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KOROVKIN TYPE THEOREMS AND ITS APPLICATIONS

VIA αβ− STATISTICALLY CONVERGENCE

NAIM L. BRAHA AND VALDETE LOKU ∗

(Communicated by M. Mursaleen)

Abstract. In this paper we will introduce the generalized concept of the weighted αβ− statisti-
cal convergence, introduced by Aktuglu. We will show a new αβ−weighted statistical conver-
gence and based on this definition we will prove a kind of the Korovkin type theorems. Also we
will show the rate of the convergence for this kind of weighted αβ− statistical convergence and
Voronovskaya type theorem.

1. Introduction

We shall denote by N the set of all natural numbers. Let K ∈ N and Kn = {k �
n : k ∈ K}. Then the natural density of K is defined by δ (K) = limn→∞

|Kn|
n if the limit

exists, where the vertical bars indicate the number of elements in the enclosed set. The
sequence x = (xk) is said to be statistically convergent to L if for every ε > 0, the set
Kε = {k ∈ N : |xk −L| � ε} has natural density zero (cf. [12, 17]), i.e. for each ε > 0,

lim
n→∞

1
n
|{k � n : |xk −L| � ε}| = 0.

In this case, we write L = st − limx. Note that every convergent sequence is
statistically convergent but not conversely. Statistical convergence is extended to the
weighted αβ− statistically convergence by Aktuglu (see [1]) as follows.
Let α(n) and β (n) be two sequences of positive numbers which satisfy the following
conditions

1. α,β are both non-decreasing numerical sequences

2. β (n) � α(n),

3. β (n)−α(n)→ ∞ as n → ∞
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and let us denote with Λ the set of all pairs (α,β ) which satisfying conditions
(1)-(3). For each pair (α,β ) ∈ Λ, 0 < γ � 1 and K ⊂ N, we define δ α ,β (K,γ) in the
following way

δ α ,β (K,γ) = lim
n

|K ∩ Iα ,β
n |

(β (n)−α(n)+1)γ ,

where I(α ,β )
n is the closed interval [α(n),β (n)]. A sequence (xn) is said to be weighted

αβ− statistically convergent of order γ to L, if

δ α ,β ({k : |xk −L| � ε},γ) = lim
n

∣∣∣{k ∈ Iα ,β
n : |xk −L| � ε

}∣∣∣
(β (n)−α(n)+1)γ = 0.

The statistical convergence of the numerical sequences is extensively studied by
many authors (see [3, 7, 4, 17, 12]). In this paper we will define the weighted αβ−
statistical convergence of order γ and for this kind of statistical convergence we will
prove the second Korovkin type theorems, rate of convergence and Voronovskaya type
theorem. In what follows we will give the concept of the weighted αβ− statistical
convergence. Let (pn), (qn) be any two positive real sequences, such that

Pn = p1 + p2 + · · ·+ pn, p−1 = 0,

Qn = q1 +q2 + · · ·+qn, q−1 = 0.

Convolution of the above sequences we will denote by:

Rn = ∑
k∈I

(α,β)
n

pk ·qβ (n)−k → ∞ as n → ∞

and

Nγ
n,p,q(x) =

1

Rγ
n

∑
k∈I(α,β)

n

pkqβ (n)−kxk.

DEFINITION 1.1. A sequence (xn) is said to be weighted αβ− statistically con-
vergent of order γ to a number L if for every ε > 0

lim
n

1

Rγ
n

∣∣{k � Rn : pkqβ (n)−k|xk −L|� ε
}∣∣ = 0,

and we will denote it by st(Nγ
n,p,q)

− xk → L.

In this example we will prove that above definition is generalization of the statis-
tical convergence,hence, generalization of the ordinary convergence.

EXAMPLE 1.2. Let us consider that pk = 1, β (n) = n, α(n) = 1, γ = 1 and

qk =
{

1 if k = m2,m = 2,3, · · ·
0 otherwise
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and

xk =

⎧⎨
⎩

1 if k = m2−m,m2−m+1, · · ·,m2 −1
−m if k = m2,m = 2,3, · · ·
0 otherwise

.

It is known that sequence (m2;m = 2,3 · · · ,) is statistically convergent to 0. On the
other hand st− liminfn xn = 0 and st− limsupn xn = 1. Thus x = (xn) is not statistically
convergent. But

lim
n→∞

1
Rn

|{k � Rn : pn−kqk|xk −L| � ε}| = lim
n→∞

1
Rn

|{k � Rn : 1 ·qk|xk −L| � ε}| = 0.

Hence, st(Nγ
n,p,q)

− xk → 0.

DEFINITION 1.3. A sequence (xn) is said to be strongly weighted αβ− summable
of order γ to a number L if

lim
n

1

Rγ
n

∑
k∈I

(α,β)
n

pkqβ (n)−k|xk −L|r = 0,

for every 0 < r < ∞ and we will denote it by xk → L(Nγ
n,p,q,r).

REMARK 1.4. In case where r = 1, the sequence (xn) is said to be weighted
αβ− summable of order γ to a number L if

lim
n

1

Rγ
n

∑
k∈I

(α,β)
n

pkqβ (n)−k|xk −L| = 0,

and we will denote it by xk → L(Nγ
n,p,q).

REMARK 1.5. If pn = 1, qn = 1, γ = 1, α(n) = 1, β (n) = n + 1, then from
above summability method we get Cesáro summability method.

2. Results

THEOREM 2.1. Let pkqβ (n)−k|xk −L| � M, for all k ∈ N. If a sequence x = (xk)
is st(Nγ

n,p,q)
− statistically convergent to L then it is statistically summable (Nγ

n,p,q)− to

L, but conversely is not true.

Proof. Since x = (xk) is st(Nγ
n,p,q)

− statistically convergent to L, it means that

lim
n

1

Rγ
n
|{k � Rn : pkqβ (n)−k|xk −L| � ε}| = 0.
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Let us denote by K = {k � Rn : pkqβ (n)−k|xk−L|� ε} and Kc = {k� Rn : pkqβ (n)−k|xk−
L| < ε}. Then we have:

1

Rγ
n

∑
k∈I

(α,β)
n

pkqβ (n)−k|xk −L|

� 1

Rγ
n

∑
k∈I

(α,β)
n

k∈K

pkqβ (n)−k|xk −L|+ 1

Rγ
n

∑
k∈I(α,β)

n
k∈Kc

pkqβ (n)−k|xk −L|

� 1

Rγ
n

∑
k∈I

(α,β)
n

k∈K

pkqβ (n)−k|xk −L|+ 1

Rγ
n

∑
k∈I

(α,β)
n

k∈Kc

pkqβ (n)−k|xk −L|

� 1

Rγ
n
·M · |K|+ 1

Rγ
n

n

∑
k∈I

(α,β)
n

k∈Kc

ε → 0+ ε ·1 = ε

as n → ∞. Which implies that Nγ
n,p,q(x) → L. That is x = (xn) is Nγ

n,p,q− summable
to L, in ordinary sense, which implies the Nγ

n,p,q− statistically summability to L. To
prove that converse is not true we will construct this

EXAMPLE 2.2. Let us consider that pn = qn = 1 and β (n)−α(n) = n+1, then
the summability method (Nγ

n,p,q) reduce to the (C,1)− summability method. In this
case the st(Nγ

n,p,q)
− statistically convergence is reduced to the statistically convergence.

We define the sequence x = (xn) as follows:

xk =

⎧⎨
⎩

1 if k = m2−m,m2−m+1, · · ·,m2 −1
−m if k = m2,m = 2,3, · · ·
0 otherwise

.

Under this conditions we get:

Nγ
n,p,q =

1

Rγ
n

∑
k∈I(α,β)

n

pkqβ (n)−k =
1

n+1

n

∑
k=0

xk

=
{

l+1
n+1 if n = m2−m+ l; l = 0,1, · · · ,m−1;m = 2,3, · · ·
0 otherwise

whence it follows that limn→∞ Nγ
n,p,q = 0, and hence stNγ

n,p,q
− limn→∞ Nγ

n,p,q = 0, i.e.,

x = (xn) is (Nγ
n,p,q)−summable to 0. On the other hand, the sequence (m2;m = 2,3 · · · ,)

is statistically convergent to 0, it is clear that st− liminfn xn = 0 and st− limsupn xn =
1. Thus x = (xn) is not statistically convergent, nor st(Nγ

n,p,q)
− statistically convergent.

THEOREM 2.3. Let 0 < γ � τ � 1. Then, we have (Nγ
n,p,q,r) ⊂ (Nτ

n,p,q,r) and the
inclusion is strict for some γ < τ.



KOROVKIN TYPE THEOREMS AND ITS APPLICATIONS VIA αβ− STATISTICALLY CONVERGENCE 955

Proof. Let x = (xn) ∈ (Nγ
n,p,q,1), and γ,τ be given such that 0 < γ � τ � 1. Then,

we obtain

1
Rτ

n
∑

k∈I
(α,β)
n

pkqβ (n)−k|xk −L|r � 1

Rγ
n

∑
k∈I

(α,β)
n

pkqβ (n)−k|xk −L|r.

Hence, (Nγ
n,p,q,1) ⊂ (Nτ

n,p,q,1). To prove that inclusion is strict, we will consider that
r = 1 and it is shown by the following

EXAMPLE 2.4. Let us consider that pk = qk = 1, then Rγ
n = (β (n)−α(n)+1)γ.

x = (xk) =
{

1, β (n)−√
β (n)−α(n)+1 � k � β (n)

0, otherwise
.

For 0 < γ < 1
2 we get

1
(β (n)−α(n)+1)γ ∑

k∈I
(α,β)
n

|xk −0|�
√

β (n)−α(n)+1−1
(β (n)−α(n)+1)γ → ∞, as n → ∞.

On the other hand, for 1
2 < τ � 1, we have

1
(β (n)−α(n)+1)τ ∑

k∈I
(α,β)
n

|xk −0|�
√

β (n)−α(n)+1
(β (n)−α(n)+1)τ → 0, as n → ∞.

So we have find a sequence x = (xn) ∈ (Nτ
n,p,q,1) \ (Nγ

n,p,q,1). Which proves theo-
rem.

In what follows we will show under which conditions from st(Nγ
n,p,q)

− statistical

convergence, follows (Nγ
n,p,q,r)− summability and the conversely.

PROPOSITION 2.5. Let us suppose that x = (xn) is (Nγ
n,p,q,r) summable conver-

gent to L. If

1. 0 < r < 1 and 0 � |xk −L| < 1,

2. 1 � r < ∞ and 1 � |xk −L| < ∞

then x is st(Nγ
n,p,q)

− statistically convergent to L.

Proof. Let us suppose that x = (xn) is (Nγ
n,p,q,r)− summable convergent to L.

Under above conditions we get(in both cases):

pkqβ (n)−k|xk −L|r � pkqβ (n)−k|xk −L|.
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Let us denote by A = {k � Rn : pkqβ (n)−k|xk −L| � ε}, then

lim
n

ε|A|
Rγ

n
= lim

n

1

Rγ
n

∑
k∈I

(α,β)
n

k∈A

ε � 1

Rγ
n

∑
k∈I

(α,β)
n

k∈A

pkqβ (n)−k|xk −L|� 1

Rγ
n

∑
k∈I

(α,β)
n

pkqβ (n)−k|xk −L|

� 1

Rγ
n

∑
k∈I

(α,β)
n

pkqβ (n)−k|xk −L|r = 0.

Hence x = (xn) is st(Nγ
n,p,q)

− statistically convergent to L.

PROPOSITION 2.6. Let us suppose that x = (xn) is st(Nγ
n,p,q)

− statistically con-

vergent to L and pkqβ (n)−k|xk −L| � M(k ∈ N). If

1. 0 < r < 1 and 0 � M < 1,

2. 1 � r < ∞ and 1 � M < ∞

then x is (Nγ
n,p,q,r)− summable convergent to L.

Proof of the theorem is similar to Theorem 2.1, and we omit it.

PROPOSITION 2.7. (i) If x = (xk) → L statistically convergent, it is st(Nγ
n,p,q)

−
xk → L.

(ii) If
(

Rγ
n
n

)
is a bounded sequence, then statistical convergence is equivalent to st(Nγ

n,p,q)
convergence.

3. Korovkin type theorem

Let C[a,b] be the space of all functions f continuous on a [a,b] of the real num-
bers. Also, C[a,b] is a Banach space with norm

|| f || = sup
x∈[a,b]

{| f (x)|}, f ∈C[a,b].

The classical Korovkin first theorem is given as follows (see [10, 11, 2]):

THEOREM 3.1. Let (Bn) be a sequence of positive linear operators from C[0,1]
into C[0,1]. Then

lim
n→∞

||Bn( f ,x)− f (x)||∞ = 0,

for all f ∈C[0,1] if and only if

lim
n→∞

||Bn( fi,x)− fi(x)||∞ = 0,

for i ∈ {0,1,2} where f0(x) = 1, f1(x) = x and f2(x) = x2,
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where Bn is a sequence of positive linear operators from [a,b]→ [a,b], and we say that
B is a positive if B( f ;x) � 0, whenever f (x) � 0.

The Korovkin type theorems are investigated by several mathematicians in gener-
alization of them in many ways and several settings such as function spaces, abstract
Banach latices, Banach algebras, and so on. This theory is useful in real analysis,
functional analysis, harmonic analysis, and so on. For more results related to the Ko-
rovkin type theorems see ([8, 15, 16, 10, 11, 3, 14, 6, 7, 5, 9]). In this section, we
prove Korovkin type theorem for the weighted αβ−statistically convergent defined as
in definition 1.1.

Let C[a,b] be the Banach space with the uniform norm ||.||∞ of all real con-
tinuous functions on [a,b]. Suppose that Bn : C[a,b] → [a,b]. We write Bn( f ;x) for
Bn( f (s);x).

THEOREM 3.2. Let (Bk) be a sequence of positive linear operators from C[a,b]
into C[a,b]. Then for all f ∈C[a,b]

st(Nγ
n,p,q)

− lim
n
||Bn( f )− f || → 0, on [a,b] (3.1)

if and only if

st(Nγ
n,p,q)

− lim
n
||Bn( fi)− fi|| → 0, on [a,b], with fi(x) = xi; i ∈ {0,1,2}. (3.2)

Proof. Let us suppose that relation (3.1) is true, since functions 1,x,x2 are con-
tinuous, then relations (3.2) follow immediately from (3.1). Now we will prove the
conversely, that relations (3.2) are valid, and we will prove that relation (3.1) is valid,
too. Let f ∈ C[a,b], then there exist a constant K > 0 such that | f (x)| � K for all
x ∈ [a,b]. Therefore

| f (t)− f (x)| � 2K,x ∈ [a,b]. (3.3)

For every given ε > 0 there exist a δ > 0 such that

| f (t)− f (x)| � ε (3.4)

whenever |t − x| < δ for all x ∈ [a,b]. Let us denote by ψ ≡ ψ(t,x) = (t − x)2. If
|t− x| � δ , then we have:

| f (t)− f (x)| � 2K
δ 2 ψ(t,x). (3.5)

Now from relations (3.3)-(3.5), we get

| f (t)− f (x)| < ε +
2K
δ 2 ψ(t,x).

Respectively,

−ε − 2K
δ 2 ψ(t,x) < f (t)− f (x) <

2K
δ 2 ψ(t,x)+ ε.



958 N. L. BRAHA AND V. LOKU

Applying the operator Bk(1,x) in this inequality, since Bk(1,x) is monotone and linear,
we obtain:

Bk(1,x)
(
−ε − 2K

δ 2 ψ
)

< Bk(1,x)( f (t)− f (x)) < Bk(1,x)
(

2K
δ 2 ψ + ε

)
⇒

− εBk(1,x)− 2K
δ 2 Bk(ψ(t),x) < Bk( f ,x)− f (x)Bk(1,x) <

2K
δ 2 Bk(ψ(t),x)+ εBk(1,x).

(3.6)
On the other hand

Bk( f ,x)− f (x) = Bk( f ,x)− f (x)Bk(1,x)+ f (x)[Bk(1,x)−1]. (3.7)

From relations (3.6) and (3.7) we have:

Bk( f ,x)− f (x) <
2K
δ 2 Bk(ψ(t),x)+ εBk(1,x)+ f (x)[Bk(1,x)−1]. (3.8)

Let us now estimate the following expression:

Bk(ψ(t),x) = Bk
(
(x− t)2,x

)
= Bk

((
x2 −2xt + t2

)
,x

)
= x2Bk(1,x)−2xBk(t,x)+Bk

(
t2,x

)
Now, from the last relation and (3.8), we obtain that

Bk( f ,x)− f (x) <
2K
δ 2

{
x2[Bk(1,x)−1]−2x[Bk(t,x)− x]

+
[
Bk(t2,x)− x2]}

+ εBk(1,x)+ f (x)[Bk(1,x)−1]

= ε + ε[Bk(1,x)−1]+ f (x)[Bk(1,x)−1]

+
2K
δ 2

{
x2Bk(1,x)−1]−2x[Bk(t,x)− x]+

[
Bk(t2,x)− x2]}

.

Therefore,

|Bk( f ,x)− f (x)| � ε +
(

ε +K +
2Kb2

δ 2

)
|Bk(1,x)−1|+ 4Kb

δ 2 |Bk(t,x)− x|

+
2K
δ 2

∣∣Bk(t2,x)− x2
∣∣ .

Now taking the supx∈[a,b] in the above relation, we get:

‖Bk( f ,x)− f (x)‖C[a,b] �ε +K
(
||Bk(1,x)−1||C[a,b] + ||Bk(t,x)− x||C[a,b]

+
∥∥Bk(t2,x)− x2

∥∥
C[a,b]

)
,

where M = max
{

ε +K + 2Kb2

δ 2 , 4Kb
δ 2 , 2K

δ 2

}
.
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For a given r > 0, we can choose ε1 such that ε1 < r. Now we will define the
following sets:

D =
{

k � n : ||Bk( f ,x)− f (x)||C[a,b] � r
}
,

Di =
{

k � n : ||Bk( fi,x)− fi(x)||C[a,b] � r− ε1

3M

}
, i = 0,1,2.

Then D ⊂ ∪2
i=0Di and for their densities is satisfied relation:

δ (D) � δ (D0)+ δ (D1)+ δ (D2).

Finally, from relations (3.2) and the above estimation we get

st(Nγ
n,p,q)

− lim
n
||Bn( f )− f || → 0, on [a,b],

for every r > 0, which completes the proof.

REMARK 3.3. Those results are generalization of the known results given in [16].
For pn = 1 and qn = λn, where λn− is given as in [16], then we obtain results from
[16].

In what follows we will give example with which prove that our result is extension
of the classical Korovkin approximation theorem.

EXAMPLE 3.4. We will consider this type of modified Bernstein type operators

Bp,q
n ( f ,x) =

n

∑
k=0

pn−kqk f

(
k
n

)(
n
k

)
xk · (1− x)n−k,

where x ∈ [0,1].
Let pn = qn = 1, and Ln : C(D) → C(D) be sequence of operators defined as

follows:
Ln( f ,x) = (1+ xn)Bn( f ,x),

where (xn) is defined by Example 2.2.

Bn(1,x) = 1,

Bn(t,x) = x,

Bn(t2,x) = x2 +
x(1− x)

n
,

and sequence of operators (Ln) satisfies conditions (3.2). Hence,

st(Nγ
n,p,q)

− lim
n
||Ln( f ,x)− f (x)‖ → 0, on [a,b].

On the other hand, Ln( f ,0) = (1+ xn)Bn f (0) = (1+ xn) f (0), which obtains that

||Ln( f ,x)− f (x)||∞ � |Tn( f ,0)− f (0)| � xn| f (0)|.
Last relation shows that sequence of operators (Ln) does not satisfies the classical

Korovkin type theorem, because sequence (xn) is not convergent.
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4. Rate of convergences

In this section, we study the rate of the weighted αβ− statistically convergent of
order γ, for a sequence of positive linear operators Tn defined on C[a,b]. We begin by
presenting the following definition.

DEFINITION 4.1. Let (an) be any positive, nondecreasing sequence of positive
numbers. We say that sequence (xn) is a weighted αβ− statistically convergent of
order γ to x with rate of convergence o(an), if for every ε > 0,

lim
n

1

anR
γ
n

∣∣{k � Rn : pkqβ (n)−k|xk −L| � ε
}∣∣ = 0.

In this case, we write xk − x = o(an)(weighted αβ− st. convergent of order γ ), on
[a,b].

LEMMA 4.2. Let (an) and (bn) be two positive nondecreasing numeric sequences.
Let (xn) and (yn) be two sequences such that xn − x = o(an) (weighted αβ− st. con-
vergent of order γ ) and yn − y = o(bn)(weighted αβ− st. convergent of order γ ).
Then:

1. (xn− x)± (yn− y) = o(cn)(weighted αβ− st. convergent of order γ ),

2. α(xn− x) = o(an)(weighted αβ− st. convergent of order γ ), for any scalar α,

3. (xn− x)(yn− y) = o(anbn)(weighted αβ− st. convergent of order γ ),

where cn = max{an,bn}.

Proof. In what follows we will prove just the first statement, the others we can
prove in similar way. For ε > 0, let us denote by

A1 = {k � Rn : pkqβ (n)−k| fk +gk − ( f +g)| � ε},
A2 =

{
k � Rn : pkqβ (n)−k| fk − f | � ε

2

}
,

A3 =
{

k � Rn : pkqβ (n)−k|gk −g|� ε
2

}
.

Then observe that A1 ⊂ A2 ∪A3. Moreover, since

cn = max{an,bn},

we get:
|A1|
cnR

γ
n

� |A2|
anR

γ
n

+
|A3|
bnR

γ
n
. (4.1)
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Now by taking limit as n → ∞ in (4.1) and using the hypothesis, we conclude that

lim
n→∞

|A1|
cnR

γ
n

= 0,

which proves that first statement of the lemma.
Now let us recall the notion of the modules of continuity. The modulus of conti-

nuity for function f (x) ∈C[a,b], is defined as follows:

ω( f ,δ ) = sup
|h|<δ

x,x+h∈[a,b]

| f (x+h)− f (x)|.

It is known that

| f (x)− f (y)| � ω( f ,δ )
( |x− y|

δ
+1

)
, (4.2)

for all x,y ∈ [a,b].
We have the following result:

THEOREM 4.3. Let (Bn) be a sequence of positive linear operators from C[a,b]
into C[a,b]. Suppose that

1. ||Bn(1,x)−1||∞ = o(an)(weighted αβ− st. convergent of order γ ),

2. ω(f ,λk)=o(bn)(weighted αβ− st. convergent of order γ ), where λn=
√

Bn(ψ ,x)
and ψ ≡ ψ(t,x) = (t− x)2.

Then for all f ∈C[a,b] and x ∈ [a,b], we have:

||Bn( f ,x)− f (x)||∞ = o(cn)(weighted αβ − st. convergent of order γ),

where cn = max{an,bn}.

Proof. Let f ∈ C[a,b], || f ||∞ = K and x ∈ [a,b]. From relations (3.7) and (4.2)
we get this estimation:

|Bn( f ,x)− f (x)| � |Bn(| f (y)− f (x)|,x)|+ | f (x)| · |Bn(1,x)−1|
� Bn

( |x− y|
δ

+1,x

)
ω( f ,δ )+ | f (x)| · |Bn(1,x)−1|

(by Cauchy-Schwartz inequality) � 1
δ

Bn
(
(x− y)2,x

) 1
2 Bn ( f0(x),x)

1
2 ω( f ,δ )

+Bn(1,x)ω( f ,δ )+ | f (x)| · |Bn(1,x)−1|
(for δ = λn, we get) � K |Bn(1,x)−1|+2ω( f ,δ )+ ω( f ,δ )|Bn(1,x)−1|

+ω( f ,δ )
√

|Bn(1,x)−1|.
Now, by using relations (1) and (2) in the theorem and Lemma 4.2, we complete proof
of theorem.
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5. Voronovskaya type theorem

In this section, we will show that the positive linear operators Ln defined as fol-
lows:

Ln( f ,x) =
(1+ xn)

n2 Bn( f ,x),

where sequences (xn) are defined in Example 1.2, satisfy a Voronovskaja type property
in the weighted αβ− st. convergent of order γ− sense. We first prove the following
lemma.

LEMMA 5.1. For x ∈ [a,b], Φ(y) = y− x then

n2Ln(Φ4) ∼ x2(2x2 +1)(x−1) (weighted αβ − st. convergent of order γ), on [a,b].

Proof. After some calculations we get:

n2Ln(Φ4) =(1+ xn)

[(
2− 5

n
+

8
n2 −

11
n3 +

6
n4

)
x5 +

(
−2+

4
n
− 5

n2 +
9
n3 −

6
n4

)
x4

+
(

1− 2
n

+
1
n3

)
x3 −

(
1− 2

n
+

3
n3 −

2
n4

)
x2 +

(
1
n2 −

3
n3 +

2
n4

)
x

]
.

Thus we obtain:∣∣n2Ln(Φ4)− x2(2x2 +1)(x−1)
∣∣

�|(1+ xn)−1|
∣∣∣(2x5−2x4 + x3− x2)

∣∣∣+
∣∣∣∣
(
−5

n
+

8
n2 −

11
n3 +

6
n4

)
x5

∣∣∣∣
+

∣∣∣∣
(

4
n
− 5

n2 +
9
n3 −

6
n4

)
x4

∣∣∣∣+
∣∣∣∣
(
−2

n
+

1
n3

)
x3

∣∣∣∣+
∣∣∣∣
(
−2

n
+

3
n3 −

2
n4

)
x2

∣∣∣∣
+

∣∣∣∣
(

1
n2 −

3
n3 +

2
n4

)
x

∣∣∣∣ → 0 (weighted αβ − st. convergent of order γ),

as n → ∞, on [0,1]. This completes proof of the Lemma.
In what follows we establish the following Voronovskaya type theorem for opera-

tors Ln, defined as in above Lemma.

THEOREM 5.2. For every f ∈ [a,b] such that f
′
, f

′′ ∈ [a,b], then

n
[
n2Ln( f )− f (x)

] ∼ 1
2

(
x− x2) f

′′
(x)(weighted αβ − st. convergent of order γ),

on [a,b].

Proof. Let us suppose that f
′
, f

′′ ∈C[a,b] and x ∈ [a,b]. Define

ψx(y) =

{
f (y)− f (x)−(y−x) f

′
(x)− 1

2 (y−x)2 f
′′
(x)

(y−x)2 for x = y

o x = y.
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Then ψx(x) = 0 and ψx ∈C[a,b]. By Taylor’s formula, we get

f (y) = f (x)+ (y− x) f
′
(x)+

1
2
(y− x)2 f

′′
(x)+ (y− x)2ψx(y). (5.1)

Knowing that

Ln(1,x) =
(1+ xn)

n2 ;Ln((y− x),x) = 0 and Ln((y− x)2,x) = (1+ xn)
x− x2

n3 ,

and after operating in the both sides of relation (5.1) by operator Ln, we obtain:

n2Ln( f ) = f (x)+ xn f (x)+
f
′′
(x)
2

x− x2

n
(1+ xn)+ (1+ xn)Ln(Φ2ψx,x),

which yields

∣∣∣∣n[
n2Ln( f )− f (x)

]− 1
2
(x− x2) f

′′
(x)

∣∣∣∣ � nxn| f (x)|+xn

∣∣∣ f ′′(x)∣∣∣+n(1+xn)
∣∣Ln(Φ2ψx,x)

∣∣ ,
receptively

∣∣∣∣n[
n2Ln( f )− f (x)

]− 1
2
(x− x2) f

′′
(x)

∣∣∣∣ � nxnM +n(1+ xn)
∣∣Ln(Φ2ψx,x)

∣∣ , (5.2)

where Φ(y) = y− x and M = || f ||C[a,b] + || f ′′ ||C[a,b]. After application of the
Cauchy-Schwartz inequality in the terms of the right side of the relation (5.2), we ob-
tain:

n
∣∣Ln(Φ2ψx,x)

∣∣ �
[
n2Ln(Φ4,x)

] 1
2 · [Ln(ψ2

x ,x)
] 1

2 . (5.3)

Putting ηx(y) = (ψx(y))2, we get that ηx(x) = 0 and ηx(·) ∈C[a,b]. Also

nxn
∣∣Ln(Φ2ψx,x)

∣∣ � xn
[
n2Ln(Φ4,x)

] 1
2 · [Ln(ψ2

x ,x)
] 1

2 , (5.4)

where xn → 0(weighted αβ − st. convergent of order γ).
Now from Theorem 3.2, it follows that

Ln(ηx) → 0(weighted αβ − st. convergent of order γ) on [a,b]. (5.5)

Now, from relations (5.3), (5.4), (5.5) and Lemma 5.1, we have

n(1+ xn)Ln(Φ2ψx,x) → 0(weighted αβ − st. convergent of order γ) on [a,b]. (5.6)

For a given ε > 0, we define the following sets:

An(x,ε) =
∣∣∣∣
{

k : k � Rn : pkqβ (n)−k

∣∣∣∣k [
k2Lk( f )− f (x)

]− 1
2
(x− x2) f

′′
(x)

∣∣∣∣ � ε
}∣∣∣∣ ,
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A1,n(x,ε) =
∣∣∣{k : k � Rn : pkqβ (n)−k|kxk| � ε

2M

}∣∣∣ ,
and

A2,n(x,ε) =
∣∣∣{k : k � Rn : pkqβ (n)−k|k(1+ xk)Lk(Φ2ψx,x)| � ε

2

}∣∣∣ .
From last relation we have

An(x,ε)
anR

γ
n

� A1,n(x,ε)
anR

γ
n

+
A2,n(x,ε)

anR
γ
n

. (5.7)

From definition of the sequence (xn), we get

nxn → 0(weighted αβ − st. convergent of order γ) on [a,b]. (5.8)

Now from relations (5.6) and (5.8), the right hand side of the relation (5.7), tends
to zero as n → ∞. Therefore, we have

lim
n→∞

An(x,ε)
anR

γ
n

= 0,

which proves that

n
[
n2Ln( f )− f (x)

] ∼ 1
2

(
x− x2) f

′′
(x)(weighted αβ − st. convergent of order γ)

on [a,b].

6. Concluding remarks

In this section we will give some remarks related to the results obtain in this paper
and their relationship with other results.

REMARK 6.1. Suppose that we replace the conditions (1) and (2) in Theorem 4.3
by the following condition:

Bn(xi)− xi = o(ani)(weighted αβ − st. convergent of order γ) on [a,b](i = 0,1,2).
(6.1)

Then, since

Bn(ψ2;x) = Bn(t2,x)−2xBn(t1,x)+ x2Bn(1,x),

we may write

Bn(ψ2,x) � K[|Bn(1,x)−1|+ |Bn(t,x)− t|+ |Bn(t2,x)− t2|],

where
K = 1+2||t||+ ||t2||.
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Now it follows from above relations and Lemma 4.2 that

δn =
√

Bn(ψ2) = o(dn)(weighted αβ − st. convergent of order γ)

on [a,b], where dn = min{an0 ,an1 ,an2}. Hence

ω( f ,dn) = o(dn)(weighted αβ − st. convergent of order γ)

on [a,b]. If those conditions which are given here we can use in Theorem 3.2, we can
thus see that, for all f ∈C[a,b],

Bn( f )− f = o(dn)(weighted αβ − st. convergent of order γ)

on [a,b]. Therefore, if we use the condition (6.1) in Theorem 4.3 instead of the condi-
tions (1) and (2), then we obtain the rates of the weighted αβ−st. convergent of order
γ of the sequence of positive linear operators in Theorem 3.2.
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