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ASYMPTOTIC BOUNDS FOR PRECISE LARGE DEVIATIONS IN A

COMPOUND RISK MODEL UNDER DEPENDENCE STRUCTURES

QINGWU GAO ∗ , XIJUN LIU AND CHUNHONG CHAI

(Communicated by X. Wang)

Abstract. In the paper, we consider a compound risk model, where all the claim sizes satisfy a
dependence structure, and the accident inter-arrival time and the claim-number of the subsequent
accident satisfy another dependence structure described by a conditional tail probability of the
inter-arrival time given the subsequent claim-number. We obtain the asymptotic lower and upper
bounds for the precise large deviations of the aggregate claims, with a feature that the asymptotic
bounds hold uniformly for all x in an infinite t -interval.

1. Introduction

1.1. Risk model

Consider the compound renewal risk model, proposed by Tang et al. (2001), in
which all the modelling components satisfy the following assumptions.

ASSUMPTION H1 . The inter-arrival times of the accidents, {θi, i � 1} are positive
and independent, identically distributed (i.i.d.) random variables (r.v.s) with finite mean
λ−1 , which generate a renewal counting process N(t) = sup{n � 1,τn = ∑n

i=1 θi � t}
with mean function λ (t) = EN(t) such that λ (t)/λ t → 1 as t → ∞ .

ASSUMPTION H2 . The claim numbers caused by the successive accidents, {Zi, i �
1} are a sequence of i.i.d. and nonnegative integer-valued r.v.s with finite mean ν .

ASSUMPTION H3 . The claim sizes caused by the i-th accident, {Xi j, j � 1} ,
i � 1, are independent copies of Xi, i � 1, which are a sequence of nonnegative and
i.i.d. r.v.s with common distribution F and finite mean μ .

ASSUMPTION H4 . The sequences {θi, i � 1} , {Zi, i � 1} and {Xi j, i � 1, j � 1}
are mutually independent.

Then, the aggregate amount of claims accumulated up to time t � 0 is expressed
as

S(t) =
N(t)

∑
i=1

Zi

∑
j=1

Xi j. (1.1)
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1.2. Heavy-tailed distribution classes

In the subsection, we present some classes of heavy-tailed distributions. For two
positive functions a(·) and b(·) , we write a(x) ∼ b(x) if limx→∞ a(x)/b(x) = 1, write
a(x) = o(1)b(x) if limx→∞ a(x)/b(x) = 0. For a proper distribution V , we denote its
tail by V (x) = 1−V(x) and its upper Matuszewska index by

J+
V = − lim

y→∞

logV ∗(y)
logy

with V ∗(y) = liminf
x→∞

V (xy)
V (x)

, y > 1.

We say that a distribution V on [0,∞) belongs to the long-tailed class, denoted by
V ∈ L , if for any y > 0,

V (x+ y)∼V (x);

belongs to the dominated variation class, denoted by V ∈ D , if for any 0 < y < 1,

V
∗(y) < ∞,

where V
∗(y) = limsupx→∞V (xy)/V (x) ; belongs to the consistent variation class, de-

noted by V ∈ C , if

lim
y↘1

V ∗(y) = 1, or equivalently, lim
y↗1

V
∗(y) = 1;

belongs to the ERV class of extended-regularly-varying-tailed distributions, if there
exist some 0 < α � β < ∞ such that for any y � 1,

y−β � V ∗(y) � V
∗(y) � y−α ,

where we denote V ∈ERV (−α,−β ), and the class ERV is the union of all ERV(−α,−β )
over the range 0 < α � β < ∞.

More generally, we say that a distribution V on (−∞,∞) belongs to a distribution
class if V (x)1{x�0} belongs to the class, where 1A denotes the indicator function of a
set A . It is well-known that

ERV ⊂ C ⊂ L ∩D ⊂ L .

For more details on heavy-tailed distributions and their applications, we refer to Bing-
ham et al. (1987), Embrechts et al. (1997) and Denisov et al. (2004).

1.3. Dependence structures

In recent years, a study trend of risk theory is to introduce various dependence
structures to risk models, among which the widely upper orthant dependence struc-
ture was proposed by Wang et al. (2013). Say that r.v.s {ξi, i � 1} are widely upper
orthant dependent (WUOD), if there exist a sequence of finite and positive numbers
{gU(n),n � 1} such that for each n � 1 and for all xi ∈ (−∞,∞) , 1 � i � n ,

P

(
n⋂

i=1

{
ξi > xi

})
� gU(n)

n

∏
i=1

P(ξi > xi).
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Adopting the term of Liu et al. (2012), r.v.s {ξi, i � 1} are said to be upper tail asymp-
totically independent (UTAI), if P(ξi > x) > 0 for all x ∈ (−∞,∞) , i � 1, and

lim
min{xi,x j}→∞

P(ξi > xi|ξ j > x j) = 0, for all 1 � i 
= j < ∞.

Besides, He et al. (2013) initiated a dependence structure for r.v.s {ξi, i � 1} as follows:

lim
n→∞

sup
x�αn

sup
1�i< j�n

xP(ξi > x|ξ j > x) = 0, for any α > 0. (1.2)

Clearly, the UTAI r.v.s can properly cover the WUOD r.v.s, see Example 3.1 of Liu
et al. (2012), and hence can cover both negatively dependent and positively dependent
r.v.s. Also, the dependence structure defined by (1.2) is a special case of UTAI structure.
In fact, He et al. (2013) gave an assertion that if {Xi, i � 1} are WUOD, then relation
(1.2) follows from

lim
x→∞

xF(x) = 0, (1.3)

which is slightly weaker than that the corresponding r.v. with distribution F has finite
mean. Hence, the dependence structure that satisfies (1.2) at least properly covers the
WUOD r.v.s with finite means. He et al. (2013) presented two examples which show
that there exist UTAI r.v.s satisfying (1.2), but are not WUOD; and Liu et al. (2017)
gave a concrete example to illustrate that there do exist WUOD r.v.s that satisfy (1.2).
For some recent literatures on widely upper orthant dependence structure, we refer to
Wang et al. (2014), Qiu and Chen (2014), Wang and Hu (2015), and Xi et al. (2018).

For the case when Zi ≡ 1, i � 1, namely that the risk model considered in the
paper is the standard renewal risk model, Li et al. (2010) introduced a time-dependence
structure, which is described by the conditional tail probability of a claim size given the
inter-arrival time prior to the claim; Chen and Yuen (2012) introduced a more general
dependence structure between the claim size and its corresponding inter-arrival time,
called the size-dependence structure and described by the conditional tail probability of
the inter-arrival time given the subsequent claim size being large. And Chen and Yuen
(2012) investigated the precise large deviations of the aggregate claims in the size-
dependence renewal risk model. Inspired by the time-dependence and size-dependence
structures, in this paper we adopt a dependence structure between the accident inter-
arrival time and the claim-number of the subsequent accident. Precisely, we denote by
θ and Z the generic r.v.s of {θi, i � 1} and {Zi, i � 1} , respectively, and assume that
θ and Z satisfy that for all t ∈ [0,∞) and for any k � 1,

P(θ > t|Z = k) � P(θ ∗ > t), (1.4)

where θ ∗ is a nonnegative r.v. independent of the other sources of randomness.
Note that relation (1.4) means that θ conditional on (Z = k) is stochastically

bounded by θ ∗ for any k � 1, which defines a general dependence structure via the
conditional tail probability of the accident inter-arrival time given the claim-number
caused by the subsequent accident being fixed, and allows a wide range of dependence
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structures, also see Wang and Chen (2019). For example, we assume that the nonnega-
tive random pair (θ ,Z) has joint tail distribution with the form

P(θ > t,Z > k) =
1

max{1,t}max{1,k}(1+ t + k)

for all t ∈ [0,∞) and k ∈ N . Obviously, the marginal tail distributions of θ and Z are,
respectively,

P(θ > t) =
1

max{1,t}(1+ t)
, for all t ∈ [0,∞),

and

P(Z > k) =
1

max{1,k}(1+ k)
, for all k ∈ N.

Also, if k = 1,

P(Z = 1) = 1−P(Z > 1) =
1
2
,

and if k � 2,

P(Z = k) = P(Z > k−1)−P(Z > k) =
2

k(k−1)(1+ k)
.

Likewise, if k = 1,

P(θ > t,Z = 1) = P(θ > t)−P(θ > t,Z > 1) =
1

max{1,t}(1+ t)(2+ t)
,

and if k � 2,

P(θ > t,Z = k) = P(θ > t,Z > k−1)−P(θ > t,Z > k)

=
2k+ t

max{1,t}k(k−1)(t + k)(1+ t + k)
.

Now we can verify that random pair (θ ,Z) satisfies relation (1.4). In fact, for k = 1,

P(θ > t|Z = 1) =
P(θ > t,Z = 1)

P(Z = 1)
=

2
max{1,t}(t +1)(2+ t)

� 1
max{1, t} ,

and for k � 2,

P(θ > t|Z = k) =
P(θ > t,Z = k)

P(Z = k)
=

(2k+ t)(k+1)
2max{1,t}(k+ t)(1+ k+ t)

� 1
max{1,t} .

Now take θ ∗ such that P(θ ∗ > t) = max{1,t}−1, then relation (1.4) holds.
Let θ ∗

1 be a positive r.v., independent of all sources of randomness, with the same
distribution as θ1 conditional on (Z1 = k) for any k � 1. Write τ∗1 = θ ∗

1 ,τ∗n = θ ∗
1 +

∑n
i=2 θi , n � 2, which constitute a delayed renewal counting process

N∗(t) = sup{n � 1,τ∗n � t}, t � 0. (1.5)
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Note also that the distribution of θ ∗
1 depends on k through the condition (Z1 = k) , so

does the distribution of {N∗(t),t � 0} , that is

P(N∗(t) = n) = P(N(t) = n|Z1 = k) (1.6)

for all n∈N . Under the dependence structure described by (1.4), it follows that for any
t � 0 and all large x > 0,

P

(
θi > t,

Zi

∑
j=1

Xi j > x

)
=

∞

∑
k=1

P(θi > t|Zi = k)P

(
k

∑
j=1

Xi j > x

)
P(Zi = k)

� P

(
Zi

∑
j=1

Xi j > x

)
P(θ ∗ > t), i � 1.

Hence,

P

(
θi > t

∣∣∣ Zi

∑
j=1

Xi j > x

)
� P(θ ∗ > t), i � 1,

which shows that for every i � 1, the accidents’ inter-arrival time, θi , and the aggre-
gate amount of claims caused by the subsequent accident, ∑Zi

j=1 Xi j , satisfy the size-
dependence structure proposed by Chen and Yuen (2012). This result, in insurance
practice, seems quite natural because of the fact that the waiting time for a severe acci-
dent with large claims and/or their large numbers is dependent on the aggregate amount
of claims caused by the corresponding accident. From these arguments above, the
dependence structure described by (1.4) has important theoretical and practical signifi-
cance.

In the present paper, we consider a generalized compound renewal risk model with
Assumptions H1 , H2 and the following assumptions.

ASSUMPTION H∗
3 . All the claim sizes {Xi j, i � 1, j � 1} are nonnegative r.v.s

with common distribution F and satisfying the dependence structure defined by (1.2).

ASSUMPTION H∗∗
3 . All the claim sizes {Xi j, i � 1, j � 1} are nonnegative and

WUOD r.v.s with common distribution F , and satisfying EXβ
1 < ∞ for some β > 1

and supn�1 gU(n)n−ε0 < ∞ for some constant ε0 > 0.

ASSUMPTION H∗
4 . The sequence {Xi j, i � 1, j � 1} are independent of {θi, i �

1} and {Zi, i � 1} , but for every i � 1, θi and Zi satisfy the dependence structure
defined by relation (1.4).

1.4. Motivation and main results

As is known that the precise large deviations for heavy-tailed random (or non-
random) sums and their applications in insurance and finance have been extensively
studied in many literatures. See, for example, Cline and Hsing (1991), Klüppelberg
and Mikosch (1997), Mikosch and Nagaev (1998), Ng et al. (2004), Tang (2006), Wang
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and Wang (2007), Liu (2009), and others. For the recent works, we refer the readers
to Chen et al. (2011), Konstantinides and Loukissas (2011), Wang and Cheng (2011),
Chen and Yuen (2012), Loukissas (2012), Wang et al. (2012), Wang et al. (2013), Yang
and Wang (2013), Lu et al. (2014), Jiang et al. (2015), Xiao et al. (2018), Liu et al.
(2017, 2020), Wang and Chen (2019), and references therein.

For the compound renewal risk model, Tang et al. (2001) considered the precise
large deviations of the aggregate claims under Assumptions H1 -H4 and F ∈ ERV ;
Konstantinides and Loukissas (2010) extended the results of Tang et al. (2001) to the
case when F ∈ C . But in practice, the independence structure in Assumptions H1 -H4

is unrealistic and then limits the usefulness of the obtained results to some extent. Kass
and Tang (2005) considered that {Xi j, i � 1, j � 1} are a sequence of i.i.d. r.v.s and
{Zi, i � 1} follow a certain negative dependence structure; Yang et al. (2012) assumed
that {Xi j, i � 1, j � 1} are a sequence of i.i.d. r.v.s, but {θi, i � 1} and {Zi, i � 1} are
two sequences of dependent r.v.s, and discussed the precise large deviations if F ∈ C
and EZp < ∞ for p > J+

F +2. All the references above only considered the case when
{Xi j, i � 1, j � 1} are a sequence of i.i.d. r.v.s, and the sequences {θi, i � 1} , {Zi, i � 1}
and {Xi j, i � 1, j � 1} are mutually independent.

Motivated by the above references, in the paper we further consider the precise
large deviations for the aggregate claims of a generalized compound renewal risk model,
in which all the claim sizes satisfy some more general dependence structures, and more
importantly, the accidents’ inter-arrival times and the claim-numbers of the subsequent
accidents satisfy a dependence structure described by relation (1.4).

The main results of this paper are given below, among which the first theorem is
concerned with the asymptotic lower bound of the precise large deviations of the aggre-
gate claims in a generalized compound renewal risk model with dependence structures.

THEOREM 1.1. Consider the aggregate claims (1.1) satisfying Assumptions H1,

H2, H∗
3 , H∗

4 . If F ∈ L ∩D and EZp+1
1 < ∞ for some p > J+

F , then for any γ > 0,

P(S(t) > x) � λ νtF(x) (1.7)

holds uniformly for all x � γt , which is equivalent to

liminf
t→∞

inf
x�γt

P(S(t) > x)
λ νtF(x)

� 1.

REMARK 1.1. Let c be any fixed number, then (1.7) is equivalent to the following
asymptotic formula, for any γ > γ0 = −c,

P(S(t) > x+ cλ νt) � λ νtF(x+ cλ νt), as t → ∞,

holds uniformly for all x � γt .

Secondly, we obtain the asymptotic upper bound of the precise large deviations of
the aggregate claims with some conditions stronger than those for the asymptotic lower
bound.
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THEOREM 1.2. Consider the aggregate claims (1.1) satisfying Assumptions H1 ,
H2, H∗∗

3 , H∗
4 . If F ∈C and EZp+1

1 < ∞ for some p > max{1,J+
F } , then for any γ > 0,

P

(
N(t)

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x

)
� λ νtF(x) (1.8)

holds uniformly for all x � γt , which is equivalent to

limsup
t→∞

sup
x�γt

P
(

∑N(t)
i=1 ∑Zi

j=1(Xi j − μ) > x
)

λ νtF(x)
� 1.

The rest part of this paper is organized as follows: we present some lemmas in
Section 2 and prove the main results in Section 3.

2. Some lemmas

Before proving the main results, we now present some lemmas, among which the
first one is due to Proposition 2.2.1 of Bingham et al. (1987) and Lemma 3.5 of Tang
and Tsitsiashvili (2003).

LEMMA 2.1. For a distribution V supported on (−∞,∞) , the following asser-
tions hold:
(i) V ∈ D ⇔ J+

V < ∞;
(ii) if V ∈ D , then for any p > J+

V , x−p = o(1)V (x) as x → ∞;
(iii) if V ∈ D , then for any p > J+

V , there exist C1 > 0 and D > 0, such that

V (y)
V (x)

� C1

(
x
y

)p

, x � y � D.

In the second lemma, we give some basic properties of WUOD r.v.s (see Proposi-
tion 1.1 of Wang et al. (2013)).

LEMMA 2.2. (i) If {ξi, i � 1} are WUOD r.v.s and { fi(·), i � 1} are nondecreas-
ing functions, then { fi(ξi), i � 1} are still WUOD.
(ii) If {ξi, i � 1} are WUOD, then for each i � 1 and any s > 0 ,

E exp
{

s
n

∑
i=1

ξi

}
� gU(n)

n

∏
i=1

E exp{sξi}.

The lemma below establishes the law of large numbers for the delayed renewal
counting process {N∗(t),t � 0} defined by (1.5).

LEMMA 2.3. In addition to (1.4), assume that Eθ = λ−1 > 0 , then it holds for
every 0 < δ < 1 and every function γ(·) : [0,∞) → (0,∞) with γ(t) ↑ ∞ as t → ∞ that

lim
t→∞

sup
x�γ(t)

P
(∣∣∣N∗(t)

λ t
−1
∣∣∣> δ

)
= 0.
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Proof. Follow the proof of Lemma 2.1 of Chen and Yuen (2012) with slight mod-
ifications. �

From Theorem 3.1 of Geluk and Tang (2009), we get a lemma as follows.

LEMMA 2.4. Let {ξi,1 � i � n} be n nonnegative and UTAI r.v.s with distribu-
tions Vi ∈ L ∩D ,1 � i � n, respectively, then for any n � 1 ,

P

(
n

∑
i=1

ξi > x

)
∼

n

∑
i=1

V i(x).

In the following lemma, we establish a general inequality for the tail probability
of sum of r.v.s with no requirement on any dependence structures, which means that
neither independence, nor a special dependence structure, is required among these r.v.s.
Also, the inequality is sharp in view of the fact that its bound depends on n , and is
useful, particularly when dealing with the tail probability of random sum of heavy-
tailed r.v.s.

LEMMA 2.5. Let {ξi, i � 1} be a sequence of real-valued r.v.s with common dis-
tribution V ∈D . Then for any p > J+

V , there exists some constant C2 > 0 such that for
all x � 0 and n � 1,

P

(
n

∑
i=1

ξi > x

)
� C2n

p+1V (x). (2.1)

Proof. Arbitrarily choose a sufficiently small number x0 > 0. For all n � 1 and
0 � x � x0 ,

P

(
n

∑
i=1

ξi > x

)
� 1

V (x0)
np+1V (x), (2.2)

and for all n � 1 and x > x0 ,

P

(
n

∑
i=1

ξi > x

)
�

n

∑
i=1

P
(

ξi >
x
n

)
= nP

(
ξ1 >

x
n

)
. (2.3)

By Lemma 2.1(ii), for x0 as above, there exists some large positive constant C3 such
that for all x > x0 ,

x−p

V (x)
� C3. (2.4)

By V ∈ D and Lemma 2.1(iii), for any p > J+
V , there exists some large positive con-

stants C1 and D such that, for all x > nD > x0 ,

P
(

ξ1 >
x
n

)
� C1n

pV (x). (2.5)
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By (2.4), (2.5) and V ∈ D , we have that for all x > x0 and n � 1,

P
(

ξ1 >
x
n

)
� 1{x0<x�nD} +P

(
ξ1 >

x
n

)
1{x>nD}

� (nD)p

xp 1{x0<x�nD} +C1n
pV (x)

� Dp x−p

V (x)
1{x0<x�nD}npV (x)+C1n

pV (x)

� C4n
pV (x), (2.6)

where C4 = DpC3 +C1 . Then by (2.3) and (2.6), it follows that for all x > x0 and
n � 1,

P

(
n

∑
i=1

ξi > x

)
� C4n

p+1V (x),

which, along with (2.2) and C2 = C4 +1/V(x0) , shows that relation (2.1) holds for all
x � 0 and n � 1. �

The next lemma implies the closure property of r.v.s satisfying (1.2) under a certain
increasing transformation.

LEMMA 2.6. Consider the compound renewal risk model satisfying Assumptions
H2 and H∗

3 with F ∈D and EZp+1
1 < ∞ for some p > J+

F . If the sequences {Zi, i � 1}
and {Xi j, i � 1, j � 1} are mutually independent, and f (·) is a continuous and strictly
increasing function such that f (x) ↑∞ and x = O(1) f−1(x) , then {Yi = f (∑Zi

j=1 Xi j), i �
1} also satisfy relation (1.2) .

Proof. For any 1 � i < j � n , n � 2, we have that

P(Yi > x,Yj > x)

�
∞

∑
k1=1

∞

∑
k2=1

k1

∑
k=1

k2

∑
k=1

P

(
Xik >

f−1(x)
k1

,Xjk >
f−1(x)

k2

)
P(Zi = k1)P(Zj = k2)

�
∞

∑
k1=1

∞

∑
k2=1

k1

∑
k=1

k2

∑
k=1

P

(
Xik >

f−1(x)
k1k2

,Xjk >
f−1(x)
k1k2

)
P(Zi = k1)P(Zj = k2). (2.7)

By F ∈ D and (2.6), for any p > J+
F , there exists a positive number C4 such that for

all x > x0 > 0,

P(Yj > x) � F( f−1(x)) � 1
C4k

p
1kp

2
·F
(

f−1(x)
k1k2

)
, for any j � 1. (2.8)
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Thus by (2.7), (2.8) and x = O(1) f−1(x) , for any p > J+
F , we have

lim
n→∞

sup
x�αn

sup
1�i< j�n

xP(Yi > x|Yj > x)

� C4 lim
n→∞

sup
x�αn

sup
1�i< j�n

∞

∑
k1=1

∞

∑
k2=1

k1

∑
k=1

k2

∑
k=1

xkp
1kp

2P
(
Xik > f−1(x)

k1k2
,Xjk > f−1(x)

k1k2

)
P
(
Xjk > f−1(x)

k1k2

)
P(Zi = k1)P(Zj = k2)

= C4 lim
n→∞

sup
x�αn

sup
1�i< j�n

∞

∑
k1=1

∞

∑
k2=1

k1

∑
k=1

k2

∑
k=1

xkp+1
1 kp+1

2

f−1(x)
f−1(x)
k1k2

×P

(
Xik >

f−1(x)
k1k2

∣∣∣Xjk >
f−1(x)
k1k2

)
P(Zi = k1)P(Zj = k2)

= 0,

where the last step is due to the dominated convergence theorem and (1.2). Then, we
give the proof of Lemma 2.6. �

For the compound renewal risk model introduced in Section 1, we denote its ag-
gregate claims caused by the first n accidents by

S(n) =
n

∑
i=1

Zi

∑
j=1

Xi j. (2.9)

We now deal with the asymptotic upper bound for the precise large deviations of (2.9),
which will play an important role to prove Theorem 1.2 and is also of its own value.

LEMMA 2.7. Consider the aggregate claims (2.9) caused by the first n accidents
satisfying Assumptions H2, H∗∗

3 and H∗
4 . If F ∈ C and EZ2 < ∞ , then for any γ > 0,

P

(
n

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x

)
� nνF(x) (2.10)

holds uniformly for all x � γn, which is equivalent to

limsup
n→∞

sup
x�γn

P
(

∑n
i=1 ∑Zi

j=1(Xi j − μ) > x
)

nνF(x)
� 1.

Proof. Note that, for any 0 < δ < 1,

P

(
n

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x

)
=

∞

∑
k1=1

· · ·
∞

∑
kn=1

P

(
n

∑
i=1

ki

∑
j=1

(Xi j − μ) > x

)
n

∏
i=1

P(Zi = ki)

=
∞

∑
k1=1

· · ·
∞

∑
kn=1

{
P

(
n

∑
i=1

ki

∑
j=1

(Xi j − μ) > x,
⋃

1�i�n,1� j<k�ki

{Xi j > δx,Xik > δx}
)



ASYMPTOTIC BOUNDS FOR PRECISE LARGE DEVIATIONS 1077

+P

(
n

∑
i=1

ki

∑
j=1

(Xi j − μ) > x,
⋃

1�i<l�n,1� j�ki,1�r�kl

{Xi j > δx,Xlr > δx}
)

+P

(
n

∑
i=1

ki

∑
j=1

(Xi j − μ) > x,
⋂

1�i�n,1� j�ki

{Xi j � δx}
)

+P
( n

∑
i=1

ki

∑
j=1

(Xi j − μ) > x,
⋃

1�i�n,1� j�ki

{Xi j > δx,Xik � δx,Xlr � δx,

1 � k 
= j � ki,1 � l 
= i � n,1 � r � kl}
)} n

∏
i=1

P(Zi = ki)

=
4

∑
i=1

Ii(x,n). (2.11)

For I1(x,n), by F ∈ C ⊂ D and the WUOD property, we have

limsup
n→∞

sup
x�γn

I1(x,n)
nνF(x)

� limsup
n→∞

sup
x�γn

∞

∑
k1=1

· · ·
∞

∑
kn=1

∑
1�i�n,1� j<k�ki

P(Xi j > δx,Xik > δx)
nνF(x)

n

∏
i=1

P(Zi = ki)

� gU(2)
ν

limsup
n→∞

sup
x�γn

∞

∑
k1=1

· · ·
∞

∑
kn=1

∑
1�i�n,1� j<k�ki

P(Xi j > δx)P(Xik > δx)
nF(x)

n

∏
i=1

P(Zi = ki)

� gU(2)
ν

limsup
x→∞

EZ2(F(δx))2

F(x)

� gU(2)EZ2

ν
limsup

x→∞

F(δx)
F(x)

limsup
x→∞

F(δx)

= 0. (2.12)

For I2(x,n), similarly to (2.12), by F ∈ C ⊂ D , WUOD property and (1.3), we have

limsup
n→∞

sup
x�γn

I2(x,n)
nνF(x)

� gU(2)ν
γ

limsup
x→∞

F(δx)
F(x)

limsup
x→∞

xF(δx) = 0. (2.13)

For I3(x,n), set X̃i = min{Xi,δx} , i � 1, then by Lemma 2.2 (i), {X̃i−EX̃i, i � 1} are
still WUOD. Then by Lemma 2.1 (ii), we prove that

limsup
n→∞

sup
x�γn

I3(x,n)
nνF(x)

= limsup
n→∞

sup
x�γn

∞

∑
k1=1

· · ·
∞

∑
kn=1

P
(

∑n
i=1 ∑ki

j=1(X̃i j − μ) > x
)

nνF(x)

n

∏
i=1

P(Zi = ki)
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� limsup
n→∞

sup
x�γn

∞

∑
k1=1

· · ·
∞

∑
kn=1

P
(

∑n
i=1 ∑ki

j=1(X̃i j −EX̃i j) > x
)

nνF(x)

n

∏
i=1

P(Zi = ki)

� C5

ν
lim
x→∞

x−p

F(x)
= 0, (2.14)

where in the second last step we used the following inequality, for some constant C5 >
0,

P

(
n

∑
i=1

ki

∑
j=1

(X̃i j −EX̃i j) > x

)
� C5x

−p

resulting from the proof of Lemma 2.3 of Tang (2006), lemma 2.2 (ii) and the WUOD
property. For I4(x,n), we show that, for some p > J+

F

I4(x,n) �
∞

∑
k1=1

· · ·
∞

∑
kn=1

n

∑
i=1

ki

∑
j=1

P
(
Xi j > δx

) n

∏
i=1

P(Zi = ki) � nνF(δx). (2.15)

Hence, by (2.15) and F ∈ C , we have that

lim
δ↑1

limsup
n→∞

sup
x�γn

I4(x,n)
nνF(x)

� 1. (2.16)

Consequently, substituting (2.12)–(2.14) and (2.16) into (2.11), we get relation (2.10).
�

The last lemma is a restatement of Theorem 1(i) of Kočetova et al. (2009).

LEMMA 2.8. Let the accidents’ inter-arrival times {θi, i � 1} be a sequence of
positive and i.i.d. r.v.s with common mean λ−1 , then it holds for every a > λ and some
b > 1 that

lim
t→∞ ∑

n>at
bnP(τn � t) = 0.

3. Proofs of main results

In this section, we give the proofs of our main results, where all limit relationships
are taken as t →∞ unless stated otherwise. For simplicity, we denote by �y� the integer
part of a real number y .

Proof of Theorem 1.1. For any, but small, 0 < δ < 1, we have

P(S(t) > x) � ∑
(1−δ )λ t�n�(1+δ )λ t

P

(
n

∑
i=1

Zi

∑
j=1

Xi j > x,N(t) = n

)

� ∑
(1−δ )λ t�n�(1+δ )λ t

n

∑
i=1

P

(
Zi

∑
j=1

Xi j > x,N(t) = n

)
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− ∑
(1−δ )λ t�n�(1+δ )λ t

∑
1�l<m�n

P

(
Zl

∑
j=1

Xl j > x,
Zm

∑
j=1

Xmj > x,N(t) = n

)
= I1(x,t)− I2(x,t). (3.1)

For I1(x, t) , by (1.6), we have that

I1(x, t) = ∑
(1−δ )λ t�n�(1+δ )λ t

n

∑
i=1

∞

∑
k=1

P(N(t) = n|Zi = k)P

(
k

∑
j=1

Xi j > x

)
P(Zi = k)

= ∑
(1−δ )λ t�n�(1+δ )λ t

n

∑
i=1

P(N∗(t) = n)P

(
Zi

∑
j=1

Xi j > x

)
, (3.2)

where {N∗(t), t � 0} is defined by (1.5). By the dominated convergence theorem, and
Lemmas 2.4 and 2.5, we obtain that for any i � 1,

P

(
Zi

∑
j=1

Xi j > x

)
=

∞

∑
k=1

P

(
k

∑
j=1

Xi j > x

)
P(Zi = k) ∼ νF(x). (3.3)

By (3.2), (3.3) and Lemma 2.3, it holds uniformly for all x � γt that

I1(x,t) � (1− δ )λ νtF(x)P
(∣∣∣∣N∗(t)

λ t
−1

∣∣∣∣< δ
)

∼ (1− δ )λ νtF(x). (3.4)

For I2(x, t), by Lemma 2.6, (3.3) and Assumption H∗
4 , it holds uniformly for all x � γt

that

I2(x, t) � ∑
1�l<m�(1+δ )λ t

∑
(1−δ )λ t�n�(1+δ )λ t

P

(
Zl

∑
j=1

Xl j > x,
Zm

∑
j=1

Xmj > x,N(t) = n

)

� ∑
1�l<m�(1+δ )λ t

P

(
Zl

∑
j=1

Xl j > x,
Zm

∑
j=1

Xmj > x

)

= o(1)((1+ δ )λ t)2x−1νF(x) = o(1)
λ t
x

λ νtF(x) = o(1)λ νtF(x). (3.5)

So, we substitute (3.4) and (3.5) into (3.1) to obtain that, uniformly for all x � γt,

P(S(t) > x) � (1− δ )λ νtF(x),

which, along with the arbitrariness of 0 < δ < 1, leads to relation (1.7).

Proof of Theorem 1.2. For any, but small, 0 < δ < 1, we obtain that

P

(
N(t)

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x

)
= P

(
N(t)

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x,N(t) � (1+ δ )λ t

)

+P

(
N(t)

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x,N(t) > (1+ δ )λ t

)
= I3(x,t)+ I4(x,t). (3.6)
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For I3(x, t), by Lemma 2.7, it holds uniformly for all x � γt that

I3(x,t) � P

(
(1+δ )λ t

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x

)

= P

(�(1+δ )λ t�
∑
i=1

Zi

∑
j=1

(Xi j − μ) > x

)
� �(1+ δ )λ t�νF(x)
� (1+ δ )λ νtF(x). (3.7)

For I4(x, t) , by (2.6) with ξ1 = ∑Z1
j=1 X1 j , (3.3) and Lemma 2.8, we get that for any

p > J+
F ,

I4(x, t) � ∑
n>(1+δ )λ t

P

(
n

∑
i=1

Zi

∑
j=1

Xi j > x,τn � t

)

� ∑
n>(1+δ )λ t

n

∑
i=1

P

(
Zi

∑
j=1

Xi j >
x
n
,τn � t

)

� ∑
n>(1+δ )λ t

nP

(
Z1

∑
j=1

X1 j >
x
n

)
P(τn−1 � t)

� C6P

(
Z1

∑
j=1

X1 j > x

)
∑

n>(1+δ )λ t

np+1P(τn−1 � t)

∼ C6νF(x) ∑
n>(1+δ )λ t

np+1P(τn−1 � t)

= o(1)F(x)
= o(1)tF(x) (3.8)

where C6 > 0 is a constant depending on the distribution of the random sum ∑Z1
j=1 X1 j .

Hence, substituting (3.7) and (3.8) into (3.6) yields that, uniformly for all x � γt,

P
(N(t)

∑
i=1

Zi

∑
j=1

(Xi j − μ) > x
)

� (1+ δ )λ νtF(x). (3.9)

By (3.9), along with the arbitrariness of 0 < δ < 1, we get relation (1.8).

Acknowledgement. The authors would like to thank the anonymous referee for
his/her valuable comments on this paper. This research was partly supported by the
National Natural Science Foundation of China (No. 11871289), the Postdoctoral Sci-
ence Foundation of China (No. 2015M580415), the Postdoctoral Science Foundation
of Jiangsu Province of China (No. 1501004B), and the Humanities and Social Sciences
Foundation of the Ministry of Education of China (No. 20YJCZH034).



ASYMPTOTIC BOUNDS FOR PRECISE LARGE DEVIATIONS 1081

RE F ER EN C ES

[1] N. BINGHAM, C. GOLDIE AND J. TEUGELS, Regular variation, Cambridge University Press, Cam-
bridge, 1987.

[2] Y. CHEN AND K. YUEN, Precise large deviations of aggregate claims in a size-dependent renewal
risk model, Insur. Math. Econ., 51 (2): 457–461, 2012.

[3] Y. CHEN, K. YUEN AND K. NG, Precise large deviations of random sums in presence of negative
dependence and consistent variation, Methodol. Comput. Appl. Probab., 13 (4): 821–833, 2011.

[4] D. CLINE AND T. HSING, Large deviation probabilities for sums and maxima of random variables
with heavy or subexponential tails, Texas A&M University, 1991.

[5] D. DENISOV, S. FOSS, AND D. KORSHUNOV, Tail asymptotics for the supremum of a random walk
when the mean is not finite, Queu. Syst., 46: 15–33, 2004.
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