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Abstract. Let (pn) and (qn) be any two non-negative real sequences with

Rn :=
n

∑
k=0

pkqn−k �= 0 (n ∈ N).

And C1
n− Cesáro summability method. Let (xn) be a sequence of real or complex numbers and

set

Nn
p,qC

1
n :=

1
Rn

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv

for n∈N. In this paper, we present necessary and sufficient conditions under which the existence
of the limit st − limn→∞ xn = L follows from that of st − limn→∞ Nn

p,qC
1
n = L. These conditions

are one-sided or two-sided if (xn) is a sequence of real or complex numbers, respectively.

1. Introduction

Let (pn) and (qn) be any two non-negative real sequences with

Rn :=
n

∑
k=0

pkqn−k �= 0 (n ∈ N).

And (C,1)− Cesáro summability method. Let (xn) be a sequence of real or complex
numbers and set

Nn
p,qC

1
n :=

1
Rn

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv

for n∈N. In this paper, we present necessary and sufficient conditions under which the
existence of the limit limn→∞ xn = L follows from that of limn→∞ Nn

p,qC
1
n = L. These

conditions are one-sided or two-sided if (xn) is a sequence of real or complex numbers,
respectively.
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In what follows we give the concept of the summability method known as the
generalizedNörlund summability method (N, p,q) (see [1, 4]). Given two non-negative
sequences (pn) and (qn) , the convolution (p � q) is defined by

Rn := (p � q)n =
n

∑
k=0

pkqn−k =
n

∑
k=0

pn−kqk.

With (C,1)− we will denote the Cesáro summability method. Let (xn) be a sequence.
When (p � q)n �= 0 for all n ∈ N , the generalized Nörlund-Cesáro transform of the
sequence (xn) is the sequence Nn

p,qC
1
n obtained by putting

Nn
p,qC

1
n =

1
(p � q)n

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv. (1.1)

We say that the sequence (xn) is generalized Nörlund-Cesáro summable to L de-
termined by the sequences (pn) and (qn) or briefly summable Nn

p,qC
1
n to L if

lim
n→∞

Nn
p,qC

1
n = L. (1.2)

Suppose throughout the paper we assume that the sequences (qn) and (pn) are
satisfying the following conditions:

qn � 1,
n

∑
k=0

pk ∼ n, n ∈ N, (1.3)

qλn−k � 2qn−k,k = 0,1,2,3, · · · ,n;λ > 1, (1.4)

qn−k � 2qλn−k,k = 0,1,2,3, · · · ,λn;0 < λ < 1, (1.5)

where λn = [λ ·n], an ∼ bn, means that there are constants C,C1 such that an �Cbn �
C1an.

If
lim
n→∞

xn = L (1.6)

implies (1.2), then the method Nn
p,qC

1
n is called to be regular. However, the converse is

not always true. We can show by the following example

EXAMPLE 1.1. Let us consider that pn = qn = 1 for all n ∈ N. Also we define
the following sequence x = (xk) = (−1)k, then we have

1
n+1

∣∣∣∣∣
n

∑
k=0

1
k+1

k

∑
v=0

(−1)v

∣∣∣∣∣� 1
n+1

n

∑
k=0

1
k+1

k

∑
v=0

1 → 1 as n → ∞.

And as we know x = (xk), is not convergent.
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Notice that (1.6) may imply (1.2) under a certain condition, which is called a
Tauberian condition. Any theorem which states that convergence of a sequence follows
from its Nn

p,qC
1
n summability and some Tauberian condition is said to be a Tauberian

theorem for the Nn
p,qC

1
n summability method. The inclusion and Tauberian type theo-

rems are proved in the papers [4, 5, 2, 3], and some theorems of inclusion, Tauberian
and convexity type for certain families of generalized Nörlund methods are obtained in
[6].

In this section our aim is to find conditions (so-called Tauberian) under which
the converse implication holds, for defined convergence. Exactly, we will prove under
which conditions statistical convergence of sequences (xn), follows from statistically
Nörlund-Cesáro summability method.

DEFINITION 1.2. A sequence (xn) is weighted Nn
p,qC

1
n−statistically convergent

to L if for every ε > 0,

lim
n→∞

1
(p � q)n

∣∣∣∣∣
{

k � (p � q)n :

∣∣∣∣∣ 1
(p � q)n

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv −L

∣∣∣∣∣� ε

}∣∣∣∣∣= 0.

And we say that the sequence (xn) is statistically summable to L by the weighted
summability method Nn

p,qC
1
n , if st− limn Nn

p,qC
1
n = L. We denote by Nn

p,qC
1
n(st) the set

of all sequences which are statistically summable, by the weighted summability method
Nn

p,qC
1
n .

THEOREM 1.3. If sequence x = (xn) is Nn
p,qC

1
n summable to L, then sequence

x = (xn) is Nn
p,qC

1
n− statistically convergent to L. But not conversely.

Proof. The first part of the proof is obvious. To prove the second part we will
show this example:

EXAMPLE 1.4. We will define

xk =
{√

k , for k = n2

0 , otherwise

and pn = 1 = qn. Under this conditions we get:

1
n+1

∣∣∣∣∣
{

k � n+1 :

∣∣∣∣∣ 1
n+1

n

∑
k=0

1
Pk

k

∑
v=0

pvxv −0

∣∣∣∣∣� ε

}∣∣∣∣∣�
√

n+1
n+1

→ 0.

On the other hand, for k = n2, we have

1
n+1

n

∑
k=0

1
k+1

k

∑
v=0

xv → ∞, as n → ∞.

From last relation follows that x = (xn) is not Nn
p,qC

1
n summable to 0. �
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THEOREM 1.5. Let us suppose that sequence (xn)-statistically convergent to L,
and |xn −L| � M for every n ∈ N. Then it converges Nn

p,qC
1
n -statistically to L. Con-

verse is not true.

Proof. From fact that (xn) converges statistically to L, we get

lim
n→∞

|{k � n : |xk −L| � ε}|
n

= 0.

Let us denote by Bε = {k � n : |xk −L| � ε} and Bε = {k � n : |xk −L|� ε}. Then∣∣∣∣∣ 1
Rn

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv −L

∣∣∣∣∣=
∣∣∣∣∣ 1
Rn

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

(xv −L)

∣∣∣∣∣
� 1

Rn

n

∑
k=0
k∈Bε

pkqn−k
1

k+1

k

∑
v=0

|xv −L|+ 1
Rn

n

∑
k=0
k∈Bε

pkqn−k
1

k+1

k

∑
v=0

|xv −L|

�M
1
Rn

n

∑
k=0
k∈Bε

1+ ε � M
C2

n

n

∑
k=0
k∈Bε

1+ ε → 0+ ε, as n → ∞,

for some constant C2. To show that converse is not true we will use into consideration
this

EXAMPLE 1.6. Let us consider that (pn) = n+1, (qn) = 1 for n ∈ N∪{0}, and
we define the sequence x = (xn), as follows:

xk =

⎧⎨
⎩

1 , for k = m2−m, · · · ,m2−1
− 1

m , for k = m2,m = 2, · · ·
0 , otherwise

Under this conditions, after some calculations we get:∣∣∣∣∣ 2
(n+1)(n+2)

n

∑
k=0

1 ·
k

∑
v=0

xv −1

∣∣∣∣∣�
∣∣∣∣∣ 2
(n+1)(n+2)

n

∑
k=0

1 ·
k

∑
v=0

−1

∣∣∣∣∣→ 0, as n → ∞.

From last relation follows that x = (xn) is Nn
p,qC

1
n− summable to 1. Hence from

Theorem 1.5, (xn) is Nn
p,qC

1
n−statistically convergent. On the other hand, the sequence

(m2;m = 2,3 · · · ,) has natural density zero and it is clear that st − liminfn xn = 0 and
st− limsupn xn = 1. Thus, (xk) is not statistically convergent. �

2. Tauberian theorems under statistical Nörlund-Cesáro summability method

In the following theorem we characterize the converse implication when the sta-
tistically convergence follows from its Nn

p,qC
1
n− statistically convergence.
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THEOREM 2.1. Let (pn) and (qn) be two non-negative real sequences, defined
as above, and

st− liminf
n→∞

Rλn

Rn
> 1, for every λ > 1, (2.1)

where λn := [λn] denotes the integral part of λn for every n ∈ N, and let (xn) be a
sequence of real numbers which is Nn

p,qC
1
n− statistically convergent to a finite number

L. Then (xn) is st -convergent to the same number L if and only if the following two
conditions hold:

inf
λ>1

lim
n

sup
1
Rn

∣∣∣∣∣
{

k � Rn :
1

Rλk
−Rk

λk

∑
j=k+1

p jqλk− j
1

j +1

k

∑
v=0

(x j − xk) � −ε

}∣∣∣∣∣= 0,

(2.2)
and

inf
0<λ<1

lim
n

sup
1
Rn

∣∣∣∣∣
{

k � Rn :
1

Rk −Rλk

k

∑
j=λk+1

p jqk− j
1

j +1

k

∑
v=0

(xk − x j) � −ε

}∣∣∣∣∣= 0.

(2.3)

REMARK 2.2. Let us suppose that st− limk xk = L ; (xn) is Nn
p,qC

1
n− statistically

convergent and relation (2.1) satisfies, then for every t > 1, is valid the following rela-
tion:

st − lim
k

1
Rλk

−Rk

λk

∑
j=k+1

p jqλk− j
1

j +1

k

∑
v=0

(x j − xk) = 0 (2.4)

and in case where 0 < t < 1,

st− lim
k

1
Rk −Rλk

k

∑
j=λk+1

p jqk− j
1

j +1

k

∑
v=0

(xk − x j) = 0. (2.5)

In the next result we will consider the case where x = (xn) is a sequence of com-
plex numbers.

THEOREM 2.3. Let condition (2.1) be satisfied and let (xn) be a sequence of com-
plex numbers which is Nn

p,qC
1
n summable to a finite number L. Then (xn) is convergent

to the same number L if and only if one of the following two conditions holds:

inf
λ>1

lim
n

sup
1
Rn

∣∣∣∣∣
{

k � Rn :

∣∣∣∣∣ 1
Rλk

−Rk

λk

∑
j=k+1

p jqλk− j
1

j +1

k

∑
v=0

(x j − xk)

∣∣∣∣∣� ε

}∣∣∣∣∣= 0,

(2.6)
and

inf
0<λ<1

lim
n

sup
1
Rn

∣∣∣∣∣
{

k � Rn :

∣∣∣∣∣ 1
Rk −Rλk

k

∑
j=λk+1

p jqk− j
1

j +1

k

∑
v=0

(xk − x j)

∣∣∣∣∣� ε

}∣∣∣∣∣= 0.

(2.7)
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In what follows we list some auxiliary lemmas which are needful in the sequel.

LEMMA 2.4. The condition given by relation (2.1) is equivalent to the condition

st− liminf
n→∞

Rn

Rλn

> 1, 0 < λ < 1. (2.8)

Proof. Suppose that relation (2.1) is valid, 0 < λ < 1 and m = λn = [λn], n ∈ N.
Then it follows that

1
λ

> 1 ⇒ m
λ

=
[λn]

t
� n.

From above relation and definition of the sequences (pn) and (qn), we obtain:

Rn

Rλn

�
R[m

λ ]
Rλn

⇒ st− liminf
n→∞

Rn

Rλn

� st− liminf
n→∞

R[m
λ ]

Rλn

> 1.

Conversely, suppose that relation (2.8) is valid. Let λ > 1 be given number and let λ1

be chosen such that 1 < λ1 < λ . Set m = λn = [λn]. From 0 < 1
λ < 1

λ1
< 1, it follows

that:

n � λn−1
λ1

<
[λn]
λ1

=
m
λ1

,

provided λ1 � λ − 1
n , which is a case where if n is large enough. Under this conditions

we have:

Rλn

Rn
� Rλn

R[ m
λ1

] ⇒ st− liminf
n→∞

Rλn

Rn
� st− liminf

n→∞

Rλn

R[ m
λ1

] > 1. �

PROPOSITION 2.5. Let us suppose that relation (2.1) is satisfied and let x = (xk)
be a sequence of complex numbers which is Nn

p,qC
1
n−statistically convergent to L. Then

st− lim
n

1
Rλn −Rn

λn

∑
j=n+1

p jqtn− j
1

j +1

j

∑
v=0

xv = L, for λ > 1 (2.9)

and

st− lim
n

1
Rn−Rλn

n

∑
j=λn+1

p jqn− j
1

j +1

j

∑
v=0

xv = L, for 0 < λ < 1. (2.10)

Proof. (I) Let us consider the case where λ > 1. Then we obtain

1
Rλn −Rn

λn

∑
k=n+1

pkqλn−k
1

k+1

k

∑
v=0

(xv −L)

=
Rλn

Rλn−Rn

1
Rλn

λn

∑
k=0

pkqλn−k
1

k+1

k

∑
v=0

(xv−L)− Rn

Rλn−Rn

1
Rn

n

∑
k=0

pkqλn−k
1

k+1

k

∑
v=0

(xv−L)
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=
Rλn

Rλn −Rn

1
Rλn

λn

∑
k=0

pkqλn−k
1

k+1

k

∑
v=0

(xv −L)

− Rn

Rλn −Rn

1
Rn

n

∑
k=0

pk(qλn−k +qn−k−qn−k)
1

k+1

k

∑
v=0

(xv −L)

=
Rλn

Rλn−Rn

1
Rλn

λn

∑
k=0

pkqλn−k
1

k+1

k

∑
v=0

(xv−L)− Rn

Rλn−Rn

1
Rn

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

(xv−L)

− Rn

Rλn −Rn

1
Rn

n

∑
k=0

pk(qλn−k −qn−k)
1

k+1

k

∑
v=0

(xv −L). (2.11)

From relation (2.11), definition of the sequence (qn), and relation

lim
n

sup
Rλn

Rλn −Rn
< ∞,

we get relation (2.9).
(II) In this case we have that 0 < λ < 1. Then

1
Rn −Rλn

n

∑
k=λn+1

pkqn−k
1

k+1

k

∑
v=0

xv

=
Rn

Rn −Rλn

1
Rn

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv − Rλn

Rn−Rλn

1
Rλn

λn

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv

=
Rn

Rn −Rλn

1
Rn

n

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv − Rλn

Rn−Rλn

1
Rλn

λn

∑
k=0

pkqn−k
1

k+1

k

∑
v=0

xv

− Rλn

Rn−Rλn

1
Rλn

λn

∑
k=0

pk(qn−k −qλn−k)
1

k+1

k

∑
v=0

xv.

Now proof of the proposition is similar to the first part. �
Proof of Theorem 2.1.
Necessity. Suppose that limn→∞ xn = L, and (2.1) holds. Following Proposition

2.5, we have

lim
n→∞

1
Rλn −Rn

λn

∑
k=n+1

pkqλn−k
1

k+1

k

∑
v=0

(xv − xn)

= lim
n→∞

{(
1

Rλn −Rn

λn

∑
k=n+1

pkqλn−k
1

k+1

k

∑
v=0

xv

)
− xn

}
= 0,

for every λ > 1. In case where 0 < λ < 1, we find that

lim
n→∞

1
Rn−Rλn

n

∑
k=λn+1

pkqn−k
1

k+1

k

∑
v=0

(xn − xv)
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= lim
n→∞

{
xn−

(
1

Rn−Rλn

n

∑
k=λn+1

pkqn−k
1

k+1

k

∑
v=0

xv

)}
= 0.

Sufficiency. Assume that conditions (2.2) and (2.3) are satisfied. In what follows
we will prove that limn→∞ xn = L. Given any ε > 0, by relation (2.2) we can choose
λ1 > 0 such that

liminf
n→∞

1
Rλn1

−Rn

λn1

∑
k=n+1

pkqλn−k
1

k+1

k

∑
v=0

(xv − xn) � −ε, (2.12)

where λn1 = [λ1n]. By the assumed summability Nn
p,qC

1
n of (xn), Proposition 2.5 and

relation (2.12), we have
limsup

n→∞
xn � L+ ε, (2.13)

for any λ > 1.
On the other hand, if 0 < λ < 1, for every ε > 0, we can choose 0 < λ2 < 1 such

that

liminf
n→∞

1
Rn−Rλn2

n

∑
k=λn2+1

pkqn−k
1

k+1

k

∑
v=0

(xn− xv) � −ε, (2.14)

where λn2 = [λ2n]. By the assumed summability Nn
p,qC

1
n of (xn), Proposition 2.5 and

(2.14), we have

liminf
n→∞

xn � L− ε, (2.15)

for any 0 < λ < 1.
Since ε > 0 is arbitrary, combining relations (2.13) and(2.15) we obtain

lim
n→∞

xn = L. �

Proof of Theorem 2.3.
Necessity. If both (1.2) and (1.6) hold, then Proposition 2.5 yields (2.6) for every

λ > 1 and (2.7) for every 0 < λ < 1.
Sufficiency. Suppose that (1.2), (2.1) and one of the conditions (2.6) and (2.7) are

satisfied. For any given ε > 0, there exists some λ1 > 1 such that

limsup
n→∞

∣∣∣∣∣∣
1

Rλn1
−Rn

λn1

∑
k=n+1

pkqλn1−k
1

k+1

k

∑
v=0

(xv − xn)

∣∣∣∣∣∣� ε,

where λn1 = [λ1n]. Taking into account fact that (xn) is Nn
p,qC

1
n summable to L and

Proposition 2.5, we get the following estimation

limsup
n→∞

|L− xn| � lim
n→∞

sup

∣∣∣∣∣∣L−
1

Rλn1
−Rn

λn1

∑
k=n+1

pkqλn1−k
1

k+1

k

∑
v=0

xv

∣∣∣∣∣∣
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+ limsup
n→∞

∣∣∣∣∣∣
1

Rλn1
−Rn

λn1

∑
k=n+1

pkqλn1−k
1

k+1

k

∑
v=0

(xv − xn)

∣∣∣∣∣∣� ε.

For any given ε > 0, there exists some 0 < λ2 < 1 such that

limsup
n→∞

∣∣∣∣∣∣
1

Rn −Rλn2

n

∑
k=λn2+1

pkqn−k
1

k+1

k

∑
v=0

(xn− xv)

∣∣∣∣∣∣� ε,

where λn2 = [λ2n]. Taking into account the fact that (xn) is Nn
p,qC

1
n summable to L and

Proposition 2.5, we obtain the following

limsup
n→∞

|L− xn| � limsup
n

∣∣∣∣∣∣L−
1

Rn −Rλn2

n

∑
k=λn2+1

pkqn−k
1

k+1

k

∑
v=0

xv

∣∣∣∣∣∣
+ limsup

n→∞

∣∣∣∣∣∣
1

Rn−Rλn2

n

∑
k=λn2+1

pkqn−k
1

k+1

k

∑
v=0

(xn − xv)

∣∣∣∣∣∣� ε.

Since ε > 0 is arbitrary, in either case we get limn→∞ xn = L. �
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