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FOR MARTINGALE HARDY–LORENTZ AND BMO SPACES

REN YANBO
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Abstract. This paper is devoted to the study of real interpolation between martingale Hardy-
Lorentz and BMO spaces in the framework of interpolation with a function parameter. We
first establish some inequalities for the sharp functions of martingales. With the aid of these
inequalities, some new interpolation theorems which generalize some fundamental interpolation
theorems in classical martingale Hp theory are proved. In particular, we show that

(Hs
p0 ,q0

,BMO2)ρ,q = Λs
q(t

1
p0 /ρ(t

1
p0 )),

where 0 < p0 < ∞ , 0 < q0,q � ∞ and ρ ∈ Q(0,1) .

1. Introduction and preliminaries

As is well-known, interpolation theory has been applied as a powerful tool in many
branches of mathematics, such as partial differential equations, numerical analysis and
approximation theory. In classical interpolation theory, one of important results is real
interpolation between the classical Hardy and BMO spaces. It was proved by Hanks
[1] and Bennett, Sharpley [2] that

(Hp0,q0 ,BMO)θ ,q = Hp,q,
1
p

=
1−θ

p0
,

0 < θ < 1, 0 < p0 < ∞, 0 < q0,q � ∞.

In classical martingale Hp theory, a fundamental interpolation theorem corresponding
to the above result was due to Weisz [3]. He proved that real interpolation spaces
between martingale Hardy-Lorentz and BMO spaces are martingale Hardy-Lorentz
spaces:

(Hs
p0,q0

,BMO2)θ ,q = Hs
p,q,

1
p

=
1−θ

p0
,

0 < θ < 1, 0 < p0 < ∞, 0 < q0,q � ∞.
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The purpose of this paper is to make a study of real interpolation between martin-
gale Hardy-Lorentz and BMO spaces in the framework of interpolation with a function
parameter. Interpolation with a function parameter is one of interesting and attractive
fields in the study of interpolation theory. The theory of interpolation space (X0,X1)ϕ,q

with a function parameter ϕ(t) is an extension of the theory of interpolation space
(X0,X1)θ ,q originated from Lions and Peetre [4]. It was derived from the work of
Kalugina [5] and was systematically developed by Gustavsson [6], Janson [7], Merucci
[8], Persson [9] and so on. In the theory of interpolation with a function parameter,
there are four important function classes, namely, BK , Bψ , P+− and Q(a0,a1) . It was
proved by Gustavsson [6] that Bψ ⊂ BK and that if f ∈ BK , then there exists a function
g ∈ Bψ such that f is equivalent to g . Persson [9] proved that Bψ ⊂ Q(0,1) ⊂ P+−
and that if ϕ ∈ P+− , then there exists a function ψ ∈ Bψ such that ϕ is equivalent
to ψ . From these relationships, one can find that real interpolation with a function
parameter belonging to BK , Bψ or P+− can be transferred to real interpolation with
a function parameter belonging to Q(0,1) . For this reason, in this paper, we will only
consider real interpolation with a function parameter belonging to Q(0,1) for martin-
gale Hardy-Lorentz and BMO spaces.

Interpolation of martingale spaces is one of the main parts in martingale Hp the-
ory, and its theory has been successfully applied to Fourier analysis. More and more
attentions have been paid to this topic in recent years, for example see [19, 20, 21, 22].
We have studied real interpolation with a function parameter belonging to Q(0,1) for
Lorentz martingale spaces in [23], and for martingale Hardy and BMO spaces in [24].
However, there is still an unsolved problem in [24]. That is, does Theorem 4.1 in [24]
still hold for 0 < p � 1? In this section, we will give an affirmative answer. Moreover,
real interpolation with a function parameter belonging to Q(0,1) for martingale Hardy-
Lorentz and BMO spaces is identified. These interpolation theorems generalize some
fundamental interpolation theorems in classical martingale Hp theory (see [3]). In this
paper, we first establish some inequalities for the sharp functions of martingales. With
the aid of these inequalities, some new interpolation theorems which generalize some
fundamental interpolation theorems in classical martingale Hp theory are proved. In
particular, we show that

(Hs
p0,q0

,BMO2)ρ ,q = Λs
q(t

1
p0 /ρ(t

1
p0 )),

where 0 < p0 < ∞ , 0 < q0,q � ∞ and ρ ∈ Q(0,1) .
This paper is organized as follows. Some definitions and notations will be given

in the remainder of this section. In Section 2, we establish some inequalities for the
sharp functions of martingales. As the main results of this paper, some interpolation
theorems are proved in Section 3.

Now let us recall some definitions and notations.
Let (X ,μ) be a σ -finite measure space, M (X) the space of all measurable func-

tions on X . For f ∈ M (X) , denote its distribution function by

λ f (t) = μ(x : | f (x)| > t), t � 0,
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and its decreasing rearrangement function f ∗ is defined as

f ∗(t) = inf{s > 0 : λ f (s) � t}, t � 0.

For 0 < q � ∞ , let ϕ be a non-negative and locally integrable function on [0,∞) (ϕ �≡
0), the classical Lorentz spaces are defined as

Λq(ϕ) = { f ∈ M (X) : ‖ f‖Λq(ϕ) < ∞},

where

‖ f‖Λq(ϕ) =

{
(
∫ ∞
0 ( f ∗(t)ϕ(t))q dt

t )
1
q , q < ∞,

supt>0 f ∗(t)ϕ(t), q = ∞.

Let (Ω,F ,P) be a complete probability space, and {Fn}n�0 a nondecreasing
sequence of sub-σ -algebras of F such that F = σ(

⋃
n Fn) . The conditional expecta-

tion operators relative to Fn are denoted by En . For a martingale f = ( fn)n�0 relative
to (Ω,F ,P;(Fn)n�0 ), denote its martingale differences by d fi = fi− fi−1 ( i � 0, with
convention d f0 = 0) and its conditional quadratic variation by

sn( f ) = (
n

∑
i=1

Ei−1|d fi|2)
1
2 , s( f ) = (

∞

∑
i=1

Ei−1|d fi|2) 1
2 .

The sharp function f s
r of a martingale f = ( fn)n�0 is defined as

f s
r = sup

n�0
(En[s2( f )− s2

n( f )]
r
2 )

1
r , 0 < r < ∞.

Let 0 < p < ∞ , 0 < q � ∞ , define martingale Lorentz and BMO spaces as follows:

Λs
q(ϕ) = { f = ( fn)n�0 : ‖ f‖Λs

q(ϕ) = ‖s( f )‖Λq(ϕ) < ∞};

BMO2 = { f = ( fn)n�0 : ‖ f‖BMO2 = sup
n�0

‖(En | f − fn |2) 1
2 ‖∞ < ∞};

BMOs
p = { f = ( fn)n�0 : ‖ f‖BMOs

p
= sup

n�0
‖(En[s2( f )− s2

n( f )]
p
2 )

1
p ‖∞ < ∞}.

REMARK 1.1. One can easily show that Lorentz martingale spaces Λs
q(ϕ) are

quasi-normed spaces. We recall that BMOs
p ∼ BMOs

2 = BMO2 for 0 < p < ∞ . For
real-valued BMO martingale theory, we refer to Weisz [3] and Long [16]. It is clear

that if ϕ(t) = t
1
p , then Λs

q(ϕ) = Hs
p,q. In particular, if ϕ(t) = t

1
q , then Λs

q(t
1
q ) = Hs

q,
see [3, 16].

Now let us recall a function parameter class introduced by Persson [9] as follows.
Let a0 and a1 be real numbers such that a0 < a1 . The class Q[a0,a1] consists

of all non-negative functions ϕ(t) on (0,∞) such that ϕ(t)t−a0 is nondecreasing and
ϕ(t)t−a1 is non-increasing. A function is said to belong to the Q(a0,a1) , if ϕ(t) ∈
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Q[a0 + ε,a1 + ε] for some ε > 0. The notation ϕ(t) ∈ Q(a0,−) (ϕ(t) ∈ Q(−,a1))
means that ϕ(t) ∈ Q(a0,b) (ϕ(t) ∈ Q(b,a1)) for some real number b .

Let us recall some notations in interpolation theory. For more details we refer to [2]
and [13]. Suppose that A0 and A1 are two quasi-normed spaces embedded continuously
into a topological space A . The K -functional is defined as

K(t, f ;A0,A1) = inf{‖ f0‖A0 + t‖ f1‖A1 : f = f0 + f1, fi ∈ Ai, i = 0,1},
where the infimum takes over all possible decompositions with f = f0 + f1 , fi ∈ Ai ,
i = 0,1. For ϕ a function parameter, 0 < q � ∞ , the interpolation spaces (A0,A1)ϕ,q

between A0 and A1 are defined as the space of all functions f ∈ A0 + A1 such that
‖ f‖(A0,A1)ϕ,q < ∞ , where

‖ f‖(A0,A1)ϕ,q =

⎧⎪⎨⎪⎩
(∫ ∞

0

(
K(t, f ;A0,A1)

ϕ(t)

)q
dt
t

) 1
q
, q < ∞,

supt>0
K(t, f ;A0,A1)

ϕ(t) , q = ∞.

Throughout this paper, we use C to denote some constant and may be different at
each occurrence. The equivalence a ≈ b means that C1a � b � C2a for some positive
constants C1 and C2 . Two quasi-normed spaces, A and B , are considered as equal and
we write A = B whenever their quasi-norms are equivalent. The relation A ⊆ B means
that we have a continuous embedding.

2. Some inequalities for the sharp functions of martingales

As is well-known, the sharp functions play an important role in the study of in-
terpolation between Hardy spaces and BMO spaces, see [2, 3]. In this section, we will
devote ourself to establishing some inequalities for the sharp functions of martingales.

We first establish an inequality for the sharp functions of martingales with respect
to the Lorentz norm. Here we need the following lemmas:

LEMMA 2.1. Let 0 < r � 1 . Then for any martingale f = ( fn)n�0 we have

s( f )∗(t) � 4
1
r f s∗

r

( t
2

)
+ s( f )∗(2t), t > 0.

Proof. It is enough to prove

s( f )∗2(t) � 16
1
r f s∗2

r

( t
2

)
+ s( f )∗2(2t), t > 0. (2.1)

Set ηn = (En(s2( f )− s2
n( f ))

r
2 )

1
r , 0 < r � 1. We define stopping times as follows:

τ = inf
{

n ∈ N : ηn > f s∗
r

( t
2

)}
,

μ = inf{n ∈ N : sn+1( f ) > s( f )∗(2t)},
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then we have {
τ < ∞} = { f s

r > f s∗
r

( t
2

)}
,

{μ < ∞} = {s( f ) > s( f )∗(2t)},
P(τ < ∞) � t

2
, P(μ < ∞) � 2t.

Since {
(s( f ))2 > 16

1
r f s∗2

r

( t
2

)
+ s( f )∗2(2t)

}
⊆ {τ < ∞}∪

{
μ < τ,(s( f ))2 − (sμ( f ))2 > 16

1
r f s∗2

r

( t
2

)}
and notice that 0 < r � 1, we get

P((s( f ))2 > 16
1
r f s∗2

r

( t
2

)
+ s( f )∗2(2t))

� P(τ < ∞)+
1

4 f s∗r
r ( t

2 )

∫
{μ<τ}

((s( f ))2 − (sμ( f ))2)
r
2 dP

= P(τ < ∞)+
1

4 f s∗r
r ( t

2 )

∫
{μ<τ}

E(((s( f ))2 − (sμ( f ))2)
r
2 | Fμ)dP

� P(τ < ∞)+
1

4 f s∗r
r ( t

2 )

(∫
{μ<τ}

(E(((s( f ))2 − (sμ( f ))2)
r
2 | Fμ))

1
r dP

)r(∫
{μ<τ}

dP

)1−r

� P(τ < ∞)+
1
4

P(μ < ∞) � t.

Thus (2.1) holds. The proof is completed. �

LEMMA 2.2. [9] Let ϕ(t) ∈ Q[a0,a1] . Then ϕ(tα) ∈ Q[a0α,a1α] , α > 0 .

LEMMA 2.3. [16] Let (F,G) be a pair of non-negative measurable functions on
(Ω,F ,P) . If (F,G) satisfies the rearrangement inequality

F∗(t) � CG∗
( t

2

)
+F∗(2t), ∀t > 0.

Then with the same C, we have

F∗(t) � 2CG∗
( t

2

)
+

C
log2

∫ ∞

t

G∗(s)
s

ds, ∀t > 0.

LEMMA 2.4. [9] Let 0 < q � ∞ , 0 < r < ∞ , ψ(t)∈Q(−,−) , and h(t) a positive
and non-increasing function on (0,∞) .

1. If ϕ(t) ∈ Q(−,0) , then(∫ ∞

0
(ϕ(t))q

(∫ t

0
(h(u)ψ(u))r du

u

) q
r dt

t

) 1
q � C

(∫ ∞

0
(ϕ(t)h(t)ψ(t))q dt

t

) 1
q
;



1060 R. YANBO

2. If ϕ(t) ∈ Q(0,−) , then

(∫ ∞

0
(ϕ(t))q

(∫ ∞

t
(h(u)ψ(u))r du

u

) q
r dt

t

) 1
q � C

(∫ ∞

0
(ϕ(t)h(t)ψ(t))q dt

t

) 1
q
.

Now we can formulate the following inequality:

THEOREM 2.1. Let 0 < p,r < ∞ , 0 < q � ∞ and ρ ∈ Q(0,1) . Then

‖ s( f ) ‖
Λq(t

1
p /ρ(t

1
p ))

� C ‖ f s
r ‖

Λq(t
1
p /ρ(t

1
p ))

.

Proof. The case for 1 � r < ∞ was proved in [24]. We only need to prove this
theorem for 0 < r < 1.

Since ρ(t
1
p ) ∈ Q(0, 1

p) by Lemma 2.2, then ρ(t
1
p )t−ε is nondecreasing for some

ε > 0. So we have ρ(t
1
p ) � Cρ(( t

2)
1
p ) for t > 0. It follows from Lemma 2.1, 2.2, 2.3

and 2.4 that

‖ s( f ) ‖
Λq(t

1
p /ρ(t

1
p ))

=
(∫ ∞

0

( t
1
p s( f )∗(t)
ρ(t1/p)

)q dt
t

)1/q

� C
((∫ ∞

0

( t
1
p f s∗

r ( t
2 )

ρ(t1/p)

)q dt
t

) 1
q

+
(∫ ∞

0

( t
1
p

ρ(t1/p)

)q(∫ ∞

t

f s∗
r (s)
s

ds
)q dt

t

) 1
q
)

� C
(∫ ∞

0

( t
1
p f s∗

r (t)
ρ(t1/p)

)q dt
t

)1/q

= C ‖ f s
r ‖

Λq(t
1
p /ρ(t

1
p ))

.

The proof is completed. �

Now let us turn to the Lp,∞ -norm inequalities for the sharp functions of martin-
gales.

LEMMA 2.5. [3]

(i) Let 0 < r < p < ∞ , then for any martingale f = ( fn)n�0 we have

‖ f s
r ‖p� Cp ‖ s( f ) ‖p;

(ii) Let 2 � p < ∞ , then for any martingale f = ( fn)n�0 we have

‖s( f )‖p � Cp‖ f‖p.
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DEFINITION 2.1. [17] A measurable function a is called a w-1-atom, if there
exists a stopping time ν (ν is called the stopping time associated with a ) such that

(i) an = Ena = 0 if ν � n ,
(ii) ‖s(a)‖∞ < ∞ .

LEMMA 2.6. [17] Let 1 � q � 2 and T : Lq → Lq a bounded sublinear operator.
If

P(|Ta| > 0) � CqP(ν < ∞)

for all w-1-atoms a, where ν is the stopping time associated with a, then for 0 < p < q
we have

‖T f‖Lp,∞ � Cp, q‖s( f )‖Lp,∞ .

According to the proof of Lemma 2.8 in [17], it is easy to see that the conclusion
still holds for quasi-linear operators.

THEOREM 2.2. Let 0 < p,r < 2 . Then

‖ f s
r ‖Lp,∞� Cp ‖ s( f ) ‖Lp,∞ .

Proof. The sharp function T f = f s
r is quasi-linear. By Lemma 2.5, T is L2 -

bounded. If a is a w-1-atom and ν is the stopping time associated with a , then (|Ta|>
0) = (as

r > 0) ⊆ (ν < ∞) . Hence, P(|Ta| > 0) � P(ν < ∞). It follows from Lemma
2.6 that

‖ f s
r ‖Lp,∞ = ‖T f‖Lp,∞ � Cp‖s( f )‖Lp,∞ .

The proof is completed. �
A weak type Doob’s maximal inequality was proved by Liu [18]:

‖ M( f ) ‖Lp,∞� Cp ‖ f ‖Lp,∞ ,1 < p < ∞,

where M( f ) = supn�0 | fn | is the Doob’s maximal function of a martingale f =
( fn)n�0 . From this inequality and Theorem 2.2, we obtain

COROLLARY 2.1. Let 0 < p < ∞ . Then

‖ f s
1 ‖Lp,∞� Cp ‖ s( f ) ‖Lp,∞ .

It was proved by Weisz in [3] that ‖ f s
r ‖p≈‖ s( f ) ‖p for 0 < r < p < ∞ . In the

following let us consider the reverse inequality in Theorem 2.2.

DEFINITION 2.2. [14] Let ( f ,g) be a pair of non-negative measurable functions
on (Ω,F ,P) . We say that it satisfies the good λ -inequality, if there is α > 1, and for
all β > 0 small enough, there exist constants εβ satisfying limβ→0 εβ = 0, such that

P( f > αλ ) � εβ P( f > λ )+ δβ P(g > β λ ), λ > 0.
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The weak Lp -norm of a measurable function f is defined by

‖ f ‖wLp= sup
λ>0

λP(| f | > λ )
1
p .

As is well-known, the weak Lp -norm of f is equivalent to its Lp,∞ -norm(see for exam-
ple in [3]). The following Lemma indicates that the good λ -inequality is a sufficient
condition for the type of inequality Lp,∞ –Lp,∞ to hold.

LEMMA 2.7. Let 0 < p < ∞ . If a pair of nonnegative measurable functions ( f ,g)
satisfies the good λ -inequality, then

‖ f ‖Lp,∞� Cp ‖ g ‖Lp,∞ .

Proof. Let θp(λ ) = λP( f > λ )
1
p . Since ( f ,g) satisfies the good λ -inequality,

we have

θp(αλ ) � Cp

(
αε

1
p

β θp(λ )+ αβ−1δ
1
p

β ‖ g ‖wLp

)
.

Hence,

θp(λ ) � αε̃β ,pθp

(λ
α

)
+Cα ,β ,p ‖ g ‖wLp

� (αε̃β ,p)
nθp

( λ
αn

)
+Cα ,β ,p(1+ · · ·+(αε̃β ,p)

n−1) ‖ g ‖wLp ,

where ε̃β ,p = Cpε
1
p

β and Cα ,β ,p = Cpαβ−1δ
1
p

β . Now let β small enough such that

αε̃β ,p < 1 and let n → ∞ , we get

‖ f ‖wLp� Cp ‖ g ‖wLp .

The proof is completed. �

LEMMA 2.8. Let 0 < r < ∞ . Then the pair (s( f ), f s
r ) satisfies the good λ -

inequality.

Proof. For 0 < r � 1, let α > 1 and define three stopping times as follows:

T = inf{n ∈ N : sn+1( f ) >
√

αλ},
S = inf{n ∈ N : sn+1( f ) > λ},
R = inf{n ∈ N : ηn( f ) > β λ}.

Obviously, S � T . Since

{T < ∞} ⊆ {T < ∞,S � T,S < R}
⋃
{T < ∞,S � T,R � S}

⊆ {T < ∞,S � T,S < R}
⋃
{R < ∞},
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we have

P(T < ∞)

� 1

(α −1)
r
2 λ r

∫
{S�T}⋂{S<R}

E((s2( f )− s2
S( f ))

r
2 | FS)dP+P(R < ∞)

� 1

(α −1)
r
2 λ r

(∫
{S�T}⋂{S<R}

(E((s2( f )− s2
S( f ))

r
2 | FS))

1
r dP

)r

×
(∫

{S�T}⋂{S<R}
dP

)1−r
+P(R < ∞)

� β r

(α −1)
r
2
P(S < ∞)+P(R < ∞).

That is

P(s( f ) >
√

αλ ) � β r

(α −1)
r
2
P(s( f ) > λ )+P( f s

r > β λ ).

For 1 � r < ∞ , let α > 1, we define the following three stopping times at this
time:

T = inf{n ∈ N : sn+1( f ) > αλ},
S = inf{n ∈ N : sn+1( f ) > λ},
R = inf{n ∈ N : ηn( f ) > β λ}.

We have

P(T < ∞)

� 1
(α −1)λ

∫
{S�T}⋂{S<R}

(s( f )− sS( f ))dP+P(R < ∞)

� 1
(α −1)λ

∫
{S�T}⋂{S<R}

E((s2( f )− s2
S( f ))

1
2 | FS)dP+P(R < ∞)

� 1
(α −1)λ

∫
{S�T}⋂{S<R}

(E((s2( f )− s2
S( f ))

r
2 | FS))

1
r dP+P(R < ∞)

� β
α −1

P(S < ∞)+P(R < ∞).

That is

P(s( f ) > αλ ) � β
α −1

P(s( f ) > λ )+P( f s
r > β λ ).

The proof is completed. �
By Lemma 2.7 and 2.8, we obtain

THEOREM 2.3. Let 0 < r < ∞ , 0 < p < ∞ . Then

‖ s( f ) ‖Lp,∞� Cp ‖ f s
r ‖Lp,∞ .
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It follows from Theorem 2.2, 2.3 and Corollary 2.1 that

COROLLARY 2.2. (i) Let 0 < p,r < 2 . Then

‖ s( f ) ‖Lp,∞≈‖ f s
r ‖Lp,∞ ;

(ii) Let 0 < p < ∞ . Then
‖ s( f ) ‖Lp,∞≈‖ f s

1 ‖Lp,∞ .

3. Some interpolation theorems for martingale Hardy-Lorentz spaces

In this section, some new interpolation theorems will be proved. The results gen-
eralize some fundamental interpolation theorems in classical martingale Hp theory are
proved. In particular, we obtain an interpolation theorem for martingale Hardy-Lorentz
and BMO spaces (Theorem 3.3).

LEMMA 3.1. [23] Let 0 < p < ∞ , 0 < q � ∞ and ρ ∈ Q(0,1) . Then

(Hs
p,H

s
∞)ρ ,q = Λs

q(t
1
p /ρ(t

1
p )).

THEOREM 3.1. Let 0 < p < ∞ , 0 < q � ∞ and ρ ∈ Q(0,1) . Then

(Hs
p,BMO2)ρ ,q = Λs

q(t
1
p /ρ(t

1
p )).

Proof. By the equivalence between BMO2 and BMOs
1 , we have

‖ f ‖BMO2 � C ‖ f ‖BMOs
1
� C sup

n�0
‖ Ens( f ) ‖∞

� C ‖ s( f ) ‖∞= C ‖ f ‖Hs
∞ .

Thus by Lemma 3.1 we have

‖ f ‖(Hs
p,BMO2)ρ,q� C ‖ f ‖(Hs

p,Hs
∞)ρ,q� C ‖ f ‖

Λs
q(t

1
p /ρ(t

1
p ))

, (3.1)

from which we get Λs
q(t

1
p /ρ(t

1
p )) ⊆ (Hs

p,BMO2)ρ ,q.
For the converse, let f ∈ Hs

p +BMO , f = g+h , with g ∈ Hs
p , h ∈ BMO , then

f s
r � C(gs

r +hs
r) � C(gs

r+ ‖ h ‖BMO2).

Let r = 1, by Corollary 2.1, then for any t > 0,

t f s∗
1 (t p) � C(tgs∗

1 (t p)+ t ‖ h ‖BMO2)
� C(‖ gs

1 ‖Lp,∞ +t ‖ h ‖BMO2)
� C(‖ s(g) ‖Lp,∞ +t ‖ h ‖BMO2) (3.2)

� C(‖ s(g) ‖p +t ‖ h ‖BMO2)
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Taking the infimum over all decompositions f = g+h∈ Hs
p +BMO2 , we obtain

t f s∗
r (t p) � CK(t, f ;Hs

p,BMO2).

Hence, by Theorem 2.1 we get

‖ f ‖
Λs

q(t
1
p /ρ(t

1
p ))

� C ‖ f s
r ‖

Λq(t
1
p /ρ(t

1
p ))

� C ‖ f ‖(Hs
p,BMO2)ρ,q ,

from which we get (Hs
p,BMO2)ρ ,q ⊆ Λs

q(t
1
p /ρ(t

1
p )). The proof is completed. �

Since ‖ f ‖(Hs
p,∞,BMO2)ρ,q� C ‖ f ‖(Hs

p,BMO2)ρ,q , it follows from (3.1) and (3.2) that

COROLLARY 3.1. Let 0 < p < ∞ , 0 < q � ∞ and ρ ∈ Q(0,1) . Then

(Hs
p,∞,BMO2)ρ ,q = Λs

q(t
1
p /ρ(t

1
p )).

LEMMA 3.2. [9] Let ϕ(t) ∈ Q[a0,a1] , then tα(ϕ(t))β ∈ Q[α + a1β ,α + a0β ] ,
α ∈ R , β < 0 .

The following lemma was obtained by Persson [9] for quasi-Banach spaces. By
use of the method in [10] and [12], it is easy to verify that the lemma also holds for
quasi-normed spaces.

LEMMA 3.3. Let ρ(t) and ρ0(t) be in the class Q(0,1) , 0 < q0 < ∞ , 0 < q � ∞ .
If we put ρ1(t) = ρ0(t)ρ(t/ρ0(t)). Then

((A0,A1)ρ0,q0 ,A1)ρ ,q = (A0,A1)ρ1,q.

THEOREM 3.2. Let ϕ0(t) and ρ(t) be in the class Q(0,1) , 0 < q0 < ∞ , 0 < q �
∞ . Then

(Λs
q0

(ϕ0),BMO2)ρ ,q = Λs
q(ϕ),

where ϕ(t) = ϕ0(t)/ρ(ϕ0(t)) .

Proof. Put ρ0(t) = t/ϕ0(t p) , by Lemma 2.2 and 3.2, we can choose p so small
that ρ0(t) ∈ Q(0,1) . Then by Lemma 3.3 and Theorem 3.1 we obtain

(Λs
q0

(ϕ0),BMO2)ρ ,q = ((Hs
p,BMO2)ρ0,q0 ,BMO2)ρ ,q

= (Hs
p,BMO2)ρ0(t)ρ(t/ρ0(t)),q = Λs

q(ϕ),

where ϕ(t) = ϕ0(t)/ρ(ϕ0(t)) . The proof is completed. �
It follows from Corollary 3.1 and Theorem 3.2 that we obtain

THEOREM 3.3. Let 0 < p0 < ∞ , 0 < q0,q � ∞ and ρ ∈ Q(0,1) . Then

(Hs
p0,q0

,BMO2)ρ ,q = Λs
q(t

1
p0 /ρ(t

1
p0 )).
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