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EQUIVALENT STATEMENTS OF A HILBERT-TYPE
INTEGRAL INEQUALITY WITH THE EXTENDED
HURWITZ ZETA FUNCTION IN THE WHOLE PLANE

AIZHEN WANG AND BICHENG YANG*

(Communicated by Y.-H. Kim)

Abstract. By using the way of real analysis and the weight functions, a few equivalent statements
of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are
obtained. The constant factor related the extended Hurwitz zeta function is proved to be the
best possible. As applications, a few equivalent statements of a Hilbert-type integral inequality
with the homogeneous kernel in the whole plane are deduced. We also consider the operator
expressions and some corollaries.

1. Introduction

Suppose that f(x), g(y) =0, 0 < [5° f2(x)dx < oo and 0 < [ g*(y)dy < . We
have the following Hilbert’s integral inequality (see [1]):

[ /: %giy)dx‘ly < (/waz(X)dX/:gz(y)dy) % : (1)

with the best possible constant factor w. By means of the weight functions, some
extensions of (1) were given by [2], [3]. A few Hilbert-type inequalities with the ho-
mogenous and nonhomogenous kernels were provided by [4]-[9]. In 2017, Hong [10]
also gave two equivalent statements between a Hilbert-type inequalities with the ho-
mogenous kernel and parameters. Some other kinds of Hilbert-type inequalities were
obtained by [11]-[15].

In 2007, Yang [16] gave a Hilbert-type integral inequality in the whole plane as

follows:
> = fx)gly)
/_.x, /_oo (14 extr) ddy

< B(%, %) (/_ieMf2(x)dx/:elyg2(}’)dY) : ; @)
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with the best possible constant factor B(%, %) (A >0, B(u,v) is the beta function) (see
[17]). He et al. [18]-[28] proved a few Hilbert-type integral inequalities in the whole
plane with the best possible constant factors.

In this paper, by means of the way of real analysis and the weight functions, a few
equivalent statements of a Hilbert-type integral inequality with the nonhomogeneous
kernel in the whole plane similar to (2) are obtained. The constant factor related to the
extended Hurwitz zeta function is proved to be the best possible. As applications, a
few equivalent statements of a Hilbert-type integral inequality with the homogeneous
kernel in the whole plane are deduced. We also consider the operator expressions and
some corollaries.

2. An example and two lemmas

EXAMPLE 1. For v > 0, we set H(u) := inaf?(mingu,1)**P (u>0), and for

T juAte—1)(max{u,1})P
a,b#0,

jaxx + by|(min{e“ >, 1)+
e+ (@+b) _ {|(max{e®ty, 1})B’

H(e™ ) = (x,y €R). 3)

For 6, 4> —o—f, o+u=A> —a, it follows that H(v~')y~179 = H(v)y#~!
(0<v<l), and

k(o) := /ONH(u)u"‘ldu = /OlH(u)(u"—1 +ut ) du

U (=Inu)?(min{u, 1})*+B
1 —ur+o) (max{u,1}P

I

_ /1 (—ln“)y(ua+ﬁ+a—1+ua+ﬁ+pf1>du
o 1
)

(' +utNdu

(—Inu)? 2 uk()t+a)(ua+/3+o—1 + ua+ﬁ+“_1)du.
k=0

By Lebesgue term by term integration theorem (cf. [29]), setting v = —Inu, we find
o ol
k;L(O') _ z/ (_lnu)y[uk(k+a)+a+ﬁ+0—l+uk(l+a)+a+[3+u—l}du
k=070

_ i/‘” VI {e Ot toctBroly y olkAto)tatBuly) gy
k=070

1 1
~ o e_’dtkz;){[k(l+a)+oc+ﬁ+o]7’“ * [k(l+a)+a+ﬁ+u]7’“}

= @t (S ) e )
R, o)
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where, T'(s) := [57t*"le7'dt (Res > 0) is the gamma function, and

=3 g

(Res>1; ¢>0)
is the extended Hurwitz zeta function (Note. for 0 < ¢ < 1, {(s,c) is called the Hurwitz
zeta function (cf. [17])).

In particular, (i) for oo = 0, we have 6, u > -, co+u =41 >0, H(u) =

ul? (min{u,11)P
\Ll;fll \((nnlqjj{g,ll}}))ﬂ (u>0), and

A G R )]

[Inu|”(min{u,1})*
‘M7L+a 1

(ii) for f =0, wehave 6, U > —o, o+ U =21 > —0, Hy(u) =
(u>0), and

(90 LD (511, 0 (o1 £28)),

|Inu|?(max{u,1})*
Wwa 1]

(iii) for = —a, wehave 6, u >0, c+u =21 > —a, H3(u) =
(u>0), and

o) =g (501 5) +e (e ) ).

|inul?
Ju* 1]

(oS e(ro1.9) relro1.)

In the following, we assume that p > 1, ;—7+}1:1,a,b7é0, 01,0 ER=(—00 ),
y>0,0,u>—-a—,c+u=41>—c, and

In (iii), for ¢ =0, wehave 6, 4 >0, 6 +u =21 > 0,Hs(u) = (u>0), and

1 K (0) = T(y+1)
la Va[p[17e™ 0 Jal Valp] Ve (3 + a7t

[l ) ) o

K (G) =

For n e N={1,2,...}, we define E. := {r € R;er > 0}, F. := {t € R;ct <0}
(¢ = a,b), and the following two expressions:

Il ::/ 6(0'1+qn)hy |: H(eax+by)e( pn) dx:| dy, (6)
B Eq

b
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bo— / e(ol,;n>by[ H (0 09)el o 7)o dx} dy.
Ep F,

Setting u = ¢®*? in (6), by Fubini theorem (cf. [29]), it follows that
1
elo1—

)by< wH 1du) dy
T s (u”

|ab|/ yo1=0+5 -1 (/ H(u l"ldu>a'v (v=e").

In the same way, we find that

1
12:ﬂ —o-3) (/ H(u l"1du>dy
a E,,
1 ® o—o_Ll_ v 1
=— [ Vo1 9 1(/Huu(”rl’" du)dv.
\ab|/1 [ Hw)

I =

)

®)

€))

LEMMA 1. Ifthere exists a constant M, such that for any nonnegative measurable

Sunctions f(x) and g(y) in R, the following inequality
= [ [ HE ) r@gly)dxdy
oo p 1 ) q L
<[ (&) o [L(55) ]
—eo \ €O —o \ €017
holds true, then we have 6| = ©.

Proof. 1t o) < o, then for n > G%GI (n € N), we set two functions

(0—-Lyax 0 cE

_)e  mT xeck, L ) y b
X) = 5 = L )

ful) { 0, x€F, 80) {e(“1+czln)”y,yer

and find
1 1
o 5 o 7
b = </ 6176‘”‘f,f(x)dx> </ e qolby ( )dy)
1 1
_ax P by q n
= (fetar) () ) = PRORIC

By (6), (8) and (10), we have

1! > 1
m/ vol*mr#ldv/ Hu)u® 7 du
a 0 1

o e M
sh= / / H(e™ ™) f,(x)gn(y)dxdy < M, = .

PEEDRG

(10)

(1)



EQUIVALENT STATEMENTS OF A HILBERT-TYPE INTEGRAL INEQUALITY 1043

(nEN) — 041 <0, it follows that f) vo1=0F5~1dy = co,

77 < °°, whichis

Since for any n > ——
du> 0, by (11), we find that oo W

o— G

In view of [;"H (u)u®~
a contradiction.

If o1 > o, then for n > ﬁ

~ 0, x€eE _ (01— )by
= A e
e 0, veF,

(n € N), we set functions

Tl =9 orer

and find

B ([ ereeitar) : ([ emmamomay)

—oo

n

< ([ era) ([ et -
S \RY) U TY) T aee)e

By (9) and (10), we have

1 “ 6—o-11 ! ot+L—1
W/v1 ndv/H(u)u = du
M,
- (12)

ux+hy
<b= //H Vo ()8 (v)dxdy < M = T

== 3

—o—1>0, it follows that [°v1 =%~ 1dy = oo,

< oo, which is a

Since for n > 6 = (neN), oy
1
By (12), in view of [} H(u)u® 7 du > 0, we have e < W}‘ZW

contradiction.
Hence, we conclude that o1 = ©.

The lemma is proved. [

For 01 = o, we have

LEMMA 2. Ifthere exists a constant M, such that for any nonnegative measurable

Sunctions f(x) and g(y) in R, the following inequality

1= [ [ HE g0y
wlLE@YL L) e

holds true, then we have M > K; (¢)(> 0).
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Proof. By (8), for ) = 0, we obtain

= L[ l*( IH( o m g )d
= — yn uu n u v
"7 Jab] Jo y

! “ o—L_1
+W Vi 1H(u)u = du | dv
Al ([ e

| b\/ H(u lfldu
a

= (/ H(uu du+/ H(u ’1"1du).

We use inequality [} < MJ~2 (when o] = o) as follows

L=t /IH( W ta g +/°°H( Py’
" 1= \ab| o uu u . uu u

M

S |la|V/P|b|Va s

By Fatou lemma (cf. [29]) and (14), we find

1 ! . o+L—1 <. o—L_1
K}L((y)_W(/o ,}E{LH(“)“ ndu+ 1 nlgroloH(u)u P du
1p|p|1/a
< h_mn*)ooi‘a| | ‘ I <
n

The lemma is proved. [

3. Main results and some corollaries

THEOREM 1. If M is a constant, then the following statements (i), (ii) and (iii)
are equivalent:
(i) For any nonnegative measurable function f(x) in R, we have the following

inequality:
. ; -
J = [/ ePo1by (/ H(e”“”by)f(x)dx) dy}

< M[/_O; (%)pdx];. (15)

(ii) For any nonnegative measurable functions f(x) and g(y) in R, we have the



EQUIVALENT STATEMENTS OF A HILBERT-TYPE INTEGRAL INEQUALITY 1045

following inequality:

1= [ [ H ) ey

<u[[” (ggg)"dxy (2 )"dy]% 6

(iii) 6y = 6, and M > K; (6)(> 0).

Proof. (i) = (ii). By Holder’s inequality (see [30]), we have
1= [ (e [~ e ar) (¢ 20e0) ay
1
o a 13
<J[/m<f£%> dy] . a7)

Then by (15), we have (16).

(ii) = (iii). By Lemma 1, we have 0; = 0. Then by Lemma 2, we have
M=K, (o)(>0).

(iti) = (i). Setting u = ¢® % we obtain the following weight functions: For
xR,

(G y) _ eoby/ H ax+by) Gaxdx

w/ H(u)u®~ 1du_mkl( ), (18)

o(0,x) = eoax/_NH(eaHby)eGbydy— m 2 (0). (19)

By Holder’s inequality with weight and (18), we have

( " H (e f(x)dx) ’

oo wth ecby/p ecax/q P
,(X,H(e ") eﬁw/qf(x) eoby/p dx

oo £0ax r/q
< / H(e™ ) m,,/qf” dX< / H(e™ ™) dx)

eobya/p

= [w(e.y)e7e] r [ MH(eaHby)e;x—m 7 (x)dx

- (im(o))ple””y [ ) S o 20)

eGaXP/ q
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For 01 = 0, by Fubini theorem (see [29]) and (19), we have

< (%kﬂc)) % ( / ) / iH(e””by)ejZ;y/q fp(x)dxdy);’
[/ ([ e a7 ]

_ (%kﬂo)) " ( | olegeroe fp(x)dx) ’
— K,(0) ( L i ¢ PO fl’(x)dx> :

For K; (0) < M, we have (15).
Therefore, the statements (i), (ii) and (iii) are equivalent.
The theorem is proved. [J

Il
7 N
=

Ky
a
~~_

=

THEOREM 2. The following statements (i) and (ii) are valid and equivalent:
(i) For any f(x) >0, satisfying 0 < [~ (egfx> dx < e, we have the following
inequality:

1

5 { [ o [ I jax -+ by|"(min{e™ 7, 1) P £ (x) dxrdy}ﬁ

o [eAta)(axtby) _ 1|(max{ex+ty 1})P

—oo

x| [ (1) a]" o

(ii) For any f(x) > 0, satisfying 0 < [ <eg§2> dx < oo and g(y) > 0, satisfying

0< 7, ( W) ) dy < oo, we have the following inequality:

e0by

A g Gl
|e (A+o)(ax+by) _ 1‘(max{eax+by 1})

< Ki(0) [/_Z (iﬁfﬁ)pdx]; [/_i (%)qdy];- (22)

Moreover, the constant factor K; () in (21) and (22) is the best possible.
In particular, for c = =0, o, u >0, o+ u=2,

5/ (X)g(y)dxdy

I?;L(G)::%(C(y+l,x>+l(y+1%>> (23)

we have the following equivalent inequalities with the best possible constant factor
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K (0):
“ po = |lax+by|"f(x) 17 1
{/—Nep by |:/_w de] dy}
<Ko [/“’ (%)pdx} " (24)
by|"
/ / |eA( |aijbyy|_ 1|f (x)g(v)dxdy

k@[ () o] [ (s e

Proof. We first prove that (21) is valid. If (20) takes the form of equality for a
vy € R, then (see [30]), there exists constants A and B, such that they are not all zero,
and

eoby ecmx
» et .
(mxp/qf (x) = Gbyq/p a.e.inR.
We suppose that A # 0 (otherwise B=A = 0). Then it follows that

r B
<@> = e_qobyz a.e.inR,

eGllx

which contradicts the fact that 0 < [ <em2> dx < o=, Hence, (20) takes the form of

strict inequality. For o1 = o by the proof of Theorem 1, we obtain (21).
(i) = (ii). By (17) (for 61 = ¢) and (21), we have (22).
(ii) = (i). We set the following function:

sty i=er ([T sar) e r)

If J; = oo, then it is impossible since (21) is valid; if J; =0, then (21) is trivially valid.
In the following, we suppose that 0 < J; < eo. By (22), we have

0< /_i (ié—ii)%y:]{’:l
s [ (52) o] [L () o] <~
0[] () ] <mo [ (22)'a]

namely, (21) follows, which is equivalent to (22).
Hence, statements (i) and (ii) are valid and equivalent.
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If there exists a constant M < K (o), such that (22) is valid when replacing K, (o)
by M, then by Lemma 2, we have K, (o) < M. Hence, the constant factor M = K (o)
in (22) is the best possible.

The constant factor K (6) in (21) is still the best possible. Otherwise, by (17)
(for 01 = o), we would reach a contradiction that the constant factor K, (o) in (22) is
not the best possible.

The theorem is proved. [J

For g(y) = e *G(y), and p; = A — o] in Theorem 1 and Theorem 2, then re-
placing b (rep. G(y)) by —b (rep. g(y)), setting

|ax — by|?(min{e®, ¢?}) @+
le (A+a)ax _ o(A+a) hy‘(max{eax bv})

K (e,e”) = (ryeR),  (26)
we have the following corollaries:

COROLLARY 1. If M is a constant, then the following statements (i), (ii) and (iii)
are equivalent:

(i) For any nonnegative measurable function f(x) in R, we have the following
inequality:

[ /_ : oPHIbY ( /_ ': K (e%%, ) f(x)dx)pdy] ’
<M[/°; (%)pdxr. @7)

(ii) For any nonnegative measurable functions f(x) and g(y) in R, we have the

following inequality:
| [ Kate e fgdsay

[ (Al [ () el e

(iii) uy = U, and M > K, (6)(> 0).

Proof. Replacing b by —b, we obtain
jax — by|"(min{e® ", 1})**P
‘e(lJrot)(uxfhy) _ 1‘(max{eux7hy, 1})[5
lax — by|?(min{e®, bv})O&Fﬁefb(aJrﬁ M
e(A+0)(=by) | g(A+a)ax _ o(A+0a)by (max{e®, hy})/}e—bﬁv
B |ax — by|Y(min{e®, bv})aﬂie—b (a+B)y
6(7L+a)(—by)|e(7t+a)ax e(A+a) by‘(max{eux hy})ﬁefbﬁv

= MK (67, e).

H(eax—by) _
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For u; = A — o1, we have

. - P

/ ¢~ PO1by (/ e’lhy[(l(e“",eby)f(x)dx) dy}

- i b 1

_ / e—pclby+p)tby (/ K, (eax’eby)f(x)dx) dy:|
- n P13

_ / ePH1by (/ K; (e, eby)f(x)dx) dy} .

Then (15) (replacing b by —b) reduces to (27). Since for y; = A — oy,
/,N /, " H(em ) f(x)g(y)dxdy
N /_N /_N VK (e, ¢”) f(x)g(y)dxdy
B /_°° /_‘” Ky (¢™,e”) f(x)G(y)dxdy,
- o [ o=Ab q _
L)L) o [ (38
then replace G(y) by g(y), (16) (replacing b by —b) reduces to (28).

Hence, by Theorem 1, we have Corollary 1.
The corollary is proved. [

COROLLARY 2. The following statements (i) and (ii) are valid and equivalent:
(i) For any f(x) >0, satisfying 0 < [~ (egfx> dx < oo, we have the following
inequality:

1
o oo _ Y(ni ax ,by1\o+f r P
[ o[ [ o bty by, 7
e i ‘e(l-&-a)ax _ e(l+a)by‘(max{eax,eby})[3

ko[ (1) o] 2

(ii) For any f(x) >0, satisfying 0 < [~ (egfx> dx < oo, and g(y) > 0, satisfying

0< ™, < uiy> dy < oo, we have the following inequality:

[ [l bitminien P 80)

|e (Ata)ax _ p(A+a) by|(max{eax eby})

<k [ (L) ] [ (2)"a]" o
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Moreover, the constant factor K, (o) in (29) and (30) is the best possible.
In particular, for o = =0, o, U > 0, we have the following equivalent inequal-
ities with the best possible constant factor K; (0):

[ [ e ( = f@dx)”dy} '
ko[ (12) ] o

byl?
/ / |ef:<_eylby|f(X)g(y)dxdy

< Ki(o) [/Z (iﬁfﬁ)pdx]; [/i (%)qdy];- (32)

In (24) and (25), setting F'(x) = e f(x), G(y) = e%yg(y), then replacing back
F(x) (G(y)) by f(x) (g(y)), and introducing the hyperbolic sine function as sinh(s) =

S__,—S
=, we have

COROLLARY 3. The following statements (i) and (ii) are valid and equivalent:
(i) For any f(x) >0, satisfying 0 < [7 {e(%’c)‘”‘f(x)rdx < oo, we have the
following inequality:

boN L
gy = by|? '
eP(0—5)by / LJC x)dx| dy
{/w l | sinh (252 )

< 2K, (o) {/Z [e@—“)”f(x)]pdx}p . (33)

(ii) For any f(x) > 0, satisfying 0 < [~ {e(%_")“"f(x)rdx < oo and g(y) 20,
satisfying 0 < [*, [e(%"’)hyg(y)] qdy < oo, we have the following inequality:

/ / |ax+by| ——————f(x)g(y)dxdy

| sinh( ax+by))|

< 21?,1(0){/1 [e(gg)“xf(x)]pdx}% {/‘: {e(%c)byg(y)}qdy}i. 34

Moreover, the constant factor 2K, (6) in (33) and (34) is the best possible.
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4. Operator expressions
We set the following functions: @(x) := e P%, y(y) := e~ 9% ¢(y) 1= e by

wherefrom, y!=P(y) = ePo%, ¢!=P(y) = ePHPY (x,y € R), and define the following
real normed linear spaces:

Lyo(R):= {f: llne=( [ Z<p<x>f<x>|f’dx)‘l’ < w},

wherefrom,
{ S URELE >|qdy)$<oo},
{ S URE >|qdy)l<oo},

Ly {h |h|,,wlp—(/ v h<y>|de)%<oo},

Lygrs(R) = {h o= ([ " rOOIay) " < w}.

(a) In view of Theorem 2, for f € L, ,(R), setting
)i= [ HE M) f(0dx (e R),

by (21), we have

1
e = ([ v 00) <K@l <= 69

DEFINITION 1. Define a Hilbert-type integral operator with the nonhomogeneous
kernel T : L, o(R) — Lp yi-»(R) as follows: For any f € L, ¢(R), there exists a

unique representation 71 f = H| € L, 1-»(R), satisfying for any y € R, TW f(y) =
Hi(y).

In view of (35), it follows that
T £ yior = HL ] y1-r < K2 (0)]1£]]p.g,

and then the operator 7! is bounded satisfying

1) B
ITM|| = sup M<Kx(0)-
F#0)eLpo® b
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If we define the formal inner product of T £ and g as follows:

150 = [~ ([ He ) ax) st
then we can rewrite Theorem 2 as follows:

THEOREM 3. The following statements (i) and (ii) are valid and equivalent:
(i) For any f(x) >0, f € L, (R), satisfying ||f||p,p > 0, we have the following
inequality:
TN 1l pgr-0 < Ka(0)]1f]]p.p- (36)

(ii) For any f(x),g(y) 20, f €Ly ¢(R), g € Ly y(R), satisfying ||f||p.p >0, and
l|gllg.y > 0, we have the following inequality:

(T f,8) < K ()| f]lp.0llg]lay- 37)

Moreover; the constant factor Ky (o) in (36) and (37) is the best possible, namely,

170 = K (o).

(b) In view of Corollary 2, for f € L, »(R), setting

m)i= [ K. Wy eR),

by (29), we have

el or = | [0 0 0ID] <K@ flg <= 39

DEFINITION 2. Define a Hilbert-type integral operator with the homogeneous
kernel T?): L, »(R) — »ot-»(R) as follows: For any f € L), o(R), there exists a

unique representation T3 f = Hy € L,, 41-(R), satisfying for any y € R, T?f(y) =
Hy(y).

In view of (38), it follows that
HT(Z)JCHP,W*P = Ha|], 510 < Ka(0)|[ .-
and then the operator T2) is bounded satisfying

|‘T(2)f| ‘p7¢l*I’

7@ =
(F£0)cLpo®)  1f1lpo

gK;L(G).

If we define the formal inner product of T f and g as follows:

11.0) = [ ([ Katem e 0ar) ey,

then we can rewrite Corollary 2 as follows:
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COROLLARY 4. The following statements (i) and (ii) are valid and equivalent:
(i) For any f(x) 20, f €L, o(R), satisfying ||f||p.o > 0, we have the following

inequality:

and

1Tl 10 < Ka ()11l 9

(ii) For any f(x), g(y) 20, f € Lyo(R), g € Ly ¢(R), satisfying ||f||p,p >0,
||gllg,6 > 0, we have the following inequality:

(1?f,8) <Ki(0)|fllpllel

Moreover, the constant factor K (6) in (39) and (40) is the best possible, namely,

b (40)

IT®|| =K (o).
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