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INITIAL SUCCESSIVE COEFFICIENTS FOR CERTAIN

CLASSES OF UNIVALENT FUNCTIONS INVOLVING THE

EXPONENTIAL FUNCTION

LEI SHI, ZHI-GANG WANG ∗ , REN-LI SU AND MUHAMMAD ARIF

(Communicated by J. Pečarić)

Abstract. Let S denote the family of all functions that are analytic and univalent in the unit
disk D := {z : |z| < 1} and satisfy f (0) = f ′(0)− 1 = 0 . In the present paper, we consider
certain subclasses of univalent functions associated with the exponential function, and obtain the
sharp upper bounds on the initial coefficients and the difference of initial successive coefficients
for functions belonging to these classes.

1. Introduction

Let A denote the class of functions f of the form

f (z) = z+
∞

∑
n=2

anz
n, (1.1)

which are analytic in the unit disk D := {z : |z| < 1} and satisfy the conditions f (0) =
f ′(0)− 1 = 0. Let S be the set of all functions f ∈ A that are univalent in D . Let
S ∗ and K denote the subclasses of S consisting of starlike functions and convex
functions, respectively.

Let P denote the class of all functions p(z) analytic and having positive real part
in D , with the form

p(z) = 1+
∞

∑
n=1

pnz
n. (1.2)

For two functions f and g , analytic in D , we say that the function f is subordi-
nate to g in D , and write

f (z) ≺ g(z) (z ∈ D),

if there exists a Schwarz function ω , which is analytic in D with

ω(0) = 0 and |ω(z)| < 1 (z ∈ D)

such that
f (z) = g

(
ω(z)

)
(z ∈ D).
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Using the subordination relationship, Ma and Minda [10] introduced the class of
Ma-Minda type of starlike functions S ∗(φ) , which is defined by

S ∗(φ) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ φ(z) (z ∈ D)
}

, (1.3)

where φ(z) is analytic and univalent in D and for which φ(D) is convex with φ(z) ∈
P for z ∈ D .

For a constant λ with 0 < λ � π
2 , by setting

φ(z) = eλ z (z ∈ D), (1.4)

we have the class S ∗
λ e which is defined by the condition

S ∗
λ e :=

{
z ∈ A :

z f ′(z)
f (z)

≺ eλ z (z ∈ D)
}

. (1.5)

It can be seen that the condition (1.5) is equivalent to∣∣∣∣log
z f ′(z)
f (z)

∣∣∣∣� λ (z ∈ D). (1.6)

Also, we denote by Kλ e the class of functions f ∈ A satisfying the condition

1+
z f ′′(z)
f ′(z)

≺ eλ z (z ∈ D). (1.7)

Let z = reiθ , r ∈ [0,1) , θ ∈ [0,2π ] , we have ℜ
(
eλ z
)

= eλ rcosθ cos(λ r sinθ ) . It
is clear that cos(λ r sinθ ) > 0 for λ ∈ (0, π

2 ] and thus ℜ
(
eλ z
)

> 0(z ∈ D) . Indeed,
the class S ∗

λ e is a subclass of starlike functions S ∗ and Kλ e is a subclass of convex
functions K .

By choosing λ = 1, we obtain the families S ∗
e and K ∗

e which were introduced
and investigated by Mediratta et al. [11] and were later studied by many authors, see
[4, 5, 12, 17, 18, 22, 23] and the references cited therein. Clearly, for 0 < ζ � 1 and
1 � η � π

2 , we have
S ∗

ζe ⊆ S ∗
e ⊆ S ∗

ηe.

In recent years, the difference of the moduli of successive coefficients of a func-
tion f ∈ S has attracted many researchers’ attention (see [3, 6, 20, 21]). Because of
the triangle inequality ||an+1|− |an||� |an+1−an| , sometimes it maybe useful to study
the upper bounds of |an+1−an| for some refined subclasses of starlike and convex
functions to obtain the upper bound of ||an+1|− |an|| . In [15], Robertson proved that
|an+1−an| � 2n+1

3 |a2−1| for all f ∈ K . Recently, Li and Sugawa [7] studied the re-
lated problem of maximizing the functional ||an+1|− |an|| with the help of |an+1−an|
for convex functions f with f ′′(0) = p for a prescribed p∈ [0,2] . For some subclasses
of analytic univalent functions, the sharp upper bounds of |a3−a2| and |a4−a3| were
obtained by Peng and Obradović [13].

Motivated essentially by the above work, in the present paper, we aim at proving
some results on the upper bounds of the initial coefficients and the difference of initial
successive coefficients for f belonging to the classes S ∗

λ e and Kλ e .
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2. Preliminary results

To derive our main results, we need the following lemmas.

LEMMA 1. (See [14]) Let ω(z) = ∑∞
n=1 ckzk be a Schwarz function. Then, for

any real number μ and ν the following sharp estimate holds

Ψ(ω) =
∣∣c3 + μc1c2 + νc3

1

∣∣� Φ(μ ,ν), (2.1)

where Φ(μ ,ν) is given in complete form in [14, Lemma 2], and here we will only use

Φ(μ ,ν) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ((μ ,ν) ∈ D1
⋃

D2),

2
3 (|μ |+1)

√
|μ|+1

3(|μ|+1+ν) ((μ ,ν) ∈ D3
⋃

D4),

1
3ν
(

μ2−4
μ2−4ν

)√
μ2−4

3(ν−1) ((μ ,ν) ∈ D5),

|ν| ((μ ,ν) ∈ D6),

(2.2)

with

D1 =
{

(μ ,ν) : |μ | � 1
2
, −1 � ν � 1

}
,

D2 =
{

(μ ,ν) :
1
2

� |μ | � 2,
4
27

(|μ |+1)3− (|μ |+1) � ν � 1

}
,

D3 =
{

(μ ,ν) :
1
2

� |μ | � 2, −2
3
(|μ |+1) � ν � 4

27
(|μ |+1)3− (|μ |+1)

}
,

D4 =
{

(μ ,ν) : |μ | � 2, −2
3
(|μ |+1) � ν � 2 |μ |(|μ |+1)

μ2 +2 |μ |+4

}
,

D5 =
{

(μ ,ν) : 2 � |μ | � 4,
2 |μ |(|μ |+1)
μ2 +2 |μ |+4

� ν � 1
12

(μ2 +8)
}
\ {(2,1)} ,

D6 =
{

(μ ,ν) : 2 � |μ | � 4, ν � 1
12

(μ2 +8)
}

.

LEMMA 2. (See [8, 9]) Let −2 � p1 � 2 and p2, p3 ∈ C . Then there exists a
function p ∈ P with

p(z) = 1+ p1z+ p2z
2 + p3z

3 + · · · (2.3)

if and only if
2p2 = p2

1 +(4− p2
1)x (2.4)

and
4p3 = p3

1 +2(4− p2
1)p1x− (4− p2

1)p1x
2 +2(4− p2

1)(1−|x|2)y (2.5)

for some x,y ∈ C with |x| � 1 and |y| � 1 .
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LEMMA 3. (See [7]) For given real numbers a,b,c, let

Y (a,b,c) = max
z∈D

(∣∣a+bz+ cz2
∣∣+1−|z|2

)
. (2.6)

If a � 0 and c � 0 , then

Y (a,b,c) =

⎧⎪⎨
⎪⎩

a+ |b|+ c (|b| � 2(1− c)),

1+a+ b2

4(1−c) (|b| � 2(1− c)).
(2.7)

The maximum in the definition of Y (a,b,c) is attained at z = ±1 in the first case
according as b = ±|b| .

LEMMA 4. (See [16]) If μ(z)= 1+∑∞
k=1 μkzk is subordinate to ν = 1+∑∞

k=1 νkzk

in D , where ν(z) is univalent in D and ν(D) is convex, then

|μn| � |ν1| (n � 1). (2.8)

The proof of the following lemma is similar to that of [19, Lemma 2.2].

LEMMA 5. Suppose that the sequence {Am}∞
m=2 is defined by⎧⎪⎨

⎪⎩
Am = λ (m = 2) ,

Am =
λ

m−1

(
1+

m−1

∑
k=2

Ak

)
(m � 3) .

(2.9)

Then

Am =
1

(m−1)!

m−2

∏
k=0

(λ + k) (m � 2) . (2.10)

Proof. From (2.9), we have

(m−1)Am = λ

(
1+

m−1

∑
k=2

Ak

)
(2.11)

and

mAm+1 = λ

(
1+

m

∑
k=2

Ak

)
. (2.12)

Combining (2.11) and (2.12), we find that

Am+1

Am
=

λ +m−1
m

(m � 2) . (2.13)
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Thus,

Am =
Am

Am−1
· Am−1

Am−2
· · · A3

A2
·A2

=
λ +m−2

m−1
· λ +m−3

m−2
· · · λ +1

2
·λ

=
1

(m−1)!

m−2

∏
k=0

(λ + k) (m � 3) .

(2.14)

In conjunction with (2.9), we complete the proof of Lemma 5. �

3. Main results

We first discuss the absolute values of the second, third and fourth coefficients of
functions in the class S ∗

λ e .

THEOREM 1. Suppose that f (z) = z+ ∑∞
n=2 anzn ∈ S ∗

λ e . Then

|a2| � λ , (3.1)

|a3| �
⎧⎨
⎩

λ
2

(
0 < λ � 2

3

)
,

3λ 2

4

( 2
3 < λ � π

2

)
,

(3.2)

and

|a4| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
3 (λ ∈ (0,r0]) ,

λ (5λ+2)
9

√
2(5λ+2)

17λ 2+30λ+12
(λ ∈ (r0,r1]) ,

17λ (25λ 2−16)
252

√
25λ 2−16
17λ 2−12

(
λ ∈

(
r1,
√

32
43

])
,

17λ 3

36

(
λ ∈

(√
32
43 , π

2

])
,

(3.3)

where r0 ≈ 0.7817 is the unique positive root of the equation

250x3 +147x2−150x−92 = 0 (3.4)

and r1 ≈ 0.8602 is the unique positive root of the equation

425λ 3 +340λ 2−328λ −240 = 0. (3.5)

All the bounds are sharp.

Proof. Let f ∈ S ∗
λ e . Then we can write (1.5) in terms of Schwarz function as

z f ′(z)
f (z)

= eλ ω(z).
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It follows from (1.1) that

z f ′(z)
f (z)

= 1+a2z+(2a3−a2
2)z2 +(3a4−3a2a3 +a2

3)z3 + · · · . (3.6)

Suppose that

ω(z) =
∞

∑
n=1

cnz
n.

From the series expansion of eλ ω along with some calculations, we get

eλ ω(z) = 1+ λc1z+
(

λ 2

2
c1

2 + λc2

)
z2 +

(
λ 3

6
c3
1 + λ 2c1c2 + λc3

)
z3 + · · · . (3.7)

Comparing (3.6) with (3.7), we have

a2 = λc1, (3.8)

a3 =
λ
2

(
c2 +

3
2

λc2
1

)
, (3.9)

and

a4 =
λ
3

(
c3 +

5
2

λc1c2 +
17
12

λ 2c3
1

)
. (3.10)

Since ω is a Schwarz function, we have |c1| � 1. Hence, we obtain

|a2| � λ . (3.11)

Using a result of Carleson [1] (see also [2]), we have |c2| � 1− |c1|2 . By virtue of
(3.9), we find that

|a3| � λ
2

[
1+(

3
2

λ −1) |c1|2
]
. (3.12)

Then the inequality (3.2) follows from (3.12) with |c1| ∈ [0,1] .
Suppose that μ = 5

2λ , ν = 17
12λ 2 with 0 < λ � 1

5 . We see that (μ ,ν) ∈D1 . From
Lemma 1, we have ∣∣∣∣c3 +

5
2

λc1c2 +
17
12

λ 2

∣∣∣∣� 1. (3.13)

By means of (3.10), we obtain

|a4| � λ
3

(
0 < λ � 1

5

)
. (3.14)

For 1
5 < λ � 4

5 , it is clear that 1
2 < |μ | � 2 and ν � − 2

3(|μ |+1) . Since

ν � 4
27

(|μ |+1)3− (|μ |+1)

is equivalent to
250λ 3 +147λ 2−150λ −92 � 0.

Let
g1(x) = 250x3 +147x2−150x−92.
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A numerical computation shows that the unique positive root of g1(x) = 0 is r0 ≈

0.7817. For 1
5 < λ � r0 , we have g1(λ ) � 0. It is clear that

4
27

(|μ |+1)3− (|μ |+1) � ν � 1.

Thus, we see (μ ,ν) ∈ D2 for 1
5 < λ � r0 . An application of Lemma 1 leads to

|a4| � λ
3

(
1
5

< λ � r0

)
. (3.15)

Combing (3.14) and (3.15), we know that

|a4| � λ
3

(0 < λ � r0) . (3.16)

When r0 < λ � 4
5 , it can be seen that (μ ,ν) ∈ D3 . Therefore, the sharp bound of |a4|

is given by

|a4| � λ (5λ +2)
9

√
2(5λ +2)

17λ 2 +30λ +12

(
r0 < λ � 4

5

)
. (3.17)

Now, we suppose that 4
5 < λ � π

2 . It is not hard to verify that 2 � μ < 4. Since
ν � 1

12 (μ2 +8) is equivalent to λ 2 � 32
43 , we have

ν >
1
12

(μ2 +8)

for λ >
√

32
43 ≈ 0.8627. This implies that (μ ,ν) ∈ D6 for λ ∈

(√
32
43 , π

2

]
. Using

Lemma 1, yields to

|a4| � 17λ 3

36

(√
32
43

< λ � π
2

)
. (3.18)

For 4
5 < λ �

√
32
43 , we have ν � 1

12(μ2 +8) . Then

ν � 2 |μ |(|μ |+1)
μ2 +2 |μ |+4

is equivalent to
425λ 3 +340λ 2−328λ −240 � 0.

Now, we suppose that

g2(x) = 425x3 +340x2−328x−240. (3.19)

The numerical computation shows that the unique positive root of g2(x) = 0 is r1 ≈

0.8602. For 4
5 < λ � r1 , we have g2(λ ) � 0 and hence ν � 2|μ|(|μ|+1)

μ2+2|μ|+4
. This implies

that (μ ,ν) ∈ D4 , thus, we have

|a4| � λ (5λ +2)
9

√
2(5λ +2)

17λ 2 +30λ +12

(
4
5

< λ � r1

)
. (3.20)
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Combing (3.17) and (3.20), we obtain

|a4| � λ (5λ +2)
9

√
2(5λ +2)

17λ 2 +30λ +12
(r0 < λ � r1) . (3.21)

For λ ∈
(

r1,
√

32
43

]
, we have g2(λ ) � 0 and hence ν � 2|μ|(|μ|+1)

μ2+2|μ|+4
. Obviously, μ =

5
2λ �= 2. Therefore, we know that (μ ,ν) ∈ D5 and

|a4| � 17(25λ 2−16)
252

√
25λ 2−16
17λ 2−12

(
r1 < λ �

√
32
43

)
. (3.22)

By virtue of (3.16), (3.18), (3.21) and (3.22), we obtain the bound of |a4| given by
(3.3). This completes the proof of Theorem 1. �

From the definitions of S ∗
λ e and Kλ e , we know that if f ∈Kλ e , then z f ′ ∈S ∗

λ e .
We thus get the following result.

THEOREM 2. If f (z) = z+ ∑∞
n=2 anzn ∈ Kλ e , then

|a2| � λ
2

, (3.23)

|a3| �
⎧⎨
⎩

λ
6

(
0 < λ � 2

3

)
,

λ 2

4

( 2
3 < λ � π

2

)
,

(3.24)

and

|a4| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
12 (λ ∈ (0,r0]) ,

λ (5λ+2)
36

√
2(5λ+2)

17λ 2+30λ+12
(λ ∈ (r0,r1]) ,

17λ (25λ 2−16)
1008

√
25λ 2−16
17λ 2−12

(
λ ∈

(
r1,
√

32
43

])
,

17λ 3

144

(
λ ∈

(√
32
43 , π

2

])
,

(3.25)

where r0 ≈ 0.7817 and r1 ≈ 0.8602 are the unique positive root of the equation (3.4)
and (3.5), respectively. All these bounds are sharp.

From Theorem 1, we know that 1
2 | f ′′(0)|= |a2|� λ for f = z+∑∞

n=2 anzn ∈S ∗
λ e .

Now, let
S ∗

λ e(p̂) :=
{

f ∈ A : f ∈ S ∗
λ e; f ′′(0) = p̂

}
, (3.26)

where p̂ is a given real number satisfying −2λ � p̂ � 2λ .
In what follows, we will discuss the difference of initial successive coefficients for

functions in S ∗
λ e(p̂) .
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THEOREM 3. Let 0 � p̂ � 2λ and p = p̂/λ . Suppose that f (z) = z+∑∞
n=2 anzn ∈

S ∗
λ e(p̂) . Then the following sharp inequalities

|a3−a2| � λ
16

(
p |3λ p−8|+8−2p2) . (3.27)

and

|a4−a3| �
⎧⎨
⎩

Ψ1(λ , p)
(
0 < λ � 3

5

)
,

Ψ2(λ , p)
(

3
5 < λ � π

2

)
,

(3.28)

hold, where

Ψ1(λ , p) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ
1152

[
7λ 2p3 +(150λ 2 +36λ −96)p2 +(108−360λ )p+600

](
0 � p � 2

4−5λ

)
,

λ
288

[
(−17λ 2 +30λ −12)p3 +(54λ −36)p2 +(48−120λ )p+144

](
2

4−5λ < p � 2
)

,

Ψ2(λ , p) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ
1152

[
7λ 2p3 +(150λ 2 +36λ −96)p2 +(108−360λ )p+600

](
0 � p � 14

4+5λ

)
,

λ
288

[
(−17λ 2−30λ −12)p3 +(54λ +36)p2 +(48+120λ )p−144

](
14

4+5λ < p � 2
)

.

Proof. Let f ∈ S ∗
λ e(p̂) . In terms of Schwarz function, we can write (1.5) as

z f ′(z)
f (z)

= eλ ω(z).

We define ρ ∈ P by the Schwarz function as

ρ(z) =
1+ ω(z)
1−ω(z)

= 1+ p1z+ p2z
2 + · · · . (3.29)

From (3.29), we obtain

ω(z) =
ρ(z)−1
ρ(z)+1

=
1
2

p1z+
(

1
2

p2− 1
4

p2
1

)
z2 +

(
1
2

p3− 1
2

p1p2 +
1
8

p3
1

)
z3 + · · · .

(3.30)

From the series expansion of ω along with some calculations, we have

eλ ω(z) = 1+
λ
2

p1z+
(

λ
2

p2 +
λ 2 −2λ

8
p2

1

)
z2

+
(

λ 3−6λ 2 +6λ
48

p3
1 +

λ 2 −2λ
4

p1p2 +
λ
2

p3

)
z3 + · · · . (3.31)
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Comparing (3.6) with (3.31), we get

a2 =
1
2

λ p1, (3.32)

a3 =
1
4

λ
(

p2 +
3λ −2

4
p2

1

)
, (3.33)

and

a4 =
1
6

λ
(

p3 +
5λ −4

4
p1p2 +

17λ 2−30λ +12
48

p3
1

)
. (3.34)

Let p = p̂/λ . It is obvious that p ∈ [0,2] . Since 2a2 = f ′′(0) = p̂ , from (3.32), we get

p1 =
1
λ

p̂ = p. (3.35)

By Lemma 2, we obtain

p2 =
1
2

p2 +
1
2
(4− p2)x, (3.36)

and

p3 =
1
4

p3 +
1
2
(4− p2)px− 1

4
(4− p2)px2 +

1
2
(4− p2)(1−|x|2)y, (3.37)

where x,y ∈ C with |x|� 1, |y|� 1. Substituting (3.35), (3.36) and (3.37) into (3.32),
(3.33) and (3.34), respectively, we obtain

a2 =
1
2

λ p, (3.38)

a3 =
3
16

λ 2p2 +
1
8

λ (4− p2)x, (3.39)

and

a4 =
17
288

λ 3p3 +
5
48

λ 2(4− p2)px− 1
24

λ (4− p2)x2 +
1
12

λ (4− p2)(1−|x|2)y (3.40)

for some x,y ∈ C with |x| � 1, |y| � 1. For p ∈ [0, 8
3λ
]
, we have

|a3−a2| =
∣∣∣∣ 3
16

λ 2p2 +
1
8

λ (4− p2)x− 1
2

λ p

∣∣∣∣
� 1

2
λ p− 3

16
λ 2p2 +

1
8

λ (4− p2)

=
1
2

λ +
1
2

λ p− 3λ +2
16

λ p2,

(3.41)

where equality occurs if x = −1. Similarly, we have

|a3−a2| � 1
2

λ − 1
2

λ p+
3λ −2

16
λ p2 (3.42)

for p∈ ( 8
3λ ,2

]
. Hence, the inequality (3.27) follows from (3.41) and (3.42). For p = 2,

we easily obtain

|a4−a3| = 1
36

λ 2(27−17λ ). (3.43)
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For p ∈ [0,2) , we have

|a4−a3|

=
∣∣∣∣ 17
288

λ 3p3 +
5
48

λ 2(4− p2)px− 1
24

λ (4− p2)px2 +
1
12

λ (4− p2)(1−|x|2)y

− 3
16

λ 2p2− 1
8

λ (4− p2)x
∣∣∣∣

=
1

288

∣∣∣17λ 3p3 −54λ 2p2 +6λ (5λ p−6)(4− p2)x−12λ (4− p2)px2

+24λ (4− p2)(1−|x|2)y
∣∣∣

� 1
12

λ (4− p2)
[∣∣∣∣ (17λ p−54)λ p2

24(4− p2)
+

5λ p−6
4

x− p
2

x2

∣∣∣∣+1−|x|2
]

� 1
12

λ (4− p2)Y (a,b,c),

(3.44)

where Y (a,b,c) is given in (2.6) and

a =
(54−17λ p)λ p2

24(4− p2)
, b =

6−5λ p
4

, c =
p
2
. (3.45)

Since λ ∈ (0, π
2 ] , p ∈ [0,2) , we have 54−17λ p > 0 and hence a > 0. Let 0 < λ � 3

5 .
Clearly, we have λ p < 6

5 . Then it can be verified that |b| � 2(1− c) is equivalent to
0 � p � 2

4−5λ . By Lemma 3, we get

Y (a,b,c) =

⎧⎪⎪⎨
⎪⎪⎩

7λ 2p3+(150λ 2+36λ−96)p2+(108−360λ )p+600
96(4−p2)

(
0 � p � 2

4−5λ

)
,

(−17λ 2+30λ−12)p3+(54λ−36)p2+(48−120λ )p+144
24(4−p2)

(
2

4−5λ < p < 2
)

.

Thus, we obtain

|a4−a3| �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ
1152

[
7λ 2p3 +(150λ 2 +36λ −96)p2 +(108−360λ )p+600

](
0 � p � 2

4−5λ

)
,

λ
288

[
(−17λ 2 +30λ −12)p3 +(54λ −36)p2 +(48−120λ )p+144

](
2

4−5λ < p < 2
)

.

(3.46)
Now, we suppose that 3

5 < λ � π
2 . For λ p � 6

5 , we see that |b|� 2(1−c) is equivalent
to

(4−5λ )p � 2, (3.47)

it clearly holds for λ � 4
5 . For λ ∈ ( 3

5 , 4
5

)
, (3.47) is equivalent to

p � 2
4−5λ

∈ (2,+∞),
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which always holds for p ∈ [0,2) . Therefore, we have |b| � 2(1− c) provided that
p � 6

5λ . If λ p > 6
5 , a simple calculation shows that |b| � 2(1− c) is equivalent to

p � 14
4+5λ . Since 14

4+5λ > 6
5λ for λ ∈ ( 3

5 , π
2

]
. Hence, we know that |b| � 2(1− c) for

6
5λ < p � 14

4+5λ . From the above discussion, we obtain |b|� 2(1−c) if p∈
[
0, 14

4+5λ

]
.

Also, it is clear that |b| > 2(1− c) if and only if

p > max

{
14

4+5λ
,

6
5λ

}
=

14
4+5λ

.

Now, an application of Lemma 3 leads to

Y (a,b,c) =

⎧⎪⎪⎨
⎪⎪⎩

7λ 2p3+(150λ 2+36λ−96)p2+(108−360λ )p+600
96(4−p2)

(
0 � p � 14

4+5λ

)
,

(−17λ 2−30λ−12)p3+(54λ+36)p2+(120λ+48)p−144
24(4−p2)

(
14

4+5λ < p < 2
)

.

From (3.44), we deduce that

|a4−a3| �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ
1152

[
7λ 2p3 +(150λ 2 +36λ −96)p2 +(108−360λ )p+600

](
0 � p � 14

4+5λ

)
,

λ
288

[
(−17λ 2−30λ −12)p3 +(54λ +36)p2 +(120λ +48)p−144

](
14

4+5λ < p < 2
)

.

(3.48)
Combining (3.43), (3.46) with (3.48), we obtain (3.28). This completes the proof of
Theorem 3. �

Taking λ = 1 in Theorem 3, we obtain the following result.

COROLLARY 1. Let 0 � p � 2 and f (z) = z+ ∑∞
n=2 anzn ∈ S ∗

e (p) . Then

|a3−a2| � 1
16

(−5p2 +8p+8), (3.49)

and

|a4−a3| �
⎧⎨
⎩

1
1152(7p3 +90p2−252p+600)

(
0 � p � 14

9

)
,

1
288(−59p3 +90p2 +168p−144)

( 14
9 � p � 2

)
.

(3.50)

All inequalities are sharp.

If we denote by

Se
∗(+) =

⋃
0�p�2

S ∗
e (p) =

{
f : f ∈ S ∗

e ; f ′′(0) = p
}

,

then in view of (3.49) and (3.50), we easily obtain

sup
f∈Se

∗(+)
|a3( f )−a2( f )| = 7

10
, (3.51)
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and

sup
f∈Se

∗(+)
|a4( f )−a3( f )| = 25

48
. (3.52)

From Theorem 2, we know that for f ∈ Kλ e ,
∣∣ 1
2 f ′′(0)

∣∣= |a2( f )| � 1
2 λ . Denote

by
Kλ e(p̂) =

{
f ∈ Kλ e, f ′′(0) = p̂

}
, (3.53)

where p̂ is a given real number with −λ � p̂ � λ .
In what follows, we will discuss the difference of initial successive coefficients for

functions belonging to the class Kλ e(p̂) .

THEOREM 4. Let 0 � p̂ � λ and p = p̂/λ . Suppose that f (z) = z+ ∑∞
n=2 anzn

be in the class Kλ e(p̂) . Then the following sharp inequalities

|a3−a2| � 1
12

λ
[
2+6p− (3λ +2)p2] , (3.54)

and

|a4−a3| �
⎧⎨
⎩

Θ1(λ , p)
(
0 < λ < 4

5

)
,

Θ2(λ , p)
(

4
5 � λ � π

2

)
,

(3.55)

hold, where

Θ1(λ , p) :=
1

144
λ
[
(−17λ 2 +30λ −12)p3 +(36λ −24)p2 +(12−30λ )p+24

]
,

Θ2(λ , p) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
576λ

[
7λ 2p3 +(75λ 2 +24λ −48)p2 +(48−120λ )p+96

](
0 � p � 8

4+5λ

)
,

1
144λ

[
(−17λ 2−30λ −12)p3 +(36λ +24)p2 +(30λ +12)p−24

](
8

4+5λ < p � 1
)

.

(3.56)

Proof. Let f (z) = z + ∑∞
n=2 anzn ∈ K ∗

λ e(p) . By the Alexander relation, from
(3.32), (3.33) and (3.34) we deduce that

a2 =
λ
4

p1, (3.57)

a3 =
1
12

λ
(

p2 +
3λ −2

4
p1

2
)

, (3.58)

and

a4 =
1
24

λ
(

p3 +
5λ −4

4
p1p2 +

17λ 2−30λ +12
48

p3
1

)
. (3.59)

Let p = p̂/λ , it is clear that p ∈ [0,1] . Since 2a2 = f ′′(0) = p̂ , in view of (3.57), we
get

p1 =
2
λ

p̂ = 2p. (3.60)
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By Lemma 2, we obtain

p2 = 2p2 +2(1− p2)x, (3.61)

and

p3 = 2p3 +4(1− p2)px−2(1− p2)px2 +2(1− p2)(1−|x|2)y, (3.62)

where x,y ∈ C with |x|� 1, |y|� 1. Substituting (3.60), (3.61) and (3.62) into (3.57),
(3.58) and (3.59), respectively, we have

a2 =
λ
2

p, (3.63)

a3 =
1
4

λ 2p2 +
1
6

λ (1− p2)x, (3.64)

and

a4 =
17
144

λ 3p3 +
5
24

λ 2(1− p2)px− 1
12

λ (1− p2)px2 +
1
12

λ (1− p2)(1−|x|2)y (3.65)

for some x,y ∈ C and |x| � 1, |y| � 1. Thus, we find that

|a3−a2| =
∣∣∣∣14λ 2p2 +

1
6

λ (1− p2)x− 1
2

λ p

∣∣∣∣
=
∣∣∣∣14λ p(λ p−2)+

1
6

λ (1− p2)x
∣∣∣∣

� 1
6

λ +
1
2

λ p− 3λ +2
12

λ p2,

(3.66)

where equality occurs if x = −1. The inequality (3.54) in Theorem 4 follows from
(3.66). For p = 1, we easily obtain

|a4−a3| = 1
144

λ 2(36−17λ ). (3.67)

For p ∈ [0,1) , we have

|a4−a3|

=
∣∣∣∣ 17
144

λ 3p3 +
5
24

λ 2(1− p2)px− 1
12

λ (1− p2)px2 +
1
12

λ (1− p2)(1−|x|2)y

−1
4

λ 2p2− 1
6

λ (1− p2)x
∣∣∣∣

=
1

144
λ
∣∣∣(17λ p−36)λ p2+6(5λ p−4)(1− p2)x−12(1− p2)px2

+12(1− p2)(1−|x|2)y
∣∣∣

� 1
12

λ (1− p2)
[∣∣∣∣ (17λ p−36)λ p2

12(1− p2)
+

5λ p−4
2

x− px2

∣∣∣∣+1−|x|2
]

� 1
12

λ (1− p2)Y (a,b,c),
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where Y (a,b,c) is given in (2.6) and

a =
(36−17λ p)λ p2

12(1− p2)
, b =

4−5λ p
2

, c = p.

For λ ∈ (0, π
2 ] , p ∈ [0,1) , it can be seen that a > 0. Since |b| � 2(1− c) is equivalent

to b2 � 4(1− c)2 , we see that |b| � 2(1− c) if and only if

(4−5λ )
(

1− 5λ +4
8

p

)
� 0. (3.68)

Clearly, (3.68) holds only if λ � 4
5 . This means that |b| > 2(1− c) for all λ ∈ (0, 4

5

)
.

Let λ ∈ (0, 4
5

)
, by using Lemma 3, we see that

Y (a,b,c) =
(−17λ 2 +30λ −12)p3 +(36λ −24)p2 +(12−30λ )p+24

12(1− p2)
.

This induces that

|a4−a3| � 1
144

λ
[
(−17λ 2 +30λ −12)p3 +(36λ −24)p2 +(12−30λ )p+24

]
.

(3.69)
Now, we suppose that 4

5 � λ � π
2 . From (3.68), we obtain |b|� 2(1− c) if and only if

p ∈
[
0, 8

4+5λ

]
. By noting that 8

4+5λ � 4
5λ for λ ∈ [ 4

5 , π
2

]
, an application of Lemma 3

yields

Y (a,b,c) =

⎧⎪⎪⎨
⎪⎪⎩

7λ 2p3+(75λ 2+24λ−48)p2+(48−120λ )p+96
48(1−p2)

(
0 � p � 8

4+5λ

)
,

(−17λ 2−30λ−12)p3+(36λ+24)p2+(30λ+12)p−24
12(1−p2)

(
8

4+5λ < p < 1
)

.

Thus, we deduce that

|a4−a3| �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
576λ

[
7λ 2p3 +(75λ 2 +24λ −48)p2 +(48−120λ )p+96

](
0 � p � 8

4+5λ

)
,

1
144λ

[
(−17λ 2−30λ −12)p3 +(36λ +24)p2 +(30λ +12)p−24

](
8

4+5λ < p < 1
)

.

(3.70)
Combining (3.67), (3.69) with (3.70), we obtain the inequality (3.55) in Theorem 4.
The proof is thus completed. �

By choosing λ = 1 in Theorem 4, we obtain the following result.

COROLLARY 2. Let 0 � p � 1 . Suppose that f (z) = z+∑∞
n=2 anzn be in the class

Ke(p) . Then the following sharp inequalities

|a3−a2| � 1
12

(−5p2 +6p+2), (3.71)
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and

|a4−a3| �
⎧⎨
⎩

1
576

(
7p3 +51p2−72p+96

) (
0 � p � 8

9

)
,

1
144

(−59p3 +60p2 +42p−24
) (

8
9 < p � 1

)
,

(3.72)

hold.

Now, we denote by

Ke
∗(+) =

⋃
0�p�1

Ke(p) =
{

f : f ∈ Ke; f ′′(0) = p
}

. (3.73)

By virtue of (3.71) and (3.72), we easily find that

sup
f∈Ke

∗(+)
|a3( f )−a2( f )| = 19

60
, (3.74)

and

sup
f∈Ke

∗(+)
|a4( f )−a3( f )| = 1

6
. (3.75)

Finally, we will give the upper bounds of |an|(n � 2) for functions in the class
S ∗

λ e and Kλ e for λ ∈ (0,1] . However, they are not always sharp.

THEOREM 5. If f (z) = z+ ∑∞
n=2 anzn ∈ S ∗

λ e (0 < λ � 1) , then

|an| � 1
(n−1)!

n−2

∏
k=0

(λ + k) (n � 2). (3.76)

Proof. Let

ψ(z) =
z f ′(z)
f (z)

= 1+
∞

∑
n=1

cnz
n.

Since f ∈ S ∗
λ e , we know that

ψ(z) ≺ χ(z) = eλ z = 1+ λ z+
λ 2

2!
z2 + · · · .

Note that χ(z) is univalent and convex in D for 0 < λ � 1, by Lemma 4, we obtain

|cn| � λ (n � 1).

In view of z f ′(z) = ψ(z) f (z) , by comparing the coefficients of zn on both sides, it
follows that

a2 = c1

and

(n−1)an = cn−1 +
n−1

∑
k=2

cn−kak (n � 3).

Thus, we have
|a2| = |c1| � λ ,



INITIAL SUCCESSIVE COEFFICIENTS 1199

and

|an| � λ
n−1

(
1+

n−1

∑
k=2

|ak|
)

(n � 3). (3.77)

Now, we define the sequence {Am}∞
m=2 as follows:⎧⎪⎨

⎪⎩
Am = λ (m = 2),

Am =
λ

m−1

(
1+

m−1

∑
k=2

Ak

)
(m � 3) .

(3.78)

In order to prove that
|am| � Am (m � 2), (3.79)

we use the principle of mathematical induction. It is easy to verify that

|a2| � A2 = λ . (3.80)

Thus, assuming that
|al| � Al (l = 2,3, . . . ,m), (3.81)

we find from (3.77) and (3.81) that

|am+1| � λ
m

(
1+

m

∑
k=2

|ak|
)

� λ
m

(
1+

m

∑
k=2

Ak

)
= Am+1. (3.82)

Therefore, by the principle of mathematical induction, we have

|am| � Am (m � 2). (3.83)

By means of Lemma 5 and (3.78), we see that

Am =
1

(m−1)!

m−2

∏
k=0

(λ + k) (m � 2) . (3.84)

Combining (3.83) with (3.84), we readily get the coefficient estimates (3.76) asserted
by Theorem 5. �

According to the relationship between the classes S ∗
λ e and Kλ e , we easily obtain

the follow result.

THEOREM 6. If f (z) = z+ ∑∞
n=2 anzn ∈ Kλ e (0 < λ � 1) , then

|an| � 1
n!

n−2

∏
k=0

(λ + k) (n � 2).
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