > r, r > 1, we have

=

Z (|an| + [ba]) r+i(n(1+B)+(1+A))|an| (16)

n=k n=k

n(1+B)—(1+A)|b,| <r+(B—A).

IIMX
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Thus, we conclude that the class X}, (k;A, B) is locally uniformly bounded. By Lemma
3, we only need to show that it is closed i.e. if f; € £} (k;A,B) (I €N) and f; — f,
then f € X (k;A,B). Let f; and f be given by (15) and (11), respectively. Using
Theorem 6 we have

M

(n(1+B)+ (1+A)) |an| + (n(1+B)— (1+A))|ba|) <B—A (I€N). (17)

n=k

Since f; — f, we conclude that a;,, — a, and b;,, — b, as | — oo (n € N). The
sequence of partial sums {S,} associated with the series of the left hand side of (17) is
a non-decreasing sequence. Moreover, it is bounded by B — A. Therefore, the sequence
{S,} is convergent and

=

Y {(n(14B)+ (1 +A4)as] + (1 (1 +B) — (1+A)) by} = lim S, < B—A.
n=k

This gives the condition (7), and, in consequence, f € Z*;, (k;A,B), which completes
the proof.

THEOREM 9. The set of all extreme points of the class Xy (k;A,B) is given by

EZZ(/C,AJ;) = {hnI nENk_l}U{g,,: nGNk},

where
. B—A
= = l(lJrn)T] -n 1
hi-1(z) =2, hn(2) =2+ e n(1+B)+ (1 +A)- (18)
; B—A
— i(l—n)n ——n D
gn(e) =z—e A1+ B)—(1+A)" (z€D).

Proof. Suppose that 0 <y < 1 and

gn=YN+({1=7)fa

where fi, f> € £}, (k; A, B) are functions of the form (15). Then, by (7) we have |y ,| =
|byn| = m, and, in consequence, aj; =ay; =0 for | €Ny and by ; =by; =
0 for I € Ni\ {n}. It follows that g, = f| = f>, and consequently g, € E.7%(n;k;A,B).
Similarly, we verify that the functions A, of the form (18) are the extreme points of the
class X} (k;A, B). Now, suppose that a function f belongs to the set EX} (k;A,B) and

f is not of the form (18). Then there exists s € N; such that

0 < |ag| < B4 or 0< |by| < B4
U Ss(1+B)+(1+A) T s(14+B)— (1+4)
If 0 < |as| < s(1+g)_/?1+A) , then puting
_s(1+B)+(1+4A) 1
v= 2 A \as\wp—l_y(f Yhs).,
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we have that 0 < y < 1, hy # ¢ and

f=vhs+(1=7)0.

Thus, f ¢ EX} (k;A,B). Similarly, if 0 < [bs| < % , then puting

_s(1+B)—(1+A) 1
Y= B_A \h%¢—1_yU Y8s) s
we have that 0 < y < 1, gs # ¢ and

f=r8+(1-7)¢.
It follows that f ¢ EX} (k;A, B), and the proof is completed.

4. Applications
It is clear that if the class
F={fn€X: neN},

is locally uniformly bounded, then

wﬁ:{zmﬂzxﬁzhﬁ>omem}. (19)
n=1 n=1

Thus, by Theorem 4 we have the following corollary.

COROLLARY 2.
X, (kA B) = { 2 (Yol + Ougn) : 2 (%4 06,) =1 (61 =0,%,0, > O)},
n=k—1 n=k—1
where hy,g, are defined by (18).

For each fixed value of n € N, z € D, the following real-valued functionals are
continuous and convex on X:

F ) =an,- J(f)=bn, F ()= Q)| 7 ) =IDwf@] (f€Z). (20)

Moreover, for Yy > 1, r > 1, the real-valued functional
1y

2
I =5z [lr() a8) ez @
0

is also continuous and convex on X .
Therefore, by Lemma 2 and Theorem 4 we have the following corollaries.
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COROLLARY 3. Let f € X} (k;A,B) be a function of the form (2). Then

B—A byl < B—A
n(1+B)+(1+A) """ “n(1+B)—(1+A)

(n € Ny), (22)

lan| <

The result is sharp. The functions hy, g, of the form (18) are the extremal functions.

COROLLARY 4. Let f € X3 (k;A,B), |z| =r > 1. Then

B ) <Ak
r— ro<|fl<r r
k(1+B)— (1+A) k(1+B)— (1+A)
B—A k B—-A —k

“Mare e SPAQISH AT T ATy

The result is sharp. The function g; of the form (18) is the extremal function.

COROLLARY 5. Let r> 1, y> L. If f € X} (k;A,B), then

2r
/ a3z [
) e ) gk re”
2r
- / Do f(2)]7d0 < / Desulre®)[" a6,

where gy is the function defined by (18).

The following covering result follows from Corollary 4.

COROLLARY 6. If f € X}, (k;A,B), then D (r) C f (D), where

B—A
k(1+B)—(1+A)

r=1+

Using the above results and the relation
f€XL(kAB) <= Dy f € Xy (k;A,B)
we obtain the following corollaries.

COROLLARY 7. The class X5 (k;A,B) is convex and compact subset of X. More-
over,

EX (kA B) = {hy: n € Nj_1}U{gn: n € Ni},

and

n=k—1

Z:7”I(k;A7B) = { Z (Yahn + 6ngn) = (T +6n) =1 (8k-1=10,%,8, > 0)}7
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where

ei(1+n)n (B—A) o
W11 B) + (1+A)° (23)
ei(l—n)n (B—A)
n(n(14+B)—(1+A))

he—1(z) =2z, hn(z) = 2+

gn(z) =z— 7" (zeD).
COROLLARY 8. Let f € X5 (k;A,B) be a function of the form (2), |z| =r >
1, y>1, neN. Then

B—A Iba| < B—A
n(n(1+B)—(1+A)" """ = n(n(1+B)— (1+A))’
re A Q)] < e
k(k(1+B)—(1+A)) k(k(1+B)—(1+A))"
B—A i

B—A
_k(l+B)—(l+A)r K(1+B)—(1+4)

2n/’f 21n/‘gk(reie>‘yd9’
0

2w
LnO/)D%f(reie))ydO < %O/)D,%ﬂgk(reie))yde.

lan| <

The results are sharp. The functions hy,g, of the form (23) are the extremal functions.

COROLLARY 9. If f € Xf (k;A, B), then D(r) C f (D), where

B—-A

r:1+k(k(l+B)—(1+A))'

By using Corollary 1 and the results above we obtain corollaries listed below.

COROLLARY 10. The class Xy (k;A,B) is convex and compact subset of . More-
over,
EZn(k;A7B) = {hn tne Nk—l}u{gn tne Nk}

and
I, (k:A,B) = { Z (Yahn+ 8ngn) = (Y +8n) =1 (8-1=0,%, 6, > 0)}7
n=k—1

where hy_y(z) =z, and

B_A ei(l+n)n n
hn(Z):Z—Fﬁz , 8n(2) =z—

(B—A)ell-n

Trom 7" (zeD). (24)
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COROLLARY 11. Let f € Xy (k;A,B) be a function of the form (11), |z| =r >
1, y>1, neN. Then

< BA o BoA
an| X (1+B>I’l’ n| X (1+B>I’l’
B-A _, B—A _,
_ - - < < - -
" arer SVEIsT TR
B—A _, B—A _,
- g; D, 9 5; )
178" D f(2)] r+ 15"

1 2 v | 2 v
i0 < /‘ i0 ‘
2n0/‘f(re )’ do 2n0 grk(re'”)| do,

{ 2 ’ | 2 y
— Dy f@re® ’ < — / ‘D, i ‘ .
277:0/‘ e f(reT)] do 27tO gu(ret)| do

The results are sharp. The functions hy,g, of the form (24) are the extremal functions.

COROLLARY 12. If f € 2q(kiA,B), then D(r) C f (D), where r =1+ 4.

REMARK 1. By varying the parameters in the defined classes of functions we
can obtain new and also well-known results (see for example [1, 2, 5, 6]).
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