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ON UNICITY OF MEROMORPHIC FUNCTIONS

CONCERNING THE SHIFTS AND DERIVATIVES

CHAO MENG ∗ AND GANG LIU

(Communicated by S. Hencl)

Abstract. This paper is devoted to studying the sharing value problem for the derivative of a
meromorphic function with its shift and q -difference. The results in the paper improve and
generalize the recent result due to Qi, Li and Yang [28].

1. Introduction, preliminaries and main results

By a meromorphic function we shall always mean a non-constant meromorphic
function in the complex plane. By a constant we shall always mean a complex valued
constant. Let k be a positive integer or infinity and a ∈ C∪{∞} . Set E(a, f ) = {z :
f (z)− a = 0} , where each a -point of f with multiplicity k is counted k times in the
set. If each a -point of f with multiplicity k are only counted once, then we denote the
set by E(a, f ) .

Let f and g be two non-constant meromorphic functions. If E(a, f ) = E(a,g) ,
then we say that f and g share the value a CM (counting multiplicities); if E(a, f ) =
E(a,g) , then we say that f and g share the value a IM (ignoring multiplicities). We
denote by Ek)(a, f ) the set of all a -points of f with multiplicities not exceeding k ,
where an a -point is counted according to its multiplicity. Also we denote by Ek)(a, f )
the set of distinct a -points of f with multiplicities not greater than k . We denote by
Nk)(r,1/( f − a)) the counting function for zeros of f − a with multiplicity less than
or equal to k , and by Nk)(r,1/( f − a)) the corresponding one for which multiplicity
is not counted. Let N(k(r,1/( f − a)) be the counting function for zeros of f − a with
multiplicity at least k and N(k(r,1/( f −a)) the corresponding one for which multiplic-
ity is not counted. We assume that the reader is familiar with the standard definitions
and notations used in the Nevanlinna value distribution theory, such as T (r, f ) , m(r, f ) ,
N(r, f ) , N(r, f ) , S(r, f ) (see [14] page 4, 34 and 42 or [36] page 6).

Around 2001, I. Lahiri introduced the notion of weighted sharing, which measures
how close a shared value is to being shared CM or to being shared IM. The definition
is as follows.
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DEFINITION 1.1. ([16], page 195) For a complex number a ∈ C∪{∞} , we de-
note by Ek(a, f ) the set of all a -points of f where an a -point with mutiplicity m is
counted m times if m � k and k + 1 times if m > k . If Ek(a, f ) = Ek(a,g) for a
complex number a ∈ C∪{∞} we say that f and g share the value a with weight k .

The definition implies that if f and g share a value a with weight k , then z0

is a zero of f − a with multiplicity m(� k) if and only if it is a zero of g− a with
multiplicity m(� k) and z0 is a zero of f − a with multiplicity m(> k) if and only if
it is a zero of g− a with multiplicity n(> k) , where m is not necessarily equal to n .
We write f and g share (a,k) to mean that f and g share the value a with weight k .
Clearly if f and g share (a,k) then f and g share (a, p) for all integer p , 0 � p � k .
Also we note that f and g share a value a IM or CM if and only if f and g share
(a,0) or (a,∞) respectively.

Mermorphic functions sharing values with their derivatives has become a subject
of great interest in uniqueness theory. The paper by Rubel and Yang is the starting point
of this topic, along with the following.

THEOREM 1.2. ([30], page 101) Let f be a non-constant entire function. If f
and f ′ share two distinct finite values CM, then f = f ′ .

Now one may ask the following question: Can we change the number 2 of shared
values to 1 in the Theorem 1.2? The function f = eez ∫ z

0 e−et
(1− et)dt from [4] show

that the answer is negative. Indeed, clearly f and f ′ share 1 CM but f �= f ′ . In a
special case, we recall a well-known conjecture by Brück:

CONJECTURE 1.3. ([4], page 22) Let f be a non-constant entire function such
that hyper-order ρ2( f ) := limsupr→∞

log logT (r, f )
logr is not a positive integer or infinity. If

f and f ′ share the finite value a CM, then f ′−a
f−a = c, where c is nonzero constant.

The conjecture has been verified in the special cases when a = 0 [4], or when f
is of finite order [12], or when ρ2( f ) < 1

2 [7]. Many results have been obtained for this
and related topics (See [1], [5], [11], [17], [18], [23]–[27], [31], [32], [34], [35], [37],
[39], [41]–[44] and the references therein).

Heittokangas et al. considered analogues of Brück’s conjecture for meromorphic
functions concerning their shifts, and proved the following theorem.

THEOREM 1.4. ([15], Theorem 1, page 353) Let f be a meromorphic function
of order

ρ( f ) := limsup
r→∞

logT (r, f )
logr

< 2

and let c ∈C. If f (z) and f (z+ c) share the values a ∈C and ∞ CM, then

f (z+ c)−a
f (z)−a

= τ ,

for some constant τ .
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Since then, many mathematicians considered this topic (See [6], [8], [10], [19]–
[22], [29], [38] and the references therein). In 2018, Qi, Li and Yang considered the
value sharing problem related to f ′(z) and f (z + c) , where c is a complex number.
They obtained the following result.

THEOREM 1.5. ([28], Theorem 1.5, page 570) Let f be a non-constant mero-
morphic function of finite order and n � 9 be an integer. If [ f ′(z)]n and f n(z + c)
share a(�= 0) and ∞ CM, then f ′(z) = t f (z+ c) , for a constant t that satisfies tn = 1 .

It is natural to ask whether the f ′ can be extended to f (k) in Theorem 1.5. Here
f n denotes the n th power of the function f and f (k) stands for the k th derivative of f ,
where k is a non-negative integer. Considering this question, we prove the following
results.

THEOREM 1.6. Let f be a non-constant meromorphic function of finite order and
n be a positive integer. If one of the following conditions is satisfied:

(I) [ f (k)(z)]n and f n(z+ c) share (1,2) , (∞,0) and n � 2k+8 ;
(II) [ f (k)(z)]n and f n(z+ c) share (1,2) , (∞,∞) and n � 2k+7 ;
(III) [ f (k)(z)]n and f n(z+ c) share (1,0) , (∞,0) and n � 3k+14 ;

then f (k)(z) = t f (z+ c) , for a constant t that satisfies tn = 1 .

If we consider entire function instead of meromorphic function, the counting func-
tions related to the poles of [ f (k)(z)]n and f n(z+c) can be neglected. Arguing similarly

as in Theorem 1.6, we will see that k is not related to the coefficient of Nk+1

(
r, 1

f

)
. So

we can obtain the following corollary.

COROLLARY 1.7. Let f be a non-constant entire function of finite order and n �
5 be an integer. If [ f (k)(z)]n and f n(z+ c) share (1,2) , then f (k)(z) = t f (z+ c) , for a
constant t that satisfies tn = 1 .

If the shifts f (z+c) in Theorem 1.5 and 1.6 are replaced by q -difference f (qz) , where
q ∈ C\ {0} , we obtain:

THEOREM 1.8. Let f be a non-constant meromorphic function of zero order and
n be a positive integer. If one of the following conditions is satisfied:

(I) [ f (k)(z)]n and f n(qz) share (1,2) , (∞,0) and n � 2k+8 ;
(II) [ f (k)(z)]n and f n(qz) share (1,2) , (∞,∞) and n � 2k+7 ;
(III) [ f (k)(z)]n and f n(qz) share (1,0) , (∞,0) and n � 3k+14 ;

then f (k)(z) = t f (qz) , for a constant t that satisfies tn = 1 .

COROLLARY 1.9. Let f be a non-constant entire function of zero order and n �
5 be an integer. If [ f (k)(z)]n and f n(qz) share (1,2) , then f (k)(z) = t f (qz) , for a
constant t that satisfies tn = 1 .
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2. Some Lemmas

In this section, we present some lemmas which will be needed later on. We will
denote by H the following function:

H =
(

F ′′

F ′ −
2F ′

F −1

)
−
(

G′′

G′ −
2G′

G−1

)
,

where F and G are non-constant meromorphic functions. From above, it can be easily
calculated that the possible poles of H occur at (i) multiple zeros of F and G , (ii)
those 1 points of F and G whose multiplicities are different, (iii) those poles of F
and G whose multiplicities are different, (iv) zeros of F ′ which are not the zeros of
F(F − 1) and zeros of G′ which are not the zeros of G(G− 1) . And we define the
following notations which are used in the proof.

N2

(
r,

1
f

)
= N

(
r,

1
f

)
+N(2

(
r,

1
f

)
,

where a simple zero point of f is counted once and a multiple zero point of f is
counted twice. Let z0 be a zero of f − 1 of multiplicity p and a zero of g− 1 of

multiplicity q . We denote by N1)
E

(
r, 1

f−1

)
the counting function of those 1-points

of f where p = q = 1; by N(2
E

(
r, 1

f−1

)
the counting function of those 1-points of f

where p = q � 2; by NL

(
r, 1

f−1

)
the counting function of the 1-points of f whose

multiplicities are greater than 1-points of g ; each point in these counting functions is
counted only once. We are ignoring g in the notations above only because the reader
can interpret from the context with which function g we are comparing the function f .

LEMMA 2.1. ([2], Lemma 2.13, page 13) Let F , G be two non-constant mero-
morphic functions. If F , G share (1,2) and (∞,k) , where 0 � k � ∞ , and H �≡ 0 ,
then

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)

+N∗(r,∞;F,G)+S(r,F)+S(r,G) ,

where N∗(r,∞;F,G) denotes the reduced counting function of those poles of F whose
multiplicities differ from the multiplicities of the corresponding poles of G.

LEMMA 2.2. ([33], Lemma 2, page 108) Let f be a non-constant meromorphic
function, and let a1,a2, . . . ,an be finite complex numbers, an �= 0 . Then

T (r,an f n + · · ·+a2 f 2 +a1 f +a0) = nT (r, f )+S(r, f ) .

LEMMA 2.3. ([9], Theorem 2.1, page 109) Let f be a meromorphic function of
finite order ρ( f ) , and let c be a nonzero constant. Then

T (r, f (z+ c)) = T (r, f (z))+O(rρ( f )−1+ε)+O(logr) ,

for an arbitrary ε > 0 .
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We mention that Lemma 2.3 holds also for c = 0 as in the case T (r, f (z+ c)) =
T (r, f (z)) .

LEMMA 2.4. ([44], Lemma 2.1, page 4) Let f be a non-constant meromorphic
function, p , k be positive integers, then

Np

(
r,

1

f (k)

)
� Np+k

(
r,

1
f

)
+ kN(r, f )+S(r, f ) ,

where Np

(
r, 1

f (k)

)
denotes the counting function of the zeros of f (k) where a zero of

multiplicity m is counted m times if m � p and p times if m > p.

We point out that in Lemma 2.4 one obviously has that N
(
r, 1

f (k)

)
= N1

(
r, 1

f (k)

)
.

LEMMA 2.5. ([13], Theorem 2.1, page 465) Let f be a non-constant meromor-
phic function of finite order, and let c ∈C and δ ∈ (0,1) . Then

m

(
r,

f (z+ c)
f (z)

)
+m

(
r,

f (z)
f (z+ c)

)
= o

(
T (r, f )

rδ

)
= S(r, f ) .

LEMMA 2.6. ([39], Lemma 3.3, page 349) Suppose that two non-constant mero-
morphic functions F and G share 1 and ∞ IM. Let H be given as above. If H �≡ 0 ,
then

T (r,F)+T (r,G) � 3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N1)

E

(
r,

1
F −1

)

+2N(2
E

(
r,

1
F −1

)
+3NL

(
r,

1
F −1

)
+3NL

(
r,

1
G−1

)
+S(r,F)+S(r,G) .

LEMMA 2.7. ([40], Theorem 1.1, page 538) Let f be a zero-order meromorphic
function, and q ∈ C\ {0} . Then

T (r, f (qz)) = (1+o(1))T(r, f (z))

and

N(r, f (qz)) = (1+o(1))N(r, f (z))

on a set of lower logarithmic density 1 .

LEMMA 2.8. ([3], Theorem 1.1, page 457) Let f be a zero-order meromorphic
function, and q ∈C \ {0} . Then

m

(
r,

f (qz)
f (z)

)
= S(r, f )

on a set of logarithmic density 1 .
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3. Proof of Theorem 1.6

Let

F = f n(z+ c), G = [ f (k)(z)]n . (1)

(I) . Suppose [ f (k)(z)]n and f n(z+ c) share (1,2) , (∞,0) and n � 2k +8. Then
it follows directly from the assumptions of the theorem that F and G share (1,2) and
(∞,0) . Let H be defined as above. Suppose that H �≡ 0. It follows from Lemma 2.1
that

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)

+N∗(r,∞;F,G)+S(r,F)+S(r,G) .
(2)

According to Lemma 2.2 and Lemma 2.3, we have

T (r,F) = nT (r, f (z+ c))+S(r, f ) = nT (r, f )+O(rρ( f )−1+ε)+S(r, f ) . (3)

It is obvious that

N2

(
r,

1
F

)
= 2N

(
r,

1
f (z+ c)

)
� 2T (r, f (z+ c))

= 2T (r, f )+O(rρ( f )−1+ε)+S(r, f ) ,
(4)

N(r,F) = N(r, f (z+ c)) � T (r, f (z+ c))

= T (r, f )+O(rρ( f )−1+ε)+S(r, f ) ,
(5)

N∗(r,∞;F,G) � N(r,F) � T (r, f (z+ c))

= T (r, f )+O(rρ( f )−1+ε)+S(r, f ) .
(6)

Since E(∞, f (k)) = E(∞, f ) , we have

N(r,G) = N(r, [ f (k)(z)]n) = N(r, f (k)(z)) = N(r, f ) � T (r, f ) . (7)

Lemma 2.4 gives

N2

(
r,

1
G

)
= 2N

(
r,

1

f (k)

)
� 2Nk+1

(
r,

1
f

)
+2kN(r, f )+S(r, f )

� (2+2k)T(r, f )+S(r, f ) .
(8)

Combining (2)–(8) , we deduce

(n−2k−7)T(r, f ) � O(rρ( f )−1+ε)+S(r, f ) , (9)
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which contradicts with n � 2k+8. Therefore H ≡ 0, that is

F ′′

F ′ −
2F ′

F −1
=

G′′

G′ −
2G′

G−1
.

By integrating twice to the both sides of the above, we can get

1
F −1

=
A

G−1
+B , (10)

where A �= 0 and B are constants. From (10) we have

G =
(B−A)F +(A−B−1)

BF − (B+1)
. (11)

Suppose that B �= 0,−1. From (11) , we have

N

(
r,

1

F − B+1
B

)
= N(r,G) . (12)

From the second fundamental theorem and Lemma 2.3, we have

nT (r, f ) = T (r,F)+S(r, f ) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F − B+1
B

)
+S(r, f )

� N(r, f (z+ c))+N

(
r,

1
f (z+ c)

)
+N(r, f )+S(r, f )

� 3T (r, f )+O(rρ( f )−1+ε)+S(r, f ) ,

(13)

which contradicts with n � 2k+8.
Suppose that B = −1. From (11) we have

G =
(A+1)F −A

F
. (14)

If A �= −1, we obtain from (14) that

N

(
r,

1

F − A
A+1

)
= N

(
r,

1
G

)
. (15)

From the second fundamental theorem, Lemma 2.3 and Lemma 2.4, we have

nT (r, f ) = T (r,F)+S(r, f ) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F − A
A+1

)
+S(r, f )

� N(r, f (z+ c))+N

(
r,

1
f (z+ c)

)
+N

(
r,

1

f (k)

)
+S(r, f )

� N(r, f (z+ c))+N

(
r,

1
f (z+ c)

)
+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f )

� (k+3)T(r, f )+O(rρ( f )−1+ε)+S(r, f ) ,

(16)
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which contradicts with n � 2k +8. Hence A = −1. From (14) , we get FG = 1, that
is

f n(z+ c)[ f (k)(z)]n = 1 . (17)

Since [ f (k)(z)]n and f n(z+ c) share (∞,0) , from (17) we get

N(r, f (k)) = 0, T (r, f (k)) = T (r, f (z+ c))+S(r, f ) , (18)

and

[ f (k)(z)]2n =
[ f (k)(z)]n

f n(z+ c)
=

[ f (k)(z)]n
f n(z)

f n(z+c)
f n(z)

. (19)

From Lemma 2.5 and the logarithmic derivative lemma, we get

2nT (r, f (k)) = T (r, [ f (k)]2n) = m(r, [ f (k)]2n)+N(r, [ f (k)]2n) = m
(
r, [ f (k)(z)]2n

)

= m

⎛
⎝r,

[ f (k)(z)]n

f n(z)
f n(z+c)
f n(z)

⎞
⎠� m

(
r,

[ f (k)(z)]n

f n(z)

)
+m

(
r,

f n(z+ c)
f n(z)

)

� nm

(
r,

f (k)(z)
f (z)

)
+nm

(
r,

f (z+ c)
f (z)

)
= S(r, f ) ,

that is

T (r, f (k)) = S(r, f ) . (20)

By (18) and (20) , we know that

T (r, f (z+ c)) = T (r, f (k)) = S(r, f ) , (21)

which is a contradiction with Lemma 2.3.
Suppose that B = 0. From (11) , we have

G = AF − (A−1) . (22)

If A �= 1, from (22) we obtain

N

(
r,

1

F − A−1
A

)
= N

(
r,

1
G

)
. (23)

From the second fundamental theorem, Lemma 2.3 and Lemma 2.4, we have

nT (r, f ) = T (r,F)+S(r, f ) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F − A−1
A

)
+S(r, f )

� N(r, f (z+ c))+N

(
r,

1
f (z+ c)

)
+N

(
r,

1

f (k)

)
+S(r, f )

� N(r, f (z+ c))+N

(
r,

1
f (z+ c)

)
+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f )

� (k+3)T(r, f )+O(rρ( f )−1+ε)+S(r, f ) ,

(24)
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which contradicts with n � 2k + 8. Thus A = 1. From (22) we have F = G , that is
f n(z+ c) = [ f (k)(z)]n . Hence f (k)(z) = t f (z+ c) , for a constant t with tn = 1. We can
get the conclusion of Theorem 1.6.

(II) . Suppose [ f (k)(z)]n and f n(z+c) share (1,2) , (∞,∞) and n � 2k+7. Then
it follows directly from the assumptions of the theorem that F and G share (1,2) and
(∞,∞) . Let H be defined as above. Suppose that H �≡ 0. It follows from Lemma 2.1
that

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)

+N∗(r,∞;F,G)+S(r,F)+S(r,G) . (25)

According to Lemma 2.2 and Lemma 2.3, we have

T (r,F) = nT (r, f (z+ c))+S(r, f ) = nT (r, f )+O(rρ( f )−1+ε)+S(r, f ) . (26)

It is obvious that

N2

(
r,

1
F

)
= 2N

(
r,

1
f (z+ c)

)
� 2T (r, f (z+ c))

= 2T (r, f )+O(rρ( f )−1+ε)+S(r, f ) ,
(27)

N(r,F) = N(r, f (z+ c)) � T (r, f (z+ c))

= T (r, f )+O(rρ( f )−1+ε)+S(r, f ) ,
(28)

N(r,G) = N(r, f ) � T (r, f ) , (29)

N∗(r,∞;F,G) = 0 . (30)

Lemma 2.4 gives

N2

(
r,

1
G

)
= 2N

(
r,

1

f (k)

)
� 2Nk+1

(
r,

1
f

)
+2kN(r, f )+S(r, f )

� (2k+2)T(r, f )+S(r, f ) .
(31)

Combining (25)–(31) , we deduce

(n−2k−6)T(r, f ) � O(rρ( f )−1+ε)+S(r, f ) , (32)

which contradicts with n � 2k + 7. Therefore H ≡ 0. Similar to the proof in (I) , we
can get the conclusion of Theorem 1.6.

(III) . Suppose [ f (k)(z)]n and f n(z + c) share (1,0) , (∞,0) and n � 3k + 14.
Then it follows directly from the assumptions of the theorem that F and G share (1,0)
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and (∞,0) . Let H be defined as above. Suppose that H �≡ 0. It follows from Lemma
2.6 that

T (r,F)+T(r,G) � 3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N1)

E

(
r,

1
F −1

)

+2N(2
E

(
r,

1
F −1

)
+3NL

(
r,

1
F −1

)
+3NL

(
r,

1
G−1

)
+S(r,F)+S(r,G) .

(33)

Since

N1)
E

(
r,

1
F −1

)
+2N(2

E

(
r,

1
F −1

)
+NL

(
r,

1
F −1

)
+2NL

(
r,

1
G−1

)

� N

(
r,

1
G−1

)
� T (r,G)+O(1) ,

(34)

we get from (33) and (34) that

T (r,F) � 3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+2NL

(
r,

1
F −1

)

+NL

(
r,

1
G−1

)
+S(r,F)+S(r,G) .

(35)

According to Lemma 2.2 and Lemma 2.3, we have

T (r,F) = nT (r, f (z+ c))+S(r, f ) = nT (r, f )+O(rρ( f )−1+ε)+S(r, f ) . (36)

It is obvious that

N(r,F) = N(r, f (z+ c)) � T (r, f (z+ c))

= T (r, f )+O(rρ( f )−1+ε)+S(r, f ) ,
(37)

N2

(
r,

1
F

)
= 2N

(
r,

1
f (z+ c)

)
� 2T (r, f (z+ c))

= 2T (r, f )+O(rρ( f )−1+ε)+S(r, f ) ,
(38)

NL

(
r,

1
F −1

)
� N

(
r,

F
F ′

)
� N

(
r,

F ′

F

)
+S(r, f )

� N(r,F)+N

(
r,

1
F

)
+S(r, f )

= N(r, f n(z+ c))+N

(
r,

1
f n(z+ c)

)
+S(r, f )

= N(r, f (z+ c))+N

(
r,

1
f (z+ c)

)
+S(r, f )

� 2T (r, f )+O(rρ( f )−1+ε)+S(r, f ) .

(39)
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Lemma 2.4 gives

N2

(
r,

1
G

)
= 2N

(
r,

1

f (k)

)
� 2Nk+1

(
r,

1
f

)
+2kN(r, f )+S(r, f )

� (2k+2)T(r, f )+S(r, f ) ,
(40)

NL

(
r,

1
G−1

)
� N

(
r,

G
G′

)
� N

(
r,

G′

G

)
+S(r, f )

� N(r,G)+N

(
r,

1
G

)
+S(r, f )

� N(r, f )+N

(
r,

1

f (k)

)
+S(r, f )

� N(r, f )+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f )

� (k+2)T(r, f )+S(r, f ) .

(41)

Combining (35)–(41) , we deduce

(n−3k−13)T(r, f ) � O(rρ( f )−1+ε)+S(r, f ) , (42)

which contradicts with n � 3k+14. Therefore H ≡ 0. Similar to the proof of (I) , we
can get the conclusion of Theorem 1.6.

4. Proof of Theorem 1.8

Let

F = f n(qz), G = [ f (k)(z)]n . (43)

(I) . Suppose [ f (k)(z)]n and f n(qz) share (1,2) , (∞,0) and n � 2k+ 8. Then it
follows directly from the assumptions of the theorem that F and G share (1,2) and
(∞,0) . Let H be defined as above. Suppose that H �≡ 0. It follows from Lemma 2.1
that

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)

+N∗(r,∞;F,G)+S(r,F)+S(r,G) .
(44)

According to Lemma 2.2 and Lemma 2.7, we have

T (r,F) = nT (r, f (qz))+S(r, f ) = nT (r, f )+S(r, f ) , (45)

N(r,F) = N(r, f (qz)) = N(r, f (z))+S(r, f ) � T (r, f )+S(r, f ) , (46)



1106 C. MENG AND G. LIU

N2

(
r,

1
F

)
= 2N

(
r,

1
f (qz)

)
� 2T (r, f (qz)) = 2T (r, f )+S(r, f ) . (47)

It is obvious that

N(r,G) = N(r, f ) � T (r, f ) . (48)

N∗(r,∞;F,G) � N(r,G) = N(r, f ) � T (r, f ) . (49)

Lemma 2.4 gives

N2

(
r,

1
G

)
= 2N

(
r,

1

f (k)

)
� 2Nk+1

(
r,

1
f

)
+2kN(r, f )+S(r, f )

� (2k+2)T(r, f )+S(r, f ) .
(50)

Combining (44)–(50) , we deduce

(n−2k−7)T(r, f ) � S(r, f ) , (51)

which contradicts with n � 2k+8. Therefore H ≡ 0. By integration, we get

1
F −1

=
A

G−1
+B , (52)

where A �= 0 and B are constants. From (52) we have

G =
(B−A)F +(A−B−1)

BF − (B+1)
. (53)

Suppose that B �= 0,−1. From (53) , we have

N

(
r,

1

F − B+1
B

)
= N(r,G) . (54)

From the second fundamental theorem and Lemma 2.7, we have

nT (r, f ) = T (r,F)+S(r, f ) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F − B+1
B

)
+S(r, f )

� N(r, f (qz))+N

(
r,

1
f (qz)

)
+N(r, f )+S(r, f ) ,

(55)

which contradicts with n � 2k+8.
Suppose that B = −1. From (53) we have

G =
(A+1)F −A

F
. (56)
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If A �= −1, we obtain from (56) that

N

(
r,

1

F − A
A+1

)
= N

(
r,

1
G

)
. (57)

From the second fundamental theorem and Lemma 2.4, we have

nT (r, f ) = T (r,F)+S(r, f ) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F − A
A+1

)
+S(r, f )

� N(r, f (qz))+N

(
r,

1
f (qz)

)
+N

(
r,

1

f (k)

)
+S(r, f )

� N(r, f (qz))+N

(
r,

1
f (qz)

)
+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f )

(58)

which contradicts with n � 2k +8. Hence A = −1. From (56) , we get FG = 1, that
is

f n(qz)[ f (k)(z)]n = 1 . (59)

Since [ f (k)(z)]n and f n(qz) share (∞,0) , from (59) we get

N(r, f (k)) = 0, T (r, f (k)) = T (r, f (qz))+S(r, f ) , (60)

and

[ f (k)(z)]2n =
[ f (k)(z)]n

f n(qz)
=

[ f (k)(z)]n

f n(z)
f n(qz)
f n(z)

. (61)

From Lemma 2.8 and the logarithmic derivative lemma, we get

2nT (r, f (k)) = T (r, [ f (k)]2n) = m(r, [ f (k)]2n)+N(r, [ f (k)]2n) = m
(
r, [ f (k)(z)]2n

)

= m

⎛
⎝r,

[ f (k)(z)]n

f n(z)
f n(qz)
f n(z)

⎞
⎠� m

(
r,

[ f (k)(z)]n

f n(z)

)
+m

(
r,

f n(qz)
f n(z)

)

� nm

(
r,

f (k)(z)
f (z)

)
+nm

(
r,

f (qz)
f (z)

)
= S(r, f ) ,

that is

T (r, f (k)) = S(r, f ) . (62)

By (60) and (62) , we know that

T (r, f (qz)) = T (r, f (k)) = S(r, f ) , (63)
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which is a contradiction with Lemma 2.7.
Suppose that B = 0. From (53) , we have

G = AF − (A−1) . (64)

If A �= 1, from (64) we obtain

N

(
r,

1

F − A−1
A

)
= N

(
r,

1
G

)
. (65)

From the second fundamental theorem and Lemma 2.4, we have

nT (r, f ) = T (r,F)+S(r, f ) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F − A−1
A

)
+S(r, f )

� N(r, f (qz))+N

(
r,

1
f (qz)

)
+N

(
r,

1

f (k)

)
+S(r, f )

� N(r, f (qz))+N

(
r,

1
f (qz)

)
+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f ) ,

(66)

which contradicts with n � 2k + 8. Thus A = 1. From (64) we have F = G , that is
f n(qz) = [ f (k)(z)]n . Hence f (k)(z) = t f (qz) , for a constant t with tn = 1. we can get
the conclusion of Theorem 1.8.

(II) . Suppose [ f (k)(z)]n and f n(qz) share (1,2) , (∞,∞) and n � 2k+ 7. Then
it follows directly from the assumptions of the theorem that F and G share (1,2) and
(∞,∞) . Let H be defined as above. Suppose that H �≡ 0. It follows from Lemma 2.1
that

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)

+N∗(r,∞;F,G)+S(r,F)+S(r,G) .
(67)

According to Lemma 2.2 and Lemma 2.7, we have

T (r,F) = nT (r, f (qz))+S(r, f ) = nT (r, f )+S(r, f ) , (68)

N(r,F) = N(r, f (qz)) = N(r, f (z))+S(r, f ) � T (r, f )+S(r, f ) , (69)

N2

(
r,

1
F

)
= 2N

(
r,

1
f (qz)

)
� 2T (r, f (qz)) = 2T (r, f )+S(r, f ) . (70)

It is obvious that

N(r,G) = N(r, f ) � T (r, f ) . (71)

N∗(r,∞;F,G) = 0 . (72)
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Lemma 2.4 gives

N2

(
r,

1
G

)
= 2N

(
r,

1

f (k)

)
� 2Nk+1

(
r,

1
f

)
+2kN(r, f )+S(r, f )

� (2k+2)T(r, f )+S(r, f ) .
(73)

Combining (67)–(73) , we deduce

(n−2k−6)T(r, f ) � S(r, f ) , (74)

which contradicts with n � 2k + 7. Therefore H ≡ 0. Similar to the proof of (I) , we
can get the conclusion of Theorem 1.8.

(III) . Suppose [ f (k)(z)]n and f n(qz) share (1,0) , (∞,0) and n � 3k+14. Then
it follows directly from the assumptions of the theorem that F and G share (1,0) and
(∞,0) . Let H be defined as above. Suppose that H �≡ 0. It follows from Lemma 2.6
that

T (r,F)+T (r,G) � 3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)

+N1)
E

(
r,

1
F −1

)
+2N(2

E

(
r,

1
F −1

)
+3NL

(
r,

1
F −1

)

+3NL

(
r,

1
G−1

)
+S(r,F)+S(r,G) .

(75)

Since

N1)
E

(
r,

1
F −1

)
+2N(2

E

(
r,

1
F −1

)
+NL

(
r,

1
F −1

)
+2NL

(
r,

1
G−1

)

� N

(
r,

1
G−1

)
� T (r,G)+O(1) ,

(76)

we get from (75) and (76) that

T (r,F) � 3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+2NL

(
r,

1
F −1

)

+NL

(
r,

1
G−1

)
+S(r,F)+S(r,G) .

(77)

According to Lemma 2.2 and Lemma 2.7, we have

T (r,F) = nT (r, f (qz))+S(r, f ) = nT (r, f )+S(r, f ) . (78)

It is obvious that

N(r,F) = N(r, f (qz)) � T (r, f (qz)) = T (r, f )+S(r, f ) , (79)

N2

(
r,

1
F

)
= 2N

(
r,

1
f (qz)

)
� 2T (r, f (qz)) = 2T (r, f )+S(r, f ) , (80)
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NL

(
r,

1
F −1

)
� N

(
r,

F
F ′

)
� N

(
r,

F ′

F

)
+S(r, f )

� N(r,F)+N

(
r,

1
F

)
+S(r, f )

= N(r, f n(qz))+N

(
r,

1
, f n(qz)

)
+S(r, f )

= N(r, f (qz))+N

(
r,

1
f (qz)

)
+S(r, f )

� 2T (r, f )+S(r, f ) .

(81)

Lemma 2.4 gives

N2

(
r,

1
G

)
= 2N

(
r,

1

f (k)

)
� 2Nk+1

(
r,

1
f

)
+2kN(r, f )+S(r, f )

� (2k+2)T(r, f )+S(r, f ) ,
(82)

NL

(
r,

1
G−1

)
� N

(
r,

G
G′

)
� N

(
r,

G′

G

)
+S(r, f )

� N(r,G)+N

(
r,

1
G

)
+S(r, f )

= N(r, [ f (k)]n)+N

(
r,

1

[ f (k)]n

)
+S(r, f )

= N(r, f )+N

(
r,

1

f (k)

)
+S(r, f )

� N(r, f )+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f )

� (k+2)T(r, f )+S(r, f ) .

(83)

Combining (77)–(83) , we deduce

(n−3k−13)T(r, f ) � S(r, f ) , (84)

which contradicts with n � 3k+14. Therefore H ≡ 0. Similar to the proof of (I) , we
can get the conclusion of Theorem 1.8.
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