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COMPOSITION OPERATORS AND CLOSURES OF DIRICHLET

TYPE SPACES IN LOGARITHMIC BLOCH–TYPE SPACES

LIXU ZHANG

(Communicated by S. Li)

Abstract. Closures of Dirichlet type spaces in logarithmic Bloch-type spaces are investigated in
the paper. Moreover, the boundedness and compactness of composition operators from logarith-
mic Bloch-type spaces to closures of Dirichlet type spaces in logarithmic Bloch-type spaces are
characterized.

1. Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane C and H(D) be
the class of all functions analytic in D . For 0 < p < ∞ , Hp denotes the Hardy space,
which consists of all functions f ∈ H(D) for which (see [6])

‖ f‖p
Hp = sup

0<r<1

1
2π

∫ 2π

0
| f (reiθ )|pdθ < ∞.

As usual, H∞ denotes the space of bounded analytic functions in D .
Recall that the Bloch space B is the set of all functions f ∈H(D) which satisfies

‖ f‖B = | f (0)|+ sup
z∈D

(1−|z|2)| f ′(z)| < ∞.

It is well known that B is a Banach space if it is equipped with the norm ‖·‖B . Notice
that H∞ ⊂ B . The little Bloch space, denoted by B0 , is the subspace of B consisting
of all f ∈ H(D) such that lim|z|→1(1−|z|2)| f ′(z)| = 0. It is well known that B0 is the
closure of polynomials in B .

Let 0 < α < ∞ . The logarithmic Bloch-type space Bα
log is the space of functions

f ∈ H(D) satisfying

‖ f‖Bα
log

= | f (0)|+ sup
z∈D

(1−|z|2)α log
e

1−|z|2 | f
′(z)| < ∞.

It is easy to check that Bα
log is a Banach space under the norm ‖ · ‖Bα

log
. Obviously,

the space Bα
log turns into the logarithmic Bloch space L B when α = 1. The little

logarithmic Bloch-type space Bα
log,0 , is a subspace of Bα

log consisting of all f ∈H(D)
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such that
lim
|z|→1

(1−|z|2)α log
e

1−|z|2 | f
′(z)| = 0.

For 0 < p < ∞ and s > −1, the Dirichlet type space, denoted by D p
s , consists of

those f ∈ H(D) such that

‖ f‖D p
s

= | f (0)|+
(

(s+1)
∫

D

| f ′(z)|p(1−|z|2)sdA(z)
)1/p

< ∞.

Let ϕ be an analytic self-map of D . The composition operator Cϕ , induced by
ϕ , is defined on H(D) as follows.

Cϕ( f )(z) = f (ϕ(z)), z ∈ D.

A standard introductory reference for studying composition operators on various ana-
lytic function spaces is [5].

It is a well-known consequence of the Schwartz-Pick lemma that composition op-
erators are typically bounded on the Bloch space. The compactness of composition
operators on the Bloch space is studied by Madigan and Matheson in [17]. Wulan,
Zheng and Zhu in [25] obtained a new compactness criterion for the composition oper-
ator Cϕ on B in terms of the norm of ϕn . The boundedness and compactness of the
composition operator on the logarithmic Bloch space was studied by Yoneda in [26].
For example, Yoneda showed that Cϕ is compact on L B if and only if

lim
|ϕ(z)|→1

(1−|z|2) log e
1−|z|2

(1−|ϕ(z)|2) log e
1−|ϕ(z)|2

|ϕ ′(z)| = 0.

More characterizations for the boundedness and compactness of composition operators
between different Bloch type spaces are given in [7, 12, 13, 14, 15, 23, 28].

Let X and Y be two Banach analytic function spaces. It is natural to denote the
closure of X ∩Y in the norm of Y by CY (X ∩Y ) for simplicity. Given f ∈ B and
ε > 0, we define

Γε ( f ) = {z ∈ D : (1−|z|2)| f ′(z)| � ε}.
The question of characterizing CB(H∞) is still open. Readers can refer to [2]. Ander-
son in [1] mentioned that Jones gave an description of the closure of BMOA in B . For
example, Jones showed that if f ∈ B , then f ∈ CB(BMOA) if and only if for every
ε > 0,

sup
a∈D

∫
Γε ( f )

1−|σa(z)|2
(1−|z|2)2 dA(z) < ∞.

Jones didn’t publish this result, while Ghatage and Zheng in [9] provided a complete
proof for it. Zhao studied CB(F(p, p−2,s)) when 1 � p < ∞ and 0 < s � 1 in [27].
Monreal Galán and Nicolau in [18] characterized the closure in the Bloch norm of
Hp ∩B for 1 < p < ∞ . Bao and Göğüş in [4] characterized the closure of D2

α ∩
B(−1 < α � 1) in the Bloch space, where D2

α is the Dirichlet type space. In 2019,
Galanopoulos and Girela studied CB(D p

α ∩B) in [8]. Among others, they obtained
the following results.
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THEOREM A. Suppose that 1 � p < ∞, p−2 < α � p−1 , and let f be a Bloch
function. Then f ∈ CB(D p

α ∩B) if and only if for any ε > 0 ,

∫
Γε ( f )

dA(z)
(1−|z|2)p−α < ∞.

THEOREM B. Suppose that 0 < p < 1,−1 < α � p− 1 , and let f be a Bloch
function.

(i) If f ∈ CB(D p
α ∩B) , then for any ε > 0 ,

∫
Γε ( f )

dA(z)
(1−|z|2)p−α < ∞ .

(ii) If there exists γ > 2− 1+α
p such that for any ε > 0 ,

∫
Γε ( f )

dA(z)
(1−|z|2)γ < ∞ , then

f ∈ CB(D p
α ∩B) .

See [3,16,20,21,24] for more results of closures of some function spaces in Bloch
type spaces.

The purpose of this paper is to study the closure of D p
s ∩B

β
log in the logarithmic

Bloch-type space Bβ
log . We give a complete characterization for C

B
β
log

(D p
s ∩Bβ

log) .

Moreover, we study the boundedness and compactness of composition operators Cϕ :

Bα
log(B

α
log,0) → C

B
β
log

(D p
s ∩Bβ

log) and Cϕ : C
B

β
log

(D p
s ∩Bβ

log) → C
B

β
log

(D p
s ∩Bβ

log) .

Throughout this paper, we say that f � h if there exists a constant C > 0 such that
f � Ch . The symbol f ≈ h means that f � h � f .

2. characterization of C
B

β
log

(D p
s ∩B

β
log)

To state and prove our main results in this paper, we need some lemmas. The
following well-known estimate can be found in [10, Lemma 3].

LEMMA 1. Suppose s > −1 and t > 0 . Then there exists a positive constant C
such that ∫

D

(1−|w|2)s

|1− zw|2+s+t log e
1−|w|2

dA(w) � C
(1−|z|2)t log e

1−|z|2

for all z ∈ D .

LEMMA 2. [10] Let α > 0 and n be a positive integer. Then f ∈ Bα
log if and

only if

sup
z∈D

(1−|z|2)α+n−1 log
e

1−|z|2 | f
(n)(z)| < ∞.

Moreover, ‖ f‖Bα
log

is equivalent to ‖ f‖Bα,n
log

. Here

‖ f‖Bα,n
log

= | f (0)|+ | f ′(0)|+ . . .+ | f (n−1)(0)|+ sup
z∈D

(1−|z|2)α+n−1 log
e

1−|z|2 | f
(n)(z)|.



1126 L. ZHANG

We also need the following estimate (cf. [19, Lemma 3.5]).

LEMMA 3. Suppose that 0 � t1 < s < t0 . Then there exists a positive constant C
such that∫

D

(1−|z|2)s

|1−wz|2+t0 |1−az|t1 logk e
1−|z|2 dA(z) � C

(1−|w|2)t0−s|1− aw|t1 logk e
1−|w|2 .

THEOREM 1. Let n be a positive integer, 1 < p < ∞ and p− 1 < s < ∞ . Let
1 < β < s+n−1

p−1 . Suppose that f ∈ B
β
log . Then f ∈ C

B
β
log

(D p
s ∩B

β
log) if and only if for

any ε > 0 , ∫
Ωn,β ,ε ( f )

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z) < ∞, (1)

where

Ωn,β ,ε( f ) =
{

z ∈ D : (1−|z|2)β+n−1 log
e

(1−|z|2) | f
(n)(z)| � ε

}
.

Proof. Take a function f ∈ C
B

β
log

(D p
s ∩B

β
log) and ε > 0. Then there exists a

g ∈ D p
s ∩B

β
log such that ‖ f −g‖

B
β ,n
log

� ε
2 . Note that

(1−|z|2)β+n−1 log
e

1−|z|2 | f
(n)(z)| � sup

w∈D

(1−|w|2)β+n−1 log
e

1−|w|2 | f
(n)(w)−g(n)(w)|

+ (1−|z|2)β+n−1 log
e

1−|z|2 |g
(n)(z)|

� ε
2

+(1−|z|2)β+n−1 log
e

1−|z|2 |g
(n)(z)|, z ∈ D.

This implies that Ωn,β ,ε( f ) ⊆ Ωn,β , ε
2
(g) . Then it follows that

∫
D

|g(n)(z)|p(1−|z|2)(n−1)p+sdA(z)

�
∫

Ωn,β , ε
2
(g)

|g(n)(z)|p(1−|z|2)(n−1)p+sdA(z)

=
∫

Ωn,β , ε
2
(g)

|g(n)(z)|p(1−|z|2)(β+n−1)p logp e
1−|z|2

(1−|z|2)(β+n−1)p−(n−1)p−s logp e
1−|z|2

dA(z)

� (
ε
2
)p
∫

Ωn,β , ε
2
(g)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z)

� (
ε
2
)p
∫

Ωn,β ,ε ( f )

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z).
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Since g ∈ D p
s , we get the desired result.

Conversely, we assume that (1) holds. Fix ε > 0 and let f satisfy (1). Without
loss of generality, we may assume that f (0) = f ′(0) = . . . = f (n−1)(0) = 0. For any
z ∈ D , using Proposition 4.27 in [29], we have

f (z) =
1

(γ +2) · · ·(γ +n)

∫
D

f (n)(w)(1−|w|2)n+γ

(1− zw)2+γwn dA(w),

where γ � 0. Following [27], we set f (z) = f1(z)+ f2(z) , where

f1(z) =
1

(γ +2) · · ·(γ +n)

∫
Ωn,β ,ε ( f )

f (n)(w)(1−|w|2)n+γ

(1− zw)2+γwn dA(w)

and

f2(z) =
1

(γ +2) · · ·(γ +n)

∫
D\Ωn,β ,ε ( f )

f (n)(w)(1−|w|2)n+γ

(1− zw)2+γwn dA(w).

Obviously,

f (n)
1 (z) = (γ +n+1)

∫
Ωn,β ,ε ( f )

f (n)(w)(1−|w|2)n+γ

(1− zw)n+2+γ dA(w)

and

f (n)
2 (z) = (γ +n+1)

∫
D\Ωn,β ,ε ( f )

f (n)(w)(1−|w|2)n+γ

(1− zw)n+2+γ dA(w).

Let h(z) = f1(z)−
n−1
∑

k=1

f (k)
1 (0)
k! zk . Then h(0) = h′(0) = . . . = h(n−1)(0) = 0, and ( f −

h)(n)(z) = f (n)
2 (z) . If we choose γ > max{0,β −2} and using Lemma 1, we obtain

‖ f −h‖
B

β ,n
log

= sup
z∈D

(1−|z|2)β+n−1 log
e

1−|z|2 | f
(n)
2 (z)|

� sup
z∈D

(1−|z|2)β+n−1 log
e

1−|z|2
∫

D\Ωn,β ,ε ( f )

| f (n)(w)|(1−|w|2)n+γ

|1− zw|n+2+γ dA(w)

� sup
z∈D

(1−|z|2)β+n−1 log
e

1−|z|2
∫

D

(1−|w|2)γ−β+1

|1− zw|n+2+γ log e
1−|w|2

dA(w)

� ε.
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This means that h ∈ B
β
log . Then∫

D

|h(n)(z)|p(1−|z|2)(n−1)p+sdA(z)

=
∫

D

| f (n)
1 (z)|p(1−|z|2)(n−1)p+sdA(z)

� ‖ f1‖p−1

B
β ,n
log

∫
D

| f (n)
1 (z)| (1−|z|2)(n−1)p+s−(p−1)(β+n−1)

(log e
1−|z|2 )p−1 dA(z)

� ‖ f1‖p−1

B
β ,n
log

∫
D

(1−|z|2)(n−1)p+s−(p−1)(β+n−1)

(log e
1−|z|2 )p−1

(∫
Ωn,β ,ε ( f )

| f (n)(w)|(1−|w|2)n+γ

|1− zw|n+2+γ dA(w)
)
dA(z)

�
∫

Ωn,β ,ε ( f )
| f (n)(w)|(1−|w|2)n+γ

(∫
D

(1−|z|2)(n−1)p+s−(p−1)(β+n−1)

|1− zw|n+2+γ(log e
1−|z|2 )

p−1 dA(z)

)
dA(w).

Observe that 1 < β < s+n−1
p−1 . If we choose γ > max{0,β −2,s− pβ + β −1} , using

Fubini’s theorem and Lemma 3 we obtain∫
D

|h(n)(z)|p(1−|z|2)(n−1)p+sdA(z) �
∫

Ωn,β ,ε ( f )

(1−|w|2)s−pβ

logp e
1−|w|2

dA(w) < ∞.

Therefore, h ∈ D p
s . Then for any ε > 0, there exists a function h ∈ D p

s ∩B
β
log such

that ‖ f −h‖
B

β
log

� ε , which means that f ∈ C
B

β
log

(D p
s ∩Bβ

log) . The proof is complete.

3. Composition operators on C
B

β
log

(D p
s ∩B

β
log)

Next, we characterize the boundedness and compactness of composition opera-
tors from the logarithmic Bloch-type space Bα

log(B
α
log,0) to C

B
β
log

(D p
s ∩Bβ

log) and on

C
B

β
log

(D p
s ∩Bβ

log) . We denote Ωn,β ,ε( f ) by Ωβ ,ε( f ) when n = 1.

THEOREM 2. Let ϕ be an analytic self-map of D . Suppose that 1 < p < ∞,α > 0
and 1 < β < s

p−1 < ∞ . Then Cϕ : Bα
log → C

B
β
log

(D p
s ∩Bβ

log) is bounded if and only if

for any ε > 0 , ∫
Λε (ϕ)

(1−|z|)s−pβ

logp e
1−|z|2

dA(z) < ∞, (2)

where

Λε(ϕ) =
{

z ∈ D :
(1−|z|2)β log e

1−|z|2
(1−|ϕ(z)|2)α log e

1−|ϕ(z)|2
|ϕ ′(z)| � ε

}
.
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Proof. For the sufficiency we assume that (2) holds for any ε > 0. Let f ∈ Bα
log .

Then

|( f ◦ϕ)′(z)|(1−|z|2)β log
e

1−|z|2

=| f ′(ϕ(z))|(1−|ϕ(z)|2)α log
e

1−|ϕ(z)|2
|ϕ ′(z)|(1−|z|2)β log e

1−|z|2
(1−|ϕ(z)|2)α log e

1−|ϕ(z)|2

�‖ f‖Bα
log

(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

|ϕ ′(z)|.

Thus, for any fixed δ > 0, if |( f ◦ϕ)′(z)|(1−|z|2)β log e
1−|z|2 > δ , then we have

(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

|ϕ ′(z)| � δ
‖ f‖Bα

log

= ε.

Therefore,

∞ >

∫
Λε (ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z) �
∫

Ωβ ,δ ( f◦ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z).

According to Theorem 1, we get that

f ◦ϕ ∈ C
B

β
log

(D p
s ∩B

β
log).

This means that Cϕ : Bα
log → C

B
β
log

(D p
s ∩Bβ

log) is bounded.

In order to prove the necessity, we suppose that Cϕ : Bα
log → C

B
β
log

(D p
s ∩Bβ

log)

is bounded. It is well known that there exists two functions f1, f2 ∈ Bα
log such that

(see [11, Lemma 2.2])

| f ′1(z)|+ | f ′2(z)| �
1

(1−|z|2)α log e
1−|z|2

.

Due to our assumption, we get that

f1 ◦ϕ , f2 ◦ϕ ∈ C
B

β
log

(D p
s ∩Bβ

log).

Thus, for any ε > 0, we have

∫
Ωβ , ε

2
( f1◦ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z) < ∞

and ∫
Ωβ , ε

2
( f2◦ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z) < ∞.
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If z ∈ Λε(ϕ) , then we have

(|( f1 ◦ϕ)′(z)|+ |( f2 ◦ϕ)′(z)|)(1−|z|2)β log
e

1−|z|2
=(| f ′1(ϕ(z))|+ | f ′2(ϕ(z))|)|ϕ ′(z)|(1−|z|2)β log

e
1−|z|2

�
(1−|z|2)β log e

1−|z|2
(1−|ϕ(z)|2)α log e

1−|ϕ(z)|2
|ϕ ′(z)| � ε.

This means that, either

|( f1 ◦ϕ)′(z)|(1−|z|2)β log
e

1−|z|2 � ε
2

or
|( f2 ◦ϕ)′(z)|(1−|z|2)β log

e
1−|z|2 � ε

2
.

Therefore,∫
Λε (ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z) �
∫

Ωβ , ε
2
( f1◦ϕ)∪Ωβ , ε

2
( f2◦ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z)

�
∫

Ωβ , ε
2
( f1◦ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z)+
∫

Ωβ , ε
2
( f2◦ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z)

<∞.

The proof is complete.

THEOREM 3. Let ϕ be an analytic self-map of D . Suppose that 1 < p < ∞,α > 1
and 1 < β < s

p−1 < ∞ . Then Cϕ : Bα
log,0 → C

B
β
log

(D p
s ∩B

β
log) is bounded if and only

if ϕ ∈ C
B

β
log

(D p
s ∩B

β
log) and

sup
z∈D

(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

|ϕ ′(z)| < ∞.

Proof. The necessity of the conditions can be proved immediately. In fact, we sup-
pose that Cϕ : Bα

log,0 → C
B

β
log

(D p
s ∩B

β
log) is bounded. Notice that f (z) = z ∈ Bα

log,0 ,

then we have
ϕ = Cϕ f ∈ C

B
β
log

(D p
s ∩B

β
log).

Since Cϕ : Bα
log,0 → C

B
β
log

(D p
s ∩B

β
log) is bounded and C

B
β
log

(D p
s ∩B

β
log) ⊆B

β
log , then

Cϕ : Bα
log,0 → B

β
log is bounded. According to [22, Theorem 3.1], we otain

sup
z∈D

(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

|ϕ ′(z)| < ∞.
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To prove the sufficiency, we assume that ϕ ∈ C
B

β
log

(D p
s ∩B

β
log) and

Q := sup
z∈D

(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

|ϕ ′(z)| < ∞.

Let f ∈ Bα
log,0 . Then for any ε > 0, there is a constant r (0 < r < 1) such that

| f ′(z)|(1−|z|2)α log
e

1−|z|2 <
ε
Q

, whenever |z| > r.

Let z ∈ Ωβ ,ε( f ◦ϕ) . Then we have

Q| f ′(ϕ(z))|(1−|ϕ(z)|2)α log
e

1−|ϕ(z)|2

�| f ′(ϕ(z))|(1−|ϕ(z)|2)α log
e

1−|ϕ(z)|2
(1−|z|2)β log e

1−|z|2
(1−|ϕ(z)|2)α log e

1−|ϕ(z)|2
|ϕ ′(z)|

�| f ′(ϕ(z))||ϕ ′(z)|(1−|z|2)β log
e

1−|z|2 � ε.

That means |ϕ(z)| � r. Thus,

‖ f‖Bα
log

(1− r2)α log e
1−r2

|ϕ ′(z)|(1−|z|2)β log
e

1−|z|2

�‖ f‖Bα
log

|ϕ ′(z)|(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

�| f ′(ϕ(z))||ϕ ′(z)|(1−|z|2)β log
e

1−|z|2 � ε.

Let

δ =
ε(1− r2)α log e

1−r2

‖ f‖Bα
log

.

Then |ϕ ′(z)|(1− |z|2)β log e
1−|z|2 � δ . Hence, Ωβ ,ε( f ◦ϕ) ⊆ Ωβ ,δ (ϕ) . Due to ϕ ∈

C
B

β
log

(D p
s ∩B

β
log) , we obtain

∞ >

∫
Ωβ ,δ (ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z) �
∫

Ωβ ,ε ( f◦ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z).

According to Theorem1, we get that f ◦ϕ ∈C
B

β
log

(D p
s ∩B

β
log) . Therefore, Cϕ : Bα

log →
C

B
β
log

(D p
s ∩B

β
log) is bounded. The proof is complete.
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THEOREM 4. Let ϕ be an analytic self-map of D . Suppose that 1 < p < ∞,α > 1
and 1 < β < s

p−1 < ∞ . Then the following statements are equivalent.

(i) Cϕ : Bα
log → C

B
β
log

(D p
s ∩B

β
log) is compact;

(ii) Cϕ : Bα
log,0 → C

B
β
log

(D p
s ∩B

β
log) is compact;

(iii) ϕ ∈ C
B

β
log

(D p
s ∩Bβ

log) and

lim
|ϕ(z)|→1

(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

|ϕ ′(z)| = 0. (3)

Proof. (i) ⇒ (ii). The implication is obvious because Bα
log,0 ⊆ Bα

log .

(ii)⇒ (iii). Assume that Cϕ : Bα
log,0 → C

B
β
log

(D p
s ∩B

β
log) is compact. Obviously,

Cϕ : Bα
log,0 → C

B
β
log

(D p
s ∩B

β
log) is bounded. According to Theorem 3, we obtain ϕ ∈

C
B

β
log

(D p
s ∩Bβ

log) . On the other hand, it is obvious that C
B

β
log

(D p
s ∩Bβ

log)⊆Bβ
log . Then

Cϕ : Bα
log,0 →Bβ

log is compact. This clearly implies that (3) holds by [22, Theorem 3.2].
(iii) ⇒ (i). According to the assumed condition, we see that there exists an r

(0 < r < 1) , such that

(1−|z|2)β log e
1−|z|2

(1−|ϕ(z)|2)α log e
1−|ϕ(z)|2

|ϕ ′(z)| < ε
2
, whenever |ϕ(z)| > r.

Let z ∈ Λε(ϕ) . Then |ϕ(z)| � r . Therefore,

(1−|z|2)β log e
1−|z|2

(1− r2)α log e
1−r2

|ϕ ′(z)| �
(1−|z|2)β log e

1−|z|2
(1−|ϕ(z)|2)α log e

1−|ϕ(z)|2
|ϕ ′(z)| � ε.

Thus
(1−|z|2)β log

e
1−|z|2 |ϕ

′(z)| � ε(1− r2)α log
e

1− r2 .

Set δ = ε(1−r2)α log e
1−r2

. Then z ∈ Ωβ ,δ (ϕ) . Since ϕ ∈C
B

β
log

(D p
s ∩B

β
log) , we have

∞ >
∫

Ωβ ,δ (ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z) �
∫

Γε (ϕ)

(1−|z|2)s−pβ

logp e
1−|z|2

dA(z).

According to Theorem 2, Cϕ : Bα
log → C

B
β
log

(D p
s ∩Bβ

log) is bounded. We know that

Cϕ : Bα
log →B

β
log is compact by [22, Theorem3.2]. Therefore, Cϕ : Bα

log →C
B

β
log

(D p
s ∩

B
β
log) is compact. The proof is complete.
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THEOREM 5. Let ϕ be an analytic self-map of D . Suppose that 1 < p < ∞ and

1 < β < s
p−1 < ∞ . Then Cϕ : C

B
β
log

(D p
s ∩B

β
log)→ C

B
β
log

(D p
s ∩B

β
log) is compact if and

only if ϕ ∈ C
B

β
log

(D p
s ∩Bβ

log) and

lim
|ϕ(z)|→1

(
1−|z|2

1−|ϕ(z)|2
)β log e

1−|z|2
log e

1−|ϕ(z)|2
|ϕ ′(z)| = 0. (4)

Proof. Assume that Cϕ : C
B

β
log

(D p
s ∩Bβ

log)→C
B

β
log

(D p
s ∩Bβ

log) is compact. Thus

Cϕ : C
B

β
log

(D p
s ∩Bβ

log)→C
B

β
log

(D p
s ∩Bβ

log) is bounded. So we obtain ϕ ∈ C
B

β
log

(D p
s ∩

Bβ
log) since z ∈ C

B
β
log

(D p
s ∩Bβ

log) . It is well known that Bβ
log,0 is the closure of all

polynomials in B
β
log and the space D p

s contains all polynomials. Therefore, Cϕ :

Bβ
log,0 →C

B
β
log

(D p
s ∩Bβ

log) is compact. According to Theorem 4, we see that (4) holds.

Conversely, we suppose that ϕ ∈ C
B

β
log

(D p
s ∩Bβ

log) and (4) holds. By [22, The-

orem 3.2], we see that Bβ
log → Bβ

log is compact. By Theorem 4, we know that Cϕ :

Bβ
log → C

B
β
log

(D p
s ∩Bβ

log) is compact. Since C
B

β
log

(D p
s ∩Bβ

log)⊆ Bβ
log , we obtain that

Cϕ : C
B

β
log

(D p
s ∩Bβ

log) → C
B

β
log

(D p
s ∩Bβ

log) is compact. The proof is complete.
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