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HARNACK INEQUALITY FOR STOCHASTIC HEAT EQUATION

DRIVEN BY FRACTIONAL NOISE WITH HURST INDEX H > 1
2

XIUWEI YIN, GUANGJUN SHEN ∗ AND ZHENLONG GAO

(Communicated by Z. S. Szewczak)

Abstract. In this short note, we establish the dimensional-free Harnack inequality for stochastic
heat equation with Dirichlet boundary condition:⎧⎪⎨⎪⎩

∂
∂ t u(t,x) = ∂ 2

∂x2 u(t,x)+b(u(t,x))+Ẇ H (t,x), 0 < t � T, 0 < x < 1,

u(t,0) = u(t,1) = 0, 0 < t � T,

u(0,x) = f (x), 0 � x � 1,

where T > 0 , f (x) ∈ L2([0,1]) and WH(t,x) is the fractional noise with Hurst index H ∈
( 1

2 ,1) . The strong Feller property is also obtained.

1. Introduction

The classical Harnack inequality was introduced by Harnack [9] for positive har-
monic functions, after that, many scholars have made further research on it, especially,
Wang [17] established the dimensional-free Harnack inequality. The original work of
Wang has become a important tool in probability, see, for example, [22, 12, 13] for
strong Feller property and contractivity properties; [1, 2] for short times behaviors of
infinite dimensional diffusions; [3, 8] for heat kernel estimates, entropy-cost inequali-
ties, and transportation cost inequalities.

The dimensional-free Harnack inequality can also be applied to establish Har-
nack inequality for various model, such as SDEs and SPDEs driven by Wiener process
or Lévy process, see [15, 14, 10, 20, 21] and the reference. Recently, by using the
method of coupling (see, for example [16]), Fan [6, 7] studied the Harnack inequality
for SDEs driven by fractional Brownian motion, Yan and Yin [18, 19] proved the Har-
nack inequality for stochastic heat equation driven by fractional noise with Hurst index
0 < H < 1

2 , while in the case of 1
2 < H < 1, the authors established Bismut formula

firstly, then as an application, they get the Harnack inequality.
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The main motivation of this short note is to establish the Harnack inequality by
coupling for the stochastic heat equation:⎧⎪⎨⎪⎩

∂
∂ t u(t,x) = ∂ 2

∂x2 u(t,x)+b(u(t,x))+ẆH(t,x), 0 < t � T, 0 < x < 1,

u(t,0) = u(t,1) = 0, 0 < t � T,

u(0,x) = f (x), x ∈ [0,1],
(1)

where T > 0, f ∈ L2([0,1]) =: H and WH(t,x) is the fractional noise with Hurst index
H > 1

2 . In [19], in order to establish Bismut formula, the condition f (x)∈C γ([0,1],R) ,
γ > 2H−1 is needed, compared to [19], in the short note we only need to assume that
f (x) ∈ H , and thus we can get the strong Feller property of the solution. For simplicity,
we denote u(t,x) = u(t, f ,x) and u(t, f ) = u(t, f , ·) for (t,x) ∈ [0,T ]× [0,1] . We also
define the operators Pt ,t > 0 by

(PtG)( f ) = E[G(u(t, f ))]

for all G ∈ Bb(H) , where Bb(H) is the space of all bounded measurable functions on
H .

The rest of the paper is organized as follows. In Section 2, we recall some basic
results about the fractional noise WH . In section 3, we prove the main result.

2. Preliminaries

In this section, we briefly recall the definition of the stochastic integration with
respect to WH .

Let (Ω,F ,Ft ,P) be a filtered probability space and 1
2 < H < 1. A Gaussian

process WH = {WH(t,x),(t,x) ∈ [0,T ]× [0,1]} is called fractional noise if WH(0,x) =
0, E(WH(t,x)) = 0 and for s,t ∈ [0,T ] ,

E[WH(t,x)WH(s,y)] =
1
2
(t2H + s2H −|t− s|2H)min(x,y), ∀x,y ∈ [0,1].

Let E be the set of step functions on [0,T ]× [0,1] . Denote by H the Hilbert
space defined as the closure of E with respect to

〈1[0,t]×[0,x],1[0,s]×[0,y]〉H = E(WH(t,x)WH(s,y))

for all s, t ∈ [0,T ] and x,y ∈ [0,1] . The linear mapping

WH(ϕ) :=
∫ T

0

∫ 1

0
ϕ(t,x)WH(dt,dx), ϕ ∈ E

defined by 1[0,t]×[0,x] �→WH(t,x) can be extended as an isometry between H and the
Gaussian spaces associated with WH . This isometry is called the Wiener integral with
respect to WH and also denoted by

WH(ϕ) =
∫ T

0

∫ 1

0
ϕ(s,y)WH(ds,dy), ∀ϕ ∈ H .
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Consider the kernel function

KH(t,s) = cH(t − s)H− 1
2 + cH

(
1
2
−H

)∫ t

s
(u− s)H− 3

2

(
1−

( s
u

) 1
2−H

)
du

= cH

(
H− 1

2

)
s

1
2−H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du

with t > s > 0, where cH =
(

2HΓ( 3
2−H)

Γ(H+ 1
2 )Γ(2−2H)

) 1
2

, and define the linear operator K∗
H

from E to L2([0,T ]× [0,1]) as follows

(K∗
Hϕ)(s,x) = KH(T,s)ϕ(s,x)+

∫ T

s
(ϕ(r,x)−ϕ(s,x))

∂KH

∂ r
(r,s)dr.

Then, we have
(K∗

H1[0,t]×A)(s,x) = KH(t,s)1[0,t]×A

and
〈K∗

Hϕ ,K∗
Hφ〉L2([0,T ]×[0,1]) = 〈ϕ ,φ〉H

for all ϕ ,ψ ∈ E , which show that the operator K∗
H provides an isometry between E

and L2([0,T ]× [0,1]) , which can be extended to H . Hence, the Gaussian family
W = {W (t,A), t ∈ [0,T ],A ∈ B([0,1])} defined by

W (t,A) = WH((K∗
H)−11[0,t]×A)

is a space-time noise, and

WH(t,A) =
∫

[0,t]×A
KH(t,s)W (ds,dy)

for all t ∈ [0,T ] and A ∈ B([0,1]) .

LEMMA 2.1. We have∫ T

0

∫ 1

0
ϕ(s,y)WH(ds,dy) =

∫ T

0

∫ 1

0
K∗

Hϕ(s,y)W (ds,dy)

and

E[WH(ψ)WH(ϕ)] =
∫ T

0

∫ 1

0
K∗

Hϕ(t,x)K∗
Hψ(t,x)dxdt,

Let I
H+ 1

2
0+ (L2([0,T ])) be the image of L2([0,T ]) by the operator I

H+ 1
2

0+ , where
Iα
0+ is the α -order left Riemann-Liouville fractional integral on [0,T ] . It is proved

in [4] that the operator KH : L2([0,T ]) → I
H+ 1

2
0+ (L2([0,T ])) defined by (KH f )(t) =∫ t

0 KH(t,s) f (s)ds , f ∈ L2([0,T ]) is an isomorphism and it has the following expression:

(KH f )(t) = I1
0+sH− 1

2 I
H− 1

2
0+ s

1
2−H f .
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The inverse operator K−1
H is given by (K−1

H f )(s) = sH− 1
2 D

H− 1
2

0+ s
1
2−H f ′ for all f ∈

I
H+ 1

2
0+ (L2([0,T ])) , where Dα

0+ is the α -order left Riemann-Liouville derivation.
Recall that WH is an Ft -fractional noise if it is a fractional noise such that the

space-time white noise W (t,A) defined above is Ft -adapted and for each t ∈ [0,T ] ,
{W (s,A)−W (t,A), A ∈ B([0,1]), t � s � T} are independent of Ft . Given an Ft -
adapted process with integrable trajectories

ξ = {ξ (t,x), t ∈ [0,T ], x ∈ [0,1]}.

Consider the transformation

W
H
(t,A) = WH(t,A)+

∫ t

0

∫
A

ξ (s,y)dyds.

Let W (ds,dy) = W (ds,dy)+K−1
H (

∫ ·
0 ξ (r,y)dr)(s)dsdy , then

W
H
(t,A) =

∫ t

0

∫
A
KH(t,s)W (ds,dy)

and the following Girsanov theorem holds (see [11]).

THEOREM 2.2. If the process ξ satisfies the next conditions:

(i)
∫ ·
0 ξ (r,y)dr ∈ I

H+ 1
2

0+ (L2([0,T ]))⊗L2([0,1]) , almost surely.

(ii) ELT = 1 , where

LT = exp

[
−

∫ T

0

∫ 1

0
K−1

H

(∫ ·

0
ξ (r,y)dr

)
(s)W (ds,dy)

−1
2

∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0
ξ (r,y)dr

)
(s)

)2

dsdy

]
,

then W
H

is an Ft -fractional noise with Hurst index H under the new probability
dP = LT dP .

3. Main results

In this section, we consider Harnack inequality for the operator Pt through the
coupling by change of measure.

Assume that b satisfies the following assumption (A):

(x− y)(b(x)−b(y)) � K|x− y|2, K > 0, x,y ∈ R.

It has been showed in [11] that under assumption (A), the equation (1) has a unique
solution.
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For θ0 ∈ (0,2) . Let

ζ (t) =
2−θ0

2K

(
1− e

2
3 K(t−T )

)
, t ∈ [0,T ]. (1)

Then ζ is nonincreasing, smooth, positive on [0,T ) and satisfy

3ζ ′(t)−2Kζ (t)+2 = θ0, t ∈ [0,T ].

The main result of the paper is

THEOREM 3.1. Assume (A), let 1
2 < H < 1 , max{1, 2

5−4H } < p < 2
3−2H , then for

any positive G ∈ Bb(H) , we have

(PTG( f2))q � (PTGq)( f1)exp
(
CpT

2−2H q
(q−1)2‖ f1− f2‖2

H

)
, ∀q > 1, (2)

where f1, f2 ∈ H , and

Cp =
K2Γ(2H)Γ(3−2H)B

2
p

(
Hp− 1

2 p+1,Hp− 3
2 p+1

)
2HΓ2(H− 1

2 )
∣∣∣ 2p−2pH−1

p−1

∣∣∣ 2p−2
p

(1− e−
2
3 K)2

×
[

1

2H−2+ 2
p

+B
(
5−4H− 2

p
,2H−2+

2
p

)]
.

Proof. We will divide our proofs into three steps.

Step I. Let f1, f2 ∈ H , consider⎧⎪⎨⎪⎩
∂t v(t,x) = ∂ 2

∂x2 v(t,x)+b(v(t,x))+ u(t, f1)−v(t,x)
ζ (t) +ẆH(t,x), t ∈ (0,T ), x ∈ (0,1)

v(t,0) = v(t,1) = 0, t ∈ (0,T ),
v(0,x) = f2(x), x ∈ [0,1],

According to [11], the above equation has a unique solution:

v(t, f2) = f2(x)+
∫ t

0
b(v(s, f2))ds+

∫ t

0
Δv(s, f2)ds+

∫ t

0

u(s, f1)− v(s, f2)
ζ (s)

ds+BH(t),

where Δ = ∂ 2

∂x2 , en(x) =
√

2sin(nπx) , n � 1 and BH(t) =
∞
∑

n=1

∫ t
0

∫ 1
0 en(x)WH(ds,dx)en ,

thus we have

∂
∂ t

‖u(t, f1)− v(t, f2)‖2
H

= 2〈u(t, f1)− v(t, f2),Δ(u(t, f1)− v(t, f2))〉H
+2〈u(t, f1)− v(t, f2),b(u(t, f1))−b(v(t, f2))〉H −2

‖u(t, f1)− v(t, f2)‖2
H

ζ (t)

� 2
(
K− 1

ζ (t)

)
‖u(t, f1)− v(t, f2)‖2

H.
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Then the chain rule imply∫ s0

0

‖u(s, f1)− v(s, f2)‖2
H

ζ 4(s)
ds+

‖u(s0, f1)− v(s0, f2)‖2
H

θ0ζ 3(s0)
� ‖ f1 − f2‖2

H

θ0ζ 3(0)
, (3)

where s0 ∈ [0,T ) .

Step II. For any s ∈ [0,T ) , x ∈ [0,1] , let

ξ (s,x) :=
u(s, f1)− v(s, f2)

ζ (s)
,

W̃ (ds,dy) := W (ds,dy)+K−1
H

(∫ ·

0
ξ (r,y)dr

)
(s)dsdy,

and

W̃H(t,x) =
∫ t

0

∫ x

0
KH(t,s)W̃ (ds,dy)

= WH(t,x)+
∫ t

0

∫ x

0
ξ (s,y)dsdy, t ∈ [0,T ).

Similar to [5, Corollary A.3.], one can get that

WH(t,x) = c̃H

∫ t

0

∫ x

0
(t − s)2H−1W 1−H(ds,dy), (4)

where c̃H =
(

2H
Γ(2H)Γ(3−2H)

) 1
2

and W 1−H is the fractional noise with Hurst index

1−H .
Thus we can rewrite

W̃H(t,x) =
∫ t

0

∫ x

0
KH(t,s)W̃ (ds,dy)

= WH(t,x)+
∫ t

0

∫ x

0
ξ (s,y)dsdy

=
∫ t

0

∫ x

0
c̃H(t− s)2H−1

(
c̃H

−1(t− s)1−2Hξ (s,y)dsdy+W1−H(ds,dy)
)

=
∫ t

0

∫ x

0
c̃H(t− s)2H−1W̃ 1−H(ds,dy), t ∈ [0,T ),

where

W̃ 1−H(t,x) =
∫ t

0

∫ x

0
c̃H

−1(t − s)1−2Hξ (s,y)dsdy+W1−H(t,x)

=
∫ t

0

∫ x

0
c̃H

−1(t − s)1−2Hξ (s,y)dsdy+
∫ t

0

∫ x

0
K1−H(t,s)W (ds,dy)

=
∫ t

0

∫ x

0
K1−H(t,s)

[
K−1

1−H

(∫ ·

0
c̃−1
H (t−r)1−2Hξ (r,y)dr

)
(s)dsdy+W (ds,dy)

]
.
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We also define

Lt = exp

[
−

∫ t

0

∫ 1

0
K−1

1−H

(∫ ·

0
c̃−1
H (t− r)1−2Hξ (r,y)dr

)
(s)W (ds,dy)

−1
2

∫ t

0

∫ 1

0

(
K−1

1−H

(∫ ·

0
c̃−1
H (t− r)1−2Hξ (r,y)dr

)
(s)

)2

dsdy

]
, t ∈ [0,T ).

Now we show {Lt , t ∈ [0,T )} is a uniformly integrable martingale. In fact, according
to [11, (17)], we see

∫ t

0

∫ 1

0

∣∣∣K−1
1−H

(∫ ·

0
c̃−1
H (t − r)1−2Hξ (r,y)dr

)
(s)

∣∣∣2dyds

=
∫ s0

0

∫ 1

0

∣∣∣s−H+ 1
2 I

H− 1
2

0+ sH− 1
2 ξ (s,y)

∣∣∣2dyds

=
c̃−2
H

Γ2(H − 1
2)

∫ t

0

∫ 1

0
s1−2H

(∫ s

0
rH− 1

2 (t − r)1−2H(s− r)H− 3
2 ξ (r,y)dr

)2
dsdy, 0 � t < T.

Then, Minkowski’s integral inequality implies that for any 0 � t < T ,

∫ t

0

∫ 1

0

∣∣∣K−1
1−H

(∫ ·

0
c̃−1
H (t− r)1−2Hξ (r,y)dr

)
(s)

∣∣∣2dyds

� c̃−2
H

Γ2(H− 1
2 )

∫ t

0
s1−2H

[∫ s

0
rH− 1

2 (t− r)1−2H(s− r)H− 3
2

(∫ 1

0
ξ 2(r,y)dy

) 1
2
dr

]2

ds

� c̃−2
H ‖ f1− f2‖2

H

Γ2(H− 1
2 )ζ 2(0)

∫ t

0
s1−2H

[∫ s

0
rH− 1

2 (t− r)1−2H(s− r)H− 3
2 dr

]2

ds

� c̃−2
H ‖ f1− f2‖2

H

Γ2(H− 1
2 )ζ 2(0)

∫ t

0
s1−2H

[∫ s

0
rH− 1

2 (t− r)1−2H(s− r)H− 3
2 dr

]2

ds

(5)

In order to estimate (5), let max{1, 2
5−4H } < p < 2

3−2H , then

∫ s

0
rH− 1

2 (t − r)1−2H(s− r)H− 3
2 dr

�
(∫ s

0
(t − r)

p−2Hp
p−1 dr

) p−1
p

(∫ s

0
rHp− 1

2 p(s− r)Hp− 3
2 pdr

) 1
p

� t2−2H− 1
p +(t− s)2−2H− 1

p∣∣∣ 2p−2pH−1
p−1

∣∣∣ p−1
p

B
1
p

(
Hp− 1

2
p+1,Hp− 3

2
p+1

)
s2H−2+ 1

p .
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Substitute this estimation into (5), we get∫ t

0

∫ 1

0

∣∣∣K−1
1−H

(∫ ·

0
c̃−1
H (t − r)1−2Hξ (r,y)dr

)
(s)

∣∣∣2dyds

� 2
c̃−2
H B

2
p

(
Hp− 1

2 p+1,Hp− 3
2 p+1

)
‖ f1 − f2‖2

H

Γ2(H− 1
2 )

∣∣∣ 2p−2pH−1
p−1

∣∣∣ 2p−2
p ζ 2(0)

×
∫ t

0
s2H−3+ 2

p (t4−4H− 2
p +(t− s)4−4H− 2

p )ds

� 2
c̃−2
H B

2
p

(
Hp− 1

2 p+1,Hp− 3
2 p+1

)
‖ f1 − f2‖2

H

Γ2(H− 1
2 )

∣∣∣ 2p−2pH−1
p−1

∣∣∣ 2p−2
p ζ 2(0)

×
[

T 2−2H

2H−2+ 2
p

+T 2−2HB(5−4H− 2
p
,2H−2+

2
p
)

]
=: 2Cp,θ0‖ f1 − f2‖2

HT 2−2H .

(6)

So it follows that for s0 ∈ [0,T ) ,

Eexp
[1
2

∫ s0

0

∫ 1

0

(
K−1

1−H

(∫ ·

0
c̃−1
H (t− r)1−2Hξ (r,y)dr

)
(s)

)2
dsdy

]
< ∞.

That is to say {Lt , t ∈ [0,s0)} is a martingale, so Theorem 2.2 ensures that {W̃ 1−H ,t ∈
[0,s0)} is a fractional noise with Hurst index 1−H under dQ := Ls0dP . Moreover,
we have

logLt = −
∫ t

0

∫ 1

0
K−1

1−H

(∫ ·

0
c̃−1
H (t − r)1−2Hξ (r,y)dr

)
(s)W̃ (ds,dy)

+
1
2

∫ t

0

∫ 1

0

(
K−1

1−H

(∫ ·

0
c̃−1
H (t− r)1−2Hξ (r,y)dr

)
(s)

)2
dsdy, t ∈ [0,T ).

Then it is easy to see that

E(Ls0 logLs0) = Es0 logLs0 � Cp,θ0‖ f1 − f2‖2
HT 2−2H , s0 ∈ [0,T ).

Consequently, {Lt , t ∈ [0,T )} is a uniformly integrable martingale, so LT := limt↑T Lt

exists and {Lt , t ∈ [0,T ]} is also a uniformly integrable martingale. Moreover, {W̃ 1−H ,
t ∈ [0,T ]} is a fractional noise with Hurst index 1−H under Q . Using (4), we know
{W̃H ,t ∈ [0,T ]} is a fractional noise with Hurst index H under Q .

Step III. A similar argument as [7] conclude that u(T, f1) = v(T, f2) . We rewrite
v(t, f2) as

v(t, f2) = f2(x)+
∫ t

0
Δv(s, f2)ds+

∫ t

0
b(v(s, f2))+ B̃H(t),
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where B̃H(t) = ∑∞
n=1

∫ t
0

∫ 1
0 en(x)W̃H(ds,dx)en , it follows that

PTG( f2) = E(G(u(T, f2))) = E(LT G(v(T, f2))) = E(LT G(u(T, f1))).

Let MT = −∫ T
0

∫ 1
0 K−1

1−H

(∫ ·
0 c̃−1

H (t − r)1−2Hξ (r,y)dr
)
(s)W̃ (ds,dy) , then for any

q > 1,

E

(
L

q
q−1
T

)
= ET exp

[
1

q−1
MT +

1
2(q−1)

〈M〉T
]

= ET exp

[
1

q−1
MT − 1

2(q−1)2 〈M〉T +
q

2(q−1)2 〈M〉T
]

� exp

[
Cp,θ0T

2−2Hq‖ f1− f2‖2
H

(q−1)2

]
,

where ET denotes the expectation under the probability LT dP . then Hölder inequality
deduce that

[PTG( f2)]q = [E(LT G(u(T, f1)))]q � PT [Gq( f1)]exp

[
CpqT 2−2H‖ f1− f2‖2

H

(q−1)2ζ 2(0)

]
.

The proof is completed. �
As a consequence of Theorem 3.1, we get the following proposition whose proof

is very similar to Zhang [21] and we omit it.

PROPOSITION 3.2. Let 1
2 < H < 1 . Then the operator PT is strong Feller, i.e.,

for each G ∈ Bb(H) ,

lim
‖ f1− f2‖H→0

PT (G( f1)) = PT (G( f2)),∀ f1, f2 ∈ H

holds.
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