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HARNACK INEQUALITY FOR STOCHASTIC HEAT EQUATION
DRIVEN BY FRACTIONAL NOISE WITH HURST INDEX H > %

XIUWEI YIN, GUANGJUN SHEN* AND ZHENLONG GAO

(Communicated by Z. S. Szewczak)

Abstract. In this short note, we establish the dimensional-free Harnack inequality for stochastic
heat equation with Dirichlet boundary condition:

%u(nx = %u(t7x)+b(u(t,x))+WH(t,x), 0<t<T,0<x<1,
u(t,0)=u(t,1)=0,0<1<T,
u(0,x) = f(x), 0<x< 1,

where 7 >0, f(x) € L*([0,1]) and W#(z,x) is the fractional noise with Hurst index H €
(%7 1). The strong Feller property is also obtained.

1. Introduction

The classical Harnack inequality was introduced by Harnack [9] for positive har-
monic functions, after that, many scholars have made further research on it, especially,
Wang [17] established the dimensional-free Harnack inequality. The original work of
Wang has become a important tool in probability, see, for example, [22, 12, 13] for
strong Feller property and contractivity properties; [1, 2] for short times behaviors of
infinite dimensional diffusions; [3, 8] for heat kernel estimates, entropy-cost inequali-
ties, and transportation cost inequalities.

The dimensional-free Harnack inequality can also be applied to establish Har-
nack inequality for various model, such as SDEs and SPDEs driven by Wiener process
or Lévy process, see [15, 14, 10, 20, 21] and the reference. Recently, by using the
method of coupling (see, for example [16]), Fan [6, 7] studied the Harnack inequality
for SDEs driven by fractional Brownian motion, Yan and Yin [18, 19] proved the Har-
nack inequality for stochastic heat equation driven by fractional noise with Hurst index
O0<H< %, while in the case of % < H < 1, the authors established Bismut formula
firstly, then as an application, they get the Harnack inequality.
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The main motivation of this short note is to establish the Harnack inequality by
coupling for the stochastic heat equation:

Su(t,x) = azu(t x) +b(u(t,x)+WH(t,x), 0<t <T,0<x <1,
u(t,0)=u(,1)=0,0<r<T, (1)
u(0,x) = f(x), x € [0,1],

where T >0, f € L*([0,1]) =:H and W# (¢,x) is the fractional noise with Hurst index
H > %.In[19], in order to establish Bismut formula, the condition f(x) € 7([0,1],R),
Y > 2H — 1 is needed, compared to [19], in the short note we only need to assume that
f(x) € H, and thus we can get the strong Feller property of the solution. For simplicity,
we denote u(t,x) = u(z, f,x) and u(t, ) = u(z, f,-) for (z,x) € [0,T] x [0,1]. We also
define the operators B,z > 0 by

(RG)(f) = E[G(u(t, /)]

forall G € #;,(H), where %,(H) is the space of all bounded measurable functions on
H.

The rest of the paper is organized as follows. In Section 2, we recall some basic
results about the fractional noise W . In section 3, we prove the main result.

2. Preliminaries

In this section, we briefly recall the definition of the stochastic integration with
respect to WH .

Let (Q,.7,.%;,P) be a filtered probability space and i 5 <H <1. A Gaussian
process Wi = {WH (t,x),(t,x) €[0,T] x [0,1]} is called fractional noise if W (0,x) =
0, EW#(¢,x)) =0 and for 5,7 € [0,T],

EIWH (1 0W" (5,)] = 507 + 52— |t — 5Py min(x), ¥y €10,1]

Let & be the set of step functions on [0,7] x [0,1]. Denote by .# the Hilbert
space defined as the closure of & with respect to

<1[O,t]><[07x]7 1[0,5]><[0,y]><%” = E(WH(I,X)WH(S,y))

forall 5,7 € [0,T] and x,y € [0,1]. The linear mapping

//(ptx Hdt,dx), pe &

defined by 1ljo/x[0.] WH (1,x) can be extended as an isometry between .7 and the
Gaussian spaces associated with W# . This isometry is called the Wiener integral with
respect to W and also denoted by

W)= [ [ olsyw(as.an, v < 7.
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Consider the kernel function

1 1 4 3 s\z2—H
Ky (t,5) =cu(t—s)""2 +cy <§—H>/S(u—s)H 2 (1—(;)2 )du
t
=cy (H—%) séfH/(u—s)H%uH*%du

1

3 2
with ¢ > s > 0, where cyg = ( 2HT(; —H) )) , and define the linear operator Kj,

[(H+%)T(2—2H
from & to L*([0,T] x [0, 1]) as follows

(K50)(5.2) = K (T,5)0(5,) + [ (07— 0(5,) 22 1 ).

Then, we have

(K;II[OJ]XA)(S’X) = KH(I,S)I[O,;]XA
and

(Kn®. K@) 12(0,11x[0,1)) = (@2 9)r

for all @,y € &, which show that the operator Kj; provides an isometry between &
and L?([0,T] x [0,1]), which can be extended to . Hence, the Gaussian family
W ={W(t,A),t €0,T],A € A(|0,1])} defined by

W (r,A) =W (K)o gxa)

is a space-time noise, and
WA = [ Kn(ts)W(ds.dy)
[0,1]xA

forall 1 €[0,7] and A € A([0,1]).

LEMMA 2.1. We have

//WMWMy//@wwwW

and
B W (0)) = [ [ Kotk wte i,

H+2 2 . 2 IH+§
Let I, *(L*([0,T])) be the image of L*([0,T]) by the operator I, *, where

I, is the a -order left Riemann-Liouville fractional integral on [0,7]. It is proved
1

in [4] that the operator Ky : L*([0,T]) — Ig:z (L*([0,T])) defined by (Kuf)(t) =

JoKu(t,s)f(s)ds, f € L2([O T}) is an isomorphism and it has the following expression:

(Kuf)(e) =1, 5410 2
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_1
The inverse operator K ' is given by (K;;' f)(s) = sH’%Df;{Jr 2s%’Hf’ forall f €

IH+§

s 2 (L2([0,T7)), where DF, is the a-order left Riemann-Liouville derivation.

Recall that W is an .% -fractional noise if it is a fractional noise such that the
space-time white noise W (¢,A) defined above is .% -adapted and for each ¢ € [0,T],
{W(s,A) —W(t,A),A € B([0,1]),t < s < T} are independent of .%;. Given an .% -
adapted process with integrable trajectories

& ={E(t,x),€[0,T],x € [0,1]}.
Consider the transformation
H
(

w t,A):WH(t,A)—F/O[/Aé(S,y)dyds.

Let W (ds,dy) = W (ds,dy) + K" (f; & (r,y)dr) (s)dsdy, then

— t —
W)= [ [ Kutr.s)W(as.dy)
0 JA
and the following Girsanov theorem holds (see [11]).
THEOREM 2.2. If the process & satisfies the next conditions:

(i) Jo&(ry)dre Iglj% (L*([0,T])) ® L*([0,1]), almost surely.

(ii) ELy =1, where

Lr=ewp |- [ [ it ([ ear) W lasa)
S (et ([ gar) <s>)2dsdy] |

then WH is an F; -fractional noise with Hurst index H under the new probability
dP = LydP.
3. Main results

In this section, we consider Harnack inequality for the operator P, through the
coupling by change of measure.
Assume that b satisfies the following assumption (A):

(x—=3)(b(x) —b(»)) < Klx—y%, K>0, x,yeR.

It has been showed in [11] that under assumption (A), the equation (1) has a unique
solution.
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For 6) € (0,2). Let

() = 22_1(90(1 —e%’“’*”), t€0,7]. (1)

Then ¢ is nonincreasing, smooth, positive on [0,7') and satisfy

3¢ (t) — 2K (1) +2 =6y, t €[0,T].

The main result of the paper is

THEOREM 3.1. Assume (A), let % < H < 1, max{l, ﬁ} <p< 37% then for
any positive G € B,(H), we have

(PrG(f2))" < (PrG7)(f1)exp (CI,T2*2H

(q_"l)zufl ~flE), va>1, @

where f1,f» € H, and

K2T(2H)T'(3 — 2H)B? (Hp_ Lot LHp—3p+ 1)

Cp= w2 )
M2~ |22 | (1 - e

1 2 2
7+B(5 AH-Z2H -2+ % )
2H -2 P p

Proof. We will divide our proofs into three steps.
Step I. Let f1, f>» € H, consider
Ov(t,x) = Lv(t,x) + b(v(t,x)) + LD LW (1), 1 € (0,T), x € (0,1)
v(1,0) =v(t,1)=0,1€ (0,T),
v(0,x) = f2(x), x € [0,1],
According to [11], the above equation has a unique solution:

Vi, f2) = falx +/b (5.f2) dS+/AVSf2ds+/sfl—)(S’fz)

where A = % , en(x) =+/2sin(nmx), n> 1 and BY (1) = 2 I fol e (X)WH (ds,dx)e,,
n=1

ds+ B (1),

thus we have

2 e ) e, I
= 2u(t, 1) ¥(1 ), A, 1) (0, /)

2l )~ ¥(t. ). bt 1) — biv(e )~ 2 LTS

&)

<K= 5 oo ) =vte. L)l
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Then the chain rule imply

o s ) v I, o) vl _ LA- PR
/ A e ey R NI R

where so € [0,T).
Step II. For any s € [0,T), x € [0, 1], let

—u(s, f1) —v(s, f2)
S =T

W (ds,dy) := W (ds,dy) + (/ E(ry dr) )dsdy,
and
WH(t,x) = //KH s)W (ds,dy)
zWH(t,x)—i-/O /0 E(s,y)dsdy, 1€][0,T).
Similar to [5, Corollary A.3.], one can get that

A x —CH// )2 IWH (ds, dy), “4)

1
where ¢j; = (m) * and W' is the fractional noise with Hurst index
1-H.

Thus we can rewrite
WH (1,x) = //KHtsW(dsdy)
W)+ [ [ e say
= [ [t (e =) 2 sy WP ds,a)
—//cH SN (ds,dy), 1€ (0.T),
where
W = [ /xcw(t—s>1—2”¢<s,y>dsdy+wl-’*<t7x>
—//cH )= 2H§<sydsdy+//1<1 1 (1,5)W (ds,dy)
= [ [ Kt [k ( [ et =02 EGar) G)dsay+w (@s,ay)].



HARNACK INEQUALITY FOR STOCHASTIC HEAT EQUATION 1119

We also define

L=exp |~ [ [ Kk ([ et 00" Gar) o)W s

_% /(:/ol (Kl_—lH (/0 & (1= ) E (ry)r ) (S))zdsdy] 1e0,7).

Now we show {L;,z € [0,7)} is a uniformly integrable martingale. In fact, according
to[11,(17)], we see

/Ot /01 ‘Kl__lH (/0 51?11(l — r)l_zHé(r,y)dr> (s))zdyds
:/So/l)SiH%IH*%sH*%(S(s,y>‘2dyds

// - 2H /rH F(r— )2 (5 )H—%é(ny)dr)zdsdy,O<t<T~

Then, Minkowski’s integral inequality implies that forany 0 <7 < T,

/I/1|Kf_lH /.Eﬁl(t—r)lszé(r,y)dO (s)'zdyds
gl"z(if / o [/ = )t (s )t 2 /5 ry dy drrds
< cI{Hfl )ngzllH / 1-2H [/ H-Y P2 )Hgdrrds

< CH(2||f1 )J;”H / 1-2H [/ =5 )2 (5 )Hgdrrds

=

&)

In order to estimate (5), let max{1, ﬁ} <p< ﬁ , then

/rH r) 2 (s r)H_%dr
s p=2tp pT H %
<</ (t—r) » 1 dr /rHI’ 2ps—r) P 2pdr>
0
2-2H-1 2-2H-1
t 1 1 3 o4l
< el Ui )P;l pBP (Hp—§p+1,Hp—§p+l>s2H .
J2

2p—2pH—1
p—1
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Substitute this estimation into (5), we get
- L1 1-2H 2
/O/O‘KI_H(/O éy (t—r) 5(r,y)dr>(s)) dyds
&2Br (Hp—Lp+1.Hp—3p+1)|fi — fol
1 p—3p+LHp—s5p+1)|fi — fallg
2p—2
2p—2 7
(H - )22 T ()

4 2 2
x/ S2H—3+;(t4 4H—F+( )4—4H—F)ds
0

<2

(6)
2
&8 (Hp—tp+ 1. Hp—=3p+1)I1fi - £l
<2 72
2p—2pH—1

rz(H_%))ppfpl "0

T2—-2H 2 2
X |+ T B(5—4H— = 2H -2+ ")
2H—2+2 p p

=:2Cp 0, [./1 —f2HHT272H~

So it follows that for sy € [0,7),

EexpB /050/01 <K111H (/0 &yt (r—r)'2HE (ny)dr) (s))zdsdy] < oo,

That is to say {L;,7 € [0,50)} is a martingale, so Theorem 2.2 ensures that {W'~# 1
[0,50)} is a fractional noise with Hurst index 1 —H under dQ := L,,dP. Moreover,
we have

gty == [ [ kit [ 6= e usar) )W s

w
2// Ki'y /.hl(t ' e ) )dsdy7 1 €0,7).

Then it is easy to see that

E(LSO IOgLSO) = Ey, logLy, < CP~,90||f1 _f2||12HIT272H7 S0 € [OvT)'

Consequently, {L;,z € [0,T)} is a uniformly integrable martingale, so Ly := lim,j7 L
exists and {L;,7 € [0,T]} is also a uniformly integrable martingale. Moreover, {W' =,
t €[0,T]} is a fractional noise with Hurst index 1 —H under Q. Using (4), we know
{WH 1 €10,T]} is a fractional noise with Hurst index H under Q.

Step II1. A similar argument as [7] conclude that u(T, f1) = v(T, f»). We rewrite
v(t, f2) as

vt f2) = fo(x) +/0tAv(s,f2)ds+/Otb(v(s,fg)) LB,
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where BY (1) = 3, [* [ en(x)WH (ds,dx)e,, it follows that
PrG(f2) =E(Gu(T, f2))) = E(LrG(\(T, f2))) = E(LrG(u(T, f1)))
Let My = — [ (1K1, ( odt(t —r)'=2e, y)dr) (s)W (ds,dy), then for any
qg>1,
1
il

1 1 q
TeXp[q—l Tyt

exp Coo, T 4l /i — S}
(g—1)? ’

where E7 denotes the expectation under the probability LrdP. then Holder inequality
deduce that

<

2-2 _ 2
[PrG(f2)]* = [E(Lr G(u(T, /1)) < Pr[G?(f1)]exp [CP‘IT v fzIIH]

(g—1)*¢*(0)
The proof is completed. [

As a consequence of Theorem 3.1, we get the following proposition whose proof
is very similar to Zhang [21] and we omit it.

PROPOSITION 3.2. Let % < H < 1. Then the operator Pr is strong Feller, i.e.,
foreach G € %,(H),

Pr(G(f1)) = Pr(G(f2)),Yfi,o € H

lim
[ f1=rF2llm—0

holds.
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