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SOME NECESSARY AND SUFFICIENT

CONDITIONS FOR A VMO FUNCTION

GUANGQING WANG AND JINHUI LI ∗
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Abstract. Let L̃p,λ (Rn) (WL̃q,λ (Rn)) be the (weak) modified Morrey spaces. In this paper, for
some appropriate indices p,λ and q , we firstly prove that the commutator [b,Iα ] , generated by
the symbol b and the fractional intergal operator Iα , is bounded from L̃p,λ (Rn) to WL̃q,λ (Rn)
if and only if b belongs to VMO(Rn) . Besides, for the fractional maximal commutator Mα,b ,
the result still holds. Moreover, commutators of fractional maximal functions with symbol b are
investigated. More precisely, it is shown that commutators [b,Mα ] is bounded from L̃p,λ (Rn)
to WL̃q,λ (Rn) if and only if b belongs to VMO(Rn) with the negative part of b equals to zero
almost everywhere.

1. Introduction

In 1961, John and Nirenberg [1] defined the Bounded Mean Oscillation spaces
BMO(Rn) . Let Q = Q(x,r) be a cube in R

n centered at x with sides parallel to the
axes having sidelength r. A locally integrable function f is said to be in BMO spaces
if

‖ f‖BMO(Rn) = sup
r>0,x∈Rn

1
|Q(x,r)|

∫
Q(x,r)

| f (y)− fQ|dy < ∞,

where fQ means the average of f on Q. And a function f in BMO(Rn) is said to have
vanishing mean oscillation, or to belong to the Sarason class VMO(Rn) (see [2]), if

lim
ρ→0

η(ρ) = 0,

where η(ρ) (ρ > 0), the VMO modulus of f , is defined by

η(ρ) = sup
r�ρ ,x∈Rn

1
|Q(x,r)|

∫
Q(x,r)

| f (y)− fQ|dy.

It is obvious that VMO space contains all uniformly continuous functions in BMO(Rn)
and is a closed subspace of BMO space (see [2]).
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Let Iα (0 < α < n) be the fractional integral operator of order α , defined by

Iα f (x) :=
∫

Rn

f (y)
|x− y|n−α dy.

For a locally integrable function b , Chanillo [3] proved that if b ∈ BMO(Rn) , the
commutator

[b, Iα ] f (x) := b(x)Iα f (x)− Iα(b f )(x),

is bounded from Lebesgue spaces Lp(Rn) to Lq(Rn) with 1 < p < n/α and 1/q =
1/p−α/n and that the reverse is also valid, if n−α is even. A complete characteri-
zation of BMO(Rn) via the commutator [b, Iα ] was shown by Ding [4]. Similarly, the
boundedness of [b, Iα ] from classical (or generalized) Morrey spaces to itself [5, 6, 7, 4]
or from Morrey spaces to its predual [8] can be used to characterized the BMO spaces
as well. And there are a number of classical results that demonstrate BMO spaces are
the right collections to do harmonic analysis on the boundedness of commutators, see
[9, 10, 11, 12].

Then, a natural question occurs to us: does there exist a kind of boundedness
of [b, Iα ] to characterize the VMO(Rn) spaces? In this paper, we will give an affir-
mative answer. We show that b ∈ VMO(Rn) if and only if the commutator [b, Iα ]
is bounded from the modified Morrey spaces L̃p,λ (Rn) to the weak modified Morrey

spaces WL̃q,λ (Rn) .
Another subject of this paper is to show characterization of the VMO spaces via

fractional maximal commutator and commutator of factional maximal functions that
are defined by

Mα ,b f (x) := Mα
(
(b(x)−b) f

)
(x)

and
[b,Mα ] f (x) := Mα(b f )(x)−b(x)Mα f (x),

respectively, where Mα denotes fractional maximal function given by

Mα f (x) = sup
t>0

|B(x,t)|−1+ α
n

∫
B(x,t)

| f (y)|dy.

What should be emphasized here is that the operators Mα ,b and [b,Mα ] are different
from each other. For example, Mα ,b is positive and sublinear, but [b,Mα ] is neither
positive nor sublinear. Both of them play an important role in the study of commutators
of singular operators with BMO symbols and have been investigated, intensively (see
[14, 15, 16, 17, 18, 19, 20, 26, 27]). One of the applications is the characterization of
BMO functions via the strong-type boundedness of them acting on Morrey spaces or
Lebesgue spaces. Readers interested can refer to [15, 20, 27, 26] for instance. In this
paper, we apply weak-type boundedness for character VMO functions; More precisely,
it is shown that the commutator Mα ,b is bounded from L̃p,λ (Rn) to WL̃q,λ (Rn) if and

only if b is in VMO(Rn) , and that the commutator [b,Mα ] is bounded from L̃p,λ (Rn)
to WL̃q,λ (Rn) if and only if b is in VMO(Rn) with the negative part of b equals to
zero almost everywhere. Therefore, our results imply that both Mα ,b and [b,Mα ] have
properties that the strong-type and weak-type boundedness are equal on the modified
Morrey spaces.
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2. Notations and preliminaries

Throughout the paper, the letter C denote a positive constant that may vary from
line to line but remains independent of the main variables. We write A � B to indicate
that A is majorized by B times a constant independent of A and B , and that Q = Q(x,r)
denotes the cube centered at x with side length r . Given a Lebesgue measurable set E ,
χE will denote the characteristic function of E and |E| is the Lebesgue measure of E .

DEFINITION 2.1. (see [21]) Let 1 � p < ∞, 0 � λ � n and [r]1 = min(1,r). We
denote by L̃p,λ (Rn) the modified Morrey spaces, and by WL̃p,λ (Rn) the weak modified
Morrey spaces, as the set of locally integrable function f , with the finite norms

‖ f‖L̃p,λ (Rn) = sup
x∈Rn,r>0

(
[r]−λ

1

∫
Q(x,r) | f (y)|pdy

) 1
p ,

‖ f‖WL̃p,λ (Rn) = sup
t>0

t
(

sup
x∈Rn,r>0

[r]−λ
1 |{y ∈ Q(x,r) : | f (y)| > t}|) 1

p ,

respectively.

For convenience, we denote L̃p,λ := L̃p,λ (Rn) and WL̃p,λ := WL̃p,λ (Rn) . From
[21], we have

L̃p,λ ⊂� Lp,λ ∩Lp and max(‖ f‖Lp,λ ,‖ f‖Lp) � ‖ f‖L̃p,λ
, (2.1)

where Lp,λ denotes the classical Morrey spaces whose definitions can be found in many
papers such as [5, 6, 7, 8, 12]. And, the opposite of (2.1) is true as well [13, Lemma
3.1]. So the following lemma is valid.

LEMMA 2.1. Let 1 � p < ∞ and 0 � λ � n. Then

L̃p,λ = Lp,λ ∩Lp and ‖ f‖L̃p,λ
= max(‖ f‖Lp,λ ,‖ f‖Lp).

Given function f ∈ L1
loc(R

n). Denote by M� the Sharp Maximal Function:

M� f (x) = sup
Q	x

1
|Q|

∫
Q
| f (y)− fQ|dy.

And Strömberg related commutators with Sharp Maximal function in [22], firstly. Us-
ing M� to act operator [b, Iα ] , Shirai [5] get the following lemma.

LEMMA 2.2. (see [5]) Let 0 < α < n, 1 < r < ∞ and b ∈ BMO(Rn) . Then there
exists a constant C � 0 , independent of b and f , such that

M�([b, Iα ] f )(x) � C‖b‖BMO(Rn)
{
Iα(| f |)(x)+ Iα ,r(| f |)(x)

}
,

for almost all x and every f ∈C∞
c (Rn) , where Iα ,r(| f |)(x) = (Irα(| f |)r(x))

1
r .
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The bounedeness of Mα ,b can be easily obtained by the inequality Mα ,b f (x) �
Iα ,b f (x), where the operator Iα ,b , having similar propertieswith the commutator [b, Iα ] ,
is defined as follows

Iα ,b f (x) =
∫

Rn

|b(x)−b(y)|
|x− y|n−α f (y)dy.

LEMMA 2.3. Let 0 < α < n, 1 < r < ∞ and b ∈ BMO(Rn) . Then there exists a
constant C � 0 , independent of b and f , such that

M�(Iα ,b f )(x) � C‖b‖BMO(Rn)
{
Iα(| f |)(x)+ Iα ,r(| f |)(x)

}
for almost all x and every f ∈C∞

c (Rn) , where Iα ,r(| f |)(x) = (Irα(| f |)r(x))
1
r .

The proof of the lemma is similar to the proof of Lemma 4.2 in [5] and be omitted
here.

LEMMA 2.4. Let 0 < λ < n and 1 < p < ∞ . Then there exists a constant C � 0 ,
independent of f , such that

‖M f‖L̃p,λ
� C‖M� f‖L̃p,λ

,

for almost all x and every f ∈ L̃p,λ .

Proof. From Lemma 2.1, the inequalities ‖M f‖Lp,λ � C‖M� f‖Lp,λ (see [6]) and

‖M f‖Lp � C‖M� f‖Lp (see [23]), it is obvious that

‖M f‖L̃p,λ
� max(C1‖M� f‖L̃p,λ

,C2‖M� f‖L̃p,λ
) � C‖M� f‖L̃p,λ

,

which implies the proof is completed. �
To get b ∈ VMO(Rn) by weak-type boundedness of [b, Iα ], the following lemma

will be our main tool.

LEMMA 2.5. Let 0 < λ < n and 1 � p′ < p. If f ∈WL̃p,λ , then, for any cube
Q = Q(x,r) , we have

∫
Q
| f (y)|p′dy � rn− np′

p [r]
λ p′
p

1 ‖ f‖p′
WL̃p,λ

.

Proof. Let Q be a fixed cube and f ∈WL̃p,λ . Choose N = |Q|− 1
p [r]

λ
p
1 ‖ f‖WL̃p,λ

,

then ∫
Q
| f (y)|p′dy =

∫ ∞

0
t p′−1|{y ∈ Q : | f (y)| > t}|dt

=
(∫ N

0
+

∫ ∞

N

)
t p′−1|{y ∈ Q : | f (y)| > t}|dt



SOME NECESSARY AND SUFFICIENT CONDITIONS FOR A VMO FUNCTION 1087

� |Q|Np′ +[r]λ1 Np′−p‖ f‖p
WL̃p,λ

= rn− np′
p [r]

λ p′
p

1 ‖ f‖p′
WL̃p,λ

,

which implies that the proof of the lemma is completed. �

REMARK 2.1. In Lemma 2.4, if 0 < λ ′ < n satisfying n−λ ′
p′ < n−λ

p , then WL̃p,λ ⊂
L̃p′,λ ′ . Moveover, ‖ f‖L̃p′ ,λ ′

� ‖ f‖WL̃p,λ
. In fact, from lemma 2.4, it follows that

( 1

[r]λ ′
1

∫
Q
| f (y)|p′dy

) 1
p′ � r

n
p′ −

n
p [r]

λ
p − λ ′

p′
1 ‖ f‖WL̃p,λ

� ‖ f‖WL̃p,λ
,

which implies the conclusion.

3. Main results

Next, we show our main results as well as their proofs. The first results about the
modified Morrey estimates for the Riesz potential Iα can be deduced by the result of
Guliyev et al. [21, Theorem 2]. And we give a new proof here.

THEOREM 3.1. Let 0 < α < n, 0 � λ < n−α , 1 < p < (n−λ )/α and 1/q =
1/p−α/(n−λ ) . Then Iα is bounded from L̃p,λ to L̃q,λ .

Proof. From Lemma 2.1, the (Lp,λ ,Lq,λ ) and (Lp,Lq ) boundedness of Iα , the
conclusion follows immediately. �

COROLLARY 3.1. Let 0 < α < n, 0 � λ < n−α , 1 < p < (n−λ )/α and 1/q =
1/p−α/(n−λ ) . Then Mα is bounded from L̃p,λ to L̃q,λ .

Now we state our results about commutator [b, Iα ] with a symbol b , that is, the
characterization of VMO spaces via the commutators [b, Iα ] , Mα ,b and [b,Mα ] .

THEOREM 3.2. Let 0 < α < n, 0 < λ < n−α , 1 < p < (n−λ )/α and 1/q =
1/p−α/(n−λ ) . Then the following statements are equivalent:

1. b ∈ VMO(Rn) .

2. [b, Iα ] is bounded from L̃p,λ to L̃q,λ .

3. [b, Iα ] is bounded from L̃p,λ to WL̃q,λ .

Proof. Since that (2) ⇒ (3) is clear, it suffices to prove the following assertions.
(1) ⇒ (2) : Let b ∈ VMO(Rn) , then b ∈ BMO(Rn) . From Lemma 2.1, the

(Lp,λ ,Lq,λ ) and (Lp,Lq ) boundedness of [b, Iα ] , the conclusion follows immediately
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(3) ⇒ (1) : Follow the method in [22]. Choose z0 ∈ R
n\{0} and δ > 0 such that

|x|n−α has an absolutely convergent Fourier series in the cube Q(z0,δ ) ,

|x|n−α = ∑
m

amei〈vm,x〉,

with ∑m |am| < ∞ , where the exact form of the vectors vm is unrelated, since |x|n−α ∈
C∞(Q(z0,δ )) . Set z1 = δ−1z0. If |z− z1| < √

n , we have the expansion

|z|n−α = δ α−n|δ z|n−α = δ α−n ∑
m

amei〈vm,δ z〉.

Let Q0 = Q(x0,r) be a fixed cube. we consider f = χQ0 . It is clear that

‖χQ0‖L̃p,λ = r
n
p [r]

− λ
p

1 . (3.1)

Denote Q′ = Q(x0− rz1,r) . Then, for any x,y ∈ Q and z ∈ Q′ ,

∣∣∣x− y
r

− z1

∣∣∣ �
∣∣∣x− x0

r

∣∣∣+ ∣∣∣y− (x0− rz1)
r

∣∣∣ <
√

n.

Let s(x) = sgn(
∫
Q′(b(x)−b(y))dy) . Then

1
|Q|

∫
Q
|b(x)−bQ′ |dx

= δ α−n 1
|Q|2

∫
Q

∫
Q′

s(x)(b(x)−b(y))rn−α |x− y|α−n
∣∣∣(x− y)δ

r

∣∣∣n−α
dydx

= Cr−α−n∑
m

am

∫
Q

∫
Rn

(b(x)−b(y))|x− y|α−nei〈vm, δ
r x〉s(x)χQ(x)e−i〈vm, δ

r y〉χQ′(y)dydx.

Set gm(y) = e−i〈vm, δ
r y〉χQ′(y) and hm(x) = ei〈vm, δ

r x〉s(x)χQ(x), then

1
|Q|

∫
Q
|b(x)−bQ′ |dx =

C

|Q|1+α/n ∑
m

am

∫
Q

∫
Rn

(b(x)−b(y))|x− y|α−ngm(y)hm(x)dydx

=
C

|Q|1+α/n ∑
m

am

∫
Q
[b, Iα ](gm)(x)hm(x)dx.

Choose 1 < q′ < q . By the Lemma 2.5 and (3.1), it follows that

1
|Q|

∫
Q
|b(x)−bQ|dx � 2

|Q|
∫

Q
|b(x)−bQ′ |dx

� r
−α− n

q′ ∑
m
|am|

(∫
Q
|[b, Iα ](gm)(x)|q′dx

) 1
q′

� r
−α− n

q′ ∑
m
|am|r

n
q′ −

n
q [r]

λ
q
1 ‖[b, Iα ](gm)‖WL̃q,λ
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� r−α− n
q [r]

λ
q
1 ‖χQ‖L̃p,λ ∑

m
|am|‖[b, Iα ]‖L̃p,λ→WL̃q,λ

� min(r(n−λ )( 1
p− 1

q− α
n−λ ),rn( 1

p− 1
q− α

n )).

Let r < 1. Observing that

1
p
− 1

q
− α

n
>

1
p
− 1

q
− α

n−λ
= 0,

we have

1
|Q|

∫
Q |b(x)−bQ|dx � min

(
1,rn( 1

p− 1
q− α

n )) = rn
(

1
p− 1

q− α
n

)
→ 0 as r → 0,

which implies b ∈ VMO(Rn) . This completes the proof. �

THEOREM 3.3. Let 0 < α < n, 0 < λ < n−α , 1 < p < (n−λ )/α and 1/q
= 1/p−α/(n−λ ) . Then the following statements are equivalent:

1. b ∈ VMO(Rn) .

2. Mα ,b is bounded from L̃p,λ to L̃q,λ .

3. Mα ,b is bounded from L̃p,λ to WL̃q,λ .

Proof. It suffices to show the following assertions.
(1) ⇒ (2) : Let 1 < r < p . By Lemma 2.4 and 2.3, it is concluded that

‖Mα ,b f‖L̃q,λ
� ‖M(Iα ,b f )‖L̃q,λ

� ‖M�(Iα ,b f )‖L̃q,λ

� C‖b‖BMO(Rn)
{‖Iα(| f |)‖L̃q,λ

+‖Iαr(| f |r)‖
1
r

L̃ q
r ,λ

)
}

� C‖b‖BMO(Rn)‖ f‖L̃p,λ
.

(3) ⇒ (1) : For any x ∈ Q , we have

|Q| α
n |b(x)−bQ| � 1

|Q|1− α
n

∫
Q
|b(x)−b(y)|dy

� sup
x∈Q′

1

|Q′|1− α
n

∫
Q′∩Q

|b(x)−b(y)|dy

= Mα ,bχQ(x).

Let N > 0 and 0 < δ � 1. Noticing q > p > 1, we have

∫
Q
|b(x)−bQ|dx = δ

{∫ N

0
+

∫ ∞

N

}
|{x ∈ Q : |b(x)−bQ| > t}|dt

� |Q|N +[r]λ1 r−αq‖Mα ,bχQ‖q
WL̃q,λ N1−q
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� |Q|N +[r]
λ− λq

p
1 r−αq+ nq

p N1−q

� min(rnN + rλ− λq
p −αq+ nq

p N1−q,rnN + r−αq+ nq
p N1−q),

Observing that rnN + rλ− λq
p −αq+ nq

p N1−q and rnN + r−αq+ nq
p N1−q gain the minimal

value with respect to N , at

N = r
n−λ

p − n−λ
q −α and N = r

n
p− n

q−α ,

respectively. Then we have

1
|Q|

∫
Q
|b(x)−bQ|dx � min(r(n−λ )( 1

p− 1
q− α

n−λ ),rn( 1
p− 1

q− α
n )).

Hence we obtain that b ∈ VMO(Rn) . The proof of the theorem is completed. �
In order to investigate the boundedness of [b,Mα ] on Morrey spaces, we need the

following relationships between [b,Mα ] and Mα ,b.

LEMMA 3.1. Let b be any non-negative locally integral function in R
n . Then

|[b,Mα ] f (x)| � Mα ,b f (x)

for all f ∈ L1
loc(R

n) .

Proof. Since the pointwise estimate |Mα f (x)−Mαg(x)| � Mα ( f − g)(x) holds
for any f ,g ∈ L1

loc(R
n) , we can write

|[b,Mα ] f (x)| = |Mα(b f )(x)−b(x)Mα f (x)| = |Mα(b f )(x)−Mα(b(x) f )(x)|
� |Mα

(
b f −b(x) f

)
(x)| = Mα ,b f (x),

for any non-negative function b . �
Combining to Theorem 3.3, this lemma easily yields the following corollaries.

COROLLARY 3.2. Let 0 < α < n, 0 < λ < n−α , 1 < p < (n−λ )/α and 1/q =
1/p−α/(n−λ ) . If non-negative function b is in BMO(Rn) , then [b,Mα ] is bounded
from L̃p,λ to L̃q,λ .

Also, we need introduce the following tool

Mα ,Q f (x) = sup
Q0	x,Q0⊂Q

1

|Q0|1− α
n

∫
Q0

| f (y)|dy.

When α = 0, we denote MQ = M0,Q that is used by many people (see [24, 20, 25, 26,
28] for instance). Denote by b+ =max{b,0} and b− =−min{b,0} . Then b = b+−b−
and |b| = b+ +b−.
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THEOREM 3.4. Let 0 < α < n, 0 < λ < n−α , 1 < p < (n−λ )/α and 1/q =
1/p−α/(n−λ ) . Then the following statements are equivalent:

1. b ∈ VMO(Rn) and b−(x) = 0 a.e. x ∈ R
n .

2. [b,Mα ] is bounded from L̃p,λ to L̃q,λ .

3. [b,Mα ] is bounded from L̃p,λ to WL̃q,λ .

4. For any 0 < δ � 1 , we have

lim
|Q|→0

1
|Q|

∫
Q
|b(x)−|Q|− α

n Mα ,Qb(x)|δ dx = 0.

Proof. (1) ⇒ (2) : Since (2) ⇒ (3) is clear, suffices to prove the following asser-
tions. For b ∈VMO(Rn) and b−(x) = 0 a.e. x ∈ R

n , we have

|[b,Mα ] f (x)| � |[Mα , |b|] f (x)| � Mα ,|b| f (x) � Mα ,b f (x).

So, (2) follows from Theorem 3.3.
(3) ⇒ (4) : Let Q be a fixed cube. We have (see (2.4) in [27])

Mα χQ(x) = Mα ,QχQ(x) = |Q| α
n , Mα(bχQ)(x) = Mα ,Qb(x), ∀x ∈ Q.

Choose N = rn/p−n/q . Similar to the proof of (3) ⇒ (1) in Theorem 3.3, we have

|Q|−1
∫

Q
|b(x)−|Q|− α

n Mα ,Qb(x)|δ dx

= |Q|−1− δ α
n

∫
Q
|b(x)Mα χQ(x)−Mα ,Q(bχQ)(x)|δ dx

= δ |Q|−1− δ α
n

{∫ N

0
+

∫ ∞

N

}
tδ−1|{x ∈ Q : |[b,Mα ]χQ(x)| > t}|dt

� |Q|− δ α
n Nδ + r−n−δα [r]λ1 ‖[b,Mα ] f‖q

WL̃q,λ
Nδ−q

� r−δαNδ + r−n−δα [r]λ1 ‖χQ‖q
L̃p,λ

Nδ−q

� min(r−δαNδ + rλ−n−δα+ nq
p − λq

p Nδ−q,r−δαNδ + r−n−δα+ nq
p Nδ−q).

Moreover, it can be seen that

r−δαNδ + rλ−n−δα+ nq
p − λq

p Nδ−q and r−δαNδ + r−n−δα+ nq
p Nδ−q

gain the minimal value with respect to N , at

N = r
n−λ

p − n−λ
q and N = r

n
p− n

q ,
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respectively. Then we get

|Q|−1
∫

Q
|b(x)−|Q|− α

n Mα ,Qb(x)|δ dx � min(rδ (n−λ )( 1
p− 1

q− α
n−λ ),rδn( 1

p− 1
q− α

n )).

Similarly, let r < 1. The fact

1
p
− 1

q
− α

n
>

1
p
− 1

q
− α

n−λ
= 0,

yields

|Q|−1 ∫
Q |b(x)−|Q|− α

n Mα ,Qb(x)|δ dx � rn
(

n
p− n

q− α
n

)
→ 0 as r → 0.

(4) ⇒ (1) : Take δ = 1. Let E = {x ∈ Q : b(x) � bQ} and F = {x ∈ Q : b(x) >
bQ} . Then

∫
E |b(x)−bQ|dx =

∫
F |b(x)−bQ|dx .

Observing b(x) � bQ � |bQ| � |Q|− α
n Mα ,Qb(x) for any x ∈ E , we have that

1
|Q|

∫
Q
|b(x)−bQ|dx =

2
|Q|

∫
E
|b(x)−bQ|dx

=
2
|Q|

∫
E
|b(x)−|Q|− α

n Mα ,Qb(x)|dx

=
2
|Q|

∫
Q
|b(x)−|Q|− α

n Mα ,Qb(x)|dx

and that b ∈ VMO(Rn) follows immediately.
Now we show that b−(x) = 0 a.e. x ∈ R

n . Let Q = Q(x0,r) be a fixed cube. Note
that |b| � MQb in Q . Therefore, in Q , we have

0 � b− = |b|−b+ � MQb−b+ +b− = MQb−b,

which follows that

1
|Q|

∫
Q
|b−(x)|dx

� 1
|Q|

∫
Q
|MQb(x)−b(x)|dx

� 1
|Q|

∫
Q
|b(x)−|Q|− α

n Mα ,Qb(x)|dx+
1
|Q|

∫
Q
||Q|− α

n Mα ,Qb(x)−MQb(x)|dx

=: M1 +M2.

It is clear that M1 → 0 as |Q|→ 0 (follows from the statement (4)). So, in the following
we only show M2 → 0 as |Q| → 0.

Also, the fact holds in Q that MQb(x) = M(bχQ)(x) , MχQ(x) = MQχQ(x) =
χQ(x) = 1, Mα ,Qb(x) = Mα (bχQ)(x) and |Q| α

n = Mα χQ(x) . Therefore, we have

M2 =
1

|Q|1+ α
n

∫
Q
|Mα(|b|χQ)(x)−|b(x)|Mα χQ(x)

+|b(x)|Mα χQ(x)MχQ(x)−Mα χQ(x)M(|b|χQ)(x)|dx
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=
1

|Q|1+ α
n

∫
Q
|[Mα , |b|]χQ(x)−Mα χQ(x)[M, |b|]χQ(x)|dx

� 1

|Q|1+ α
n

∫
Q
|[Mα , |b|]χQ(x)|dx+

1

|Q|1+ α
n

∫
Q
|Mα χQ(x)[|b|,M]χQ(x)|dx

=: M2,1 +M2,2.

Firstly, from Hölder’s inequality and Corollary 3.2, it follows that

M2,1 � r−α− n
q [r]

λ
q
1 ‖[|b|,Mα ]χQ‖L̃q,λ

� r−α− n
q [r]

λ
q
1 ‖χQ‖L̃p,λ

� min(r(n−λ )( 1
p− 1

q− α
n−λ ),rn( 1

p− 1
q− α

n )).

So, we get M2,1 → 0 as r → 0.
Then by Hölder’s inequality with exponent q and q′ , we have

M2,2 � 1

|Q|1+ α
n

(∫
Q
|Mα χQ(x)|qdx

) 1
q
(∫

Q
|[|b|,M]χQ(x)|q′dx

) 1
q′

� r−n−α [r]
λ
q + λ

q′
1 ‖Mα χQ‖L̃q,λ

‖[|b|,M]χQ‖L̃q′ ,λ
.

Besides,

M2,2 � r−n−α [r]λ1 ‖χQ‖L̃p,λ
‖χQ‖L̃q′,λ

� min(r(n−λ )( 1
p− 1

q− α
n−λ ),rn( 1

p− 1
q− α

n )) → 0

as r → 0,

by corollaries 3.1 and 3.2. Hence, M2 → 0 as |Q| → 0. Therefore, for any cube Q ,

1
|Q|

∫
Q |b−(x)|dx → 0 as |Q| → 0,

that is, b−(x) = 0 a.e. x ∈ R
n follows from Lebesgue’s differentiation theorem. �
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