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ONE DIMENSIONAL WEIGHTED HARDY’S
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(Communicated by M. Krnić)

Abstract. Let Ω be a C2 class bounded domain of R
n (n � 1) . In the present paper we shall

improve one dimensional weighted Hardy inequalities with one-sided boundary condition by
adding sharp remainders. As an application, we shall establish n dimensional weighted Hardy
inequalities with weight functions being powers of the distance function δ (x) to the boundary
∂Ω . Our results will be applicable to variational problems in a coming paper [3].

1. Introduction

Let 1 < p < ∞ and C∞
c ((0,1]) denote the set of all C∞ functions with compact

supports in (0,1] . One dimensional Hardy inequality with one-sided boundary condi-
tion is represented by

∫ 1

0
|u′(t)|p dt �

(
1− 1

p

)p ∫ 1

0

|u(t)|p
t p dt +

(
1− 1

p

)p−1

|u(1)|p (1.1)

for every u ∈ C∞
c ((0,1]) . When u(1) = 0, this is a well-known Hardy inequality (see

[11]. To see the optimality of coefficient of the second term in the right hand side, by
the density argument it suffices to employ uε(t) = t1−1/p+ε as a test function and make
ε ↓ 0.

Our first purpose in this paper is not only to establish a weighted version of (1.1)
but also improve it by adding sharp remainder terms. As weight functions we consider
power type weights tα p for t ∈ [0,1] . Surprisingly our result on this matter is essen-
tially dependent on the range of parameter α . Let us explain with symbolic and most
simple cases as examples. To this end we classify the range of the parameter α into
two cases and define the best constant Λα ,p as follows:

DEFINITION 1.1. The parameter α is said to be noncritical and critical if α sat-
isfies α < 1−1/p and α � 1−1/p respectively.
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DEFINITION 1.2. For 1 < p < +∞ we set

Λα ,p =

⎧⎪⎨
⎪⎩

∣∣∣1− 1
p −α

∣∣∣p
, if α �= 1− 1

p ,(
1− 1

p

)p
, if α = 1− 1

p .
(1.2)

When α is noncritical under this definition, as a corollary to Theorem 2.1 we have
a sharp Hardy type inequality:

∫ 1

0
|u′(t)|ptα p dt � Λα ,p

∫ 1

0

|u(t)|p
t p tα p dt +(Λα ,p)1−1/p|u(1)|p, (1.3)

for every u ∈C∞
c ((0,1]) . To see the optimality of coefficient of the second term in the

right hand side, one can employ uε(t) = t1−α−1/p+ε as a test function as before. When
α is critical, it follows from Proposition 2.1 that

inf
u∈W

∫ 1

0
|u′(t)|ptα p = 0, (1.4)

where W = {u ∈ C1([0,1]) : u(0) = 0,u(1) = 1} . Nevertheless we will have a sharp
Hardy type inequalities (2.6) and (2.7) as a corollary to Theorem 2.2.

In Section 2.2, as an important application, we will establish n dimensional weigh-
ted Hardy inequalities with weight function being powers of the distance function
δ (x) = dist(x,∂Ω) to the boundary ∂Ω . In this task it is crucial to establish sharp
weighted Hardy inequalities in the tubler neighborhood Ωη of Ω , which are reduced
to the one dimensional inequalities in Section 2.1. To this end Ω is assumed to be a
bounded domain of RN (N � 1) whose boundary ∂Ω is a C2 compact manifolds in
the present paper. We prepare more notations to describe our results. For α ∈ R , by
Lp(Ω,δ pα) we denote the space of Lebesgue measurable functions with weight δ α p ,
for which

||u||Lp(Ω,δ pα ) =
(∫

Ω
|u|pδ α p dx

)1/p

< +∞. (1.5)

W 1,p
α ,0 (Ω) is given by the completion of C∞

c (Ω) with respect to the norm defined by

||u||
W1,p

α,0(Ω) = |||∇u|||Lp(Ω,δ pα ) + ||u||Lp(Ω,δ pα ). (1.6)

Then W 1,p
α ,0 (Ω) becomes a Banach space with the norm || · ||

W 1,p
α,0 (Ω) . Under these prepa-

ration we will state the noncritical weighted Hardy inequality as Theorem 2.3, which
is the counter-part to Theorem 2.1. In particular as its corollary, we have the simplest
one: ∫

Ω
|∇u|pδ α p � μ

∫
Ω
|u|pδ p(α−1), ∀u ∈W 1,p

α ,0(Ω), (1.7)

where α < 1− 1
p and μ is a positive constant essentially depending on the boundary

∂Ω . If α = 0 and p = 2, then (1.7) is a well-known Hardy inequality and valid for a
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bounded domain Ω of RN with Lipschitz boundary (c.f. [5, 6, 12]). Further if Ω is
convex and α = 0, then μ = Λ0,p holds for arbitrary 1 < p < ∞ (see [13]).

It is worthy to remark that (1.7) is never valid in the critical case that α � 1−1/p
by (1.4) (see also Proposition 2.2). Nevertheless, we will establish in this case a variant
of weighted Hardy’s inequalities as Theorem 2.5 which correspond to those in Theorem
2.2. As its corollary we describe Hardy’s inequalities with a compact perturbation
which are closely relating to the so-called weak Hardy property of Ω . We remark that
a constant γ−1 in (2.14) and (2.15) concerns the weak Hardy constant, but in this case
the strong Hardy constant is +∞ (see [6] for the detail). In [2], two of the authors
have improved the weighted Hardy inequalities adopting |x|α p (powers of distance to
the origin O ∈ Ω) as weight functions instead of δ α p . In the present paper, some
inequalities of Hardy type in [2] are employed with minor modifications, especially
when 1 < p < 2 (see also [4, 7, 8, 9]). We note that our results will be further improved
in [10] for non-doubling weights. Lastly we remark that our results will be applicable
to variational problems in a coming paper [3].

This paper is organized in the following way: The main results are described in
Section 2. Theorem 2.1 and Theorem 2.2 are established in Section 3. Theorem 2.3
and Theorem 2.5 together with their corollaries are proved in Section 4. The proof of
Theorem 2.4 is given in Section 5 and the proofs of Proposition 2.1 and Proposition
2.2 are given in Section 6. In Appendix the proofs of Lemma 3.2 and Lemma 3.4 are
provided for the sake of self-containedness.

2. Main results

DEFINITION 2.1. For t ∈ (0,1) and R > e , we set

A1(t) := log
R
t
, A2(t) := logA1(t). (2.1)

2.1. Results in the one dimensional case

The proofs of Theorem 2.1 and Theorem 2.2 including corollaries will be given in
Section 3 and Appendix.

THEOREM 2.1. (Noncritical case) Assume that α < 1− 1/p, 1 < p < ∞ and
R > e. Then, there exist positive numbers C0 = C0(α, p,R) , C1 = C1(α, p,R) and
L = L(α, p,R) such that for every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−

∣∣∣u
t

∣∣∣p
(

Λα ,p +
C0

A1(t)2

))
tα p dt

� C1

∫ 1

0

(
|u′|p +

∣∣∣u
t

∣∣∣p
(

Λα ,p +
C0

A1(t)2

))
tα p+1dt +L|u(1)|p. (2.2)
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COROLLARY 2.1. Assume that α < 1− 1/p and 1 < p < ∞ . Then, for every
u ∈C∞

c ((0,1])
∫ 1

0
|u′(t)|ptα p dt � Λα ,p

∫ 1

0

|u(t)|p
t p tα p dt +(Λα ,p)1−1/p|u(1)|p. (2.3)

In the critical case we have somewhat more precise results.

THEOREM 2.2. (Critical case)

1. Assume that α > 1− 1/p, 1 < p < ∞ and R > e. Then there exist positive
numbers C0 = C0(α, p,R) , C1 = C1(α, p,R) and L = L(α, p,R) such that for
every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−

∣∣∣u
t

∣∣∣p
(

Λα ,p +
C0

A1(t)2

))
tα p dt +L|u(1)|p

� C1

∫ 1

0

(
|u′|p +

∣∣∣u
t

∣∣∣p
(

Λα ,p +
C0

A1(t)2

))
tα p+1 dt. (2.4)

2. Assume that α = 1− 1/p, 1 < p < ∞ and R > ee . Then, there exist positive
numbers C0 = C0(α, p,R) , C1 = C1(α, p,R)and and L = L(α, p,R) such that
for every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−

∣∣∣u
t

∣∣∣p 1
A1(t)p

(
Λα ,p +

C0

A2(t)2

))
t p−1dt +L|u(1)|p

� C1

∫ 1

0

(
|u′|p +

∣∣∣u
t

∣∣∣p 1
A1(t)p

(
Λα ,p +

C0

A2(t)2

))
t p dt. (2.5)

COROLLARY 2.2.

1. If α > 1−1/p and 1 < p < ∞ , then for every u ∈C∞
c ((0,1])

∫ 1

0
|u′(t)|ptα p dt +(Λα ,p)1−1/p|u(1)|p � Λα ,p

∫ 1

0

|u(t)|p
t p tα p dt. (2.6)

2. If α = 1−1/p, 1 < p < ∞ and R > e, then for every u ∈C∞
c ((0,1])

∫ 1

0
|u′(t)|pt p−1dt +(Λα ,p)αA1(1)1−p|u(1)|p � Λα ,p

∫ 1

0

|u(t)|p
tA1(t)p dt. (2.7)

REMARK 2.1. We remark that Corollaries 2.1 and 2.2 follow direct from the ar-
guments in the proofs of the corresponding theorems except for the optimality of the
constant L = (Λα ,p)1−1/p . For the proofs of the optimality, one can employ as test
functions uε = t1−α−1/p+ε in (2.3), uε = t1−α−1/p+ε in (2.6) and uε = A1(t)1−1/p−ε

in (2.7) respectively with ε being sufficiently small.

Further we remark an elementary result which will be useful in the subsequent.
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PROPOSITION 2.1. (Critical case) Assume that α � 1− 1/p and 1 < p < ∞ .
Then we have

inf
u∈W

∫ 1

0
|u′(t)|ptα p = 0, (2.8)

where W = {u ∈C1([0,1]) : u(0) = 0,u(1) = 1}.

The proof will be given in Section 6.

2.2. Results in a domain of RN

The proofs of Theorem 2.3, Corollary 2.3, and Theorem 2.5 will be given in Sec-
tion 4. Theorem 2.4 will be proved in Section 5. Let δ (x) = dist(x,∂Ω) . We use the
following notations:

Ωη = {x ∈ Ω : δ (x) < η}, Ση = {x ∈ Ω : δ (x) = η}. (2.9)

THEOREM 2.3. (Noncritical case) Assume that Ω is a bounded domain of class
C2 in RN . Assume that α < 1− 1/p, 1 < p < ∞ and R > e · supx∈Ω δ (x) . Assume
that η is a sufficienty small positive number. Then, there exist positive numbers C2 =
C2(α, p,R,η) and L = L(α, p,R,η) such that for every u ∈W 1,p

α ,0 (Ω) , we have

∫
Ωη

(
|∇u|p−Λα ,p

∣∣∣ u
δ

∣∣∣p)
δ α p � C2

∫
Ωη

∣∣∣ u
δ

∣∣∣p 1
A1(δ )2 δ pα +L

∫
Ση

|u|pδ α p. (2.10)

COROLLARY 2.3. Under the same assumptions as in Theorem 2.3, there exists a
positive number γ = γ(α, p,R) such that for every u ∈W 1,p

α ,0 (Ω) , we have

∫
Ω

(
|∇u|p− γ

∣∣∣ u
δ

∣∣∣p)
δ α p � 0. (2.11)

Moreover for any bounded domain Ω ⊂ RN we can prove the following:

THEOREM 2.4. (Noncritical case) Assume that Ω is a bounded domain of class
C2 in RN . Assume that α < 1− 1/p, 1 < p < ∞ and R > e · supx∈Ω δ (x) . Then, the
followings are equivalent.

1. There exists positive a number γ such that the inequality (2.11) is valid for every
u ∈W 1,p

α ,0(Ω) .

2. For a sufficiently small η > 0 , there exist positive numbers κ , C2 and L such that
the inequality (2.10) with Λα ,p replaced by κ is valid for every u ∈W 1,p

α ,0 (Ω) .
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THEOREM 2.5. (Critical case) Assume that Ω is a bounded domain of class C2

in RN .

1. Assume that α > 1−1/p, 1 < p < ∞ and R > ee · supx∈Ω δ (x) . Assume that η
is a sufficienty small positive number. Then, there exist positive numbers C2 =
C2(α, p,R,η) and L = L(α, p,R,η) such that for every u ∈W 1,p

α ,0(Ω) , we have

∫
Ωη

(
|∇u|p−Λα ,p

∣∣∣ u
δ

∣∣∣p)
δ α p +L

∫
Ση

|u|pδ α p � C2

∫
Ωη

∣∣∣ u
δ

∣∣∣p δ pα

A1(δ )2 . (2.12)

2. Assume that α = 1−1/p,1 < p < ∞ and R > ee · supx∈Ω δ (x) . Assume that η
is a sufficienty small positive number. Then, there exist positive numbers C2 =
C2(α, p,R,η) and L = L(α, p,R,η) such that for every u ∈W 1,p

α ,0(Ω) , we have

∫
Ωη

(
|∇u|p−Λα ,p

∣∣∣ u
δ

∣∣∣p 1
A1(δ )p

)
δ p−1 +L

∫
Ση

|u|pδ p−1 (2.13)

� C2

∫
Ωη

∣∣∣ u
δ

∣∣∣p 1
A1(δ )p

1
A2(δ )2 δ p−1.

COROLLARY 2.4. Assume that Ω is a bounded domain of class C2 in RN .

1. Assume that α > 1−1/p, 1 < p < ∞ and γ = γ(α, p,R,η) . Then, there exists
a positive number L′ = L′(α, p,R,η) such that for every u ∈W 1,p

α ,0 (Ω) , we have

∫
Ω

(
|∇u|p− γ

∣∣∣ u
δ

∣∣∣p)
δ α p +L′

∫
Ση

|u|pδ α p � 0. (2.14)

2. Assume that α = 1−1/p, 1 < p < ∞ and R > ee ·supx∈Ω δ (x) . Then, there exists
positive numbers γ and L′ = L′(α, p,R,η) such that for every u ∈W 1,p

α ,0 (Ω) , we
have

∫
Ω

(
|∇u|p− γ

∣∣∣ u
δ

∣∣∣p 1
A1(δ )p

)
δ p−1 +L′

∫
Ση

|u|pδ p−1 � 0. (2.15)

PROPOSITION 2.2. (Critical case) Assume that Ω is a bounded domain of class
C2 in RN . Assume that 1 < p < ∞ and α � 1 − 1/p. Then for arbitrary η ∈
(0,supx∈Ω δ (x)) we have

inf

{∫
Ω
|∇u|pδ α p : u ∈C1

c (Ω),u = 1 on {δ (x) = η}
}

= 0. (2.16)

The proof will be given in Section 6. From this it is worthy to remark that Hardy’s
inequality (1.7) never holds in the critical case.
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3. Proofs of Theorem 2.1 and Theorem 2.2

3.1. Auxiliary inequalities in the noncritical case

When p = 2 and α = 0, the first lemma is established in [5].

LEMMA 3.1. (Noncritical case) Assume that f ∈C([0,1])∩C1((0,1]) is a mono-
tone nondecreasing function such that f (1) � 1 . Assume that α < 1− 1/p and 1 <
p < ∞ . Then for every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p)
tα p dt �

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p)
tα p f dt. (3.1)

In particular we have

∫ 1

0
|u′|ptα p dt � Λα ,p

∫ 1

0

∣∣∣u
t

∣∣∣p
tα p dt. (3.2)

Proof of Lemma 3.1. Without loss of generality we assume that f � 0, f (1) = 1,
and u � 0. Define g = 1− f . Then g � 0 and g′ � 0. By integration by parts we have

(1−α −1/p)
∫ 1

0
upt p(α−1)gdt = −1/p

[
upt p(α−1)+1g

]1

0

+1/p
∫ 1

0
upt p(α−1)+1g′dt +

∫ 1

0
up−1u′t p(α−1)+1gdt.

Since g′ = − f ′ � 0 and g � 0,

(1−α −1/p)
∫ 1

0
upt p(α−1)gdt �

∫ 1

0
up−1u′t p(α−1)+1gdt.

By Hölder’s inequality, noting that p(α −1)+1 = (p−1)(α −1)+ α , we have

(1−α −1/p)
(∫ 1

0
upt p(α−1)gdt

)1/p

�
(∫ 1

0
|u′|pt pαgdt

)1/p

.

Using g = 1− f and the definition of Λα ,p , we have

∫ 1

0
(|u′|p−Λα ,p(u/t)p)tα p dt �

∫ 1

0
(|u′|p−Λα ,p(u/t)p)tα p f dt. �

LEMMA 3.2. (Noncritical case) Assume that α < 1−1/p, 1 < p < ∞ and R > e.
Then, there exist positive numbers C3 = C3(α, p,R) and L = L(α, p,R) such that for
every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p)
tα p dt � C3

∫ 1

0

∣∣∣u
t

∣∣∣p
tα p 1

A1(t)2 dt +L|u(1)|p. (3.3)
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The proofs of Lemma 3.2 together with Lemma 3.4 will be given in §6. It follows
from Lenma 3.1 and Lemma 3.2 that we have

LEMMA 3.3. (Noncritical case) Assume that α < 1−1/p, 1 < p < ∞ and R > e.
There exist positive numbers C4 = C4(α, p,R) and L = L(α, p,R) such that for every
u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p)
tα p dt � C4

∫ 1

0

(
|u′|p + Λα ,p

∣∣∣u
t

∣∣∣p) tα p

A2
1

dt +L|u(1)|p. (3.4)

In particular C4 is given by C4 = C3/(1+2Λα ,p).

Proof of Lemma 3.3. We use Lemma 3.1 for f = C3A
−2
1 with C3 being small.

Multiplying (3.3) by 2Λα ,p and adding it to (3.1), we have (3.4) for C4 = C3/(1 +
2Λα ,p) . �

3.2. Proof of Theorem 2.1

By adding

−C0

∫ 1

0

∣∣∣u
t

∣∣∣p 1
A1(t)2 tα p dt

to the both side of (3.4) we have

∫ 1

0

(
|u′|p−

∣∣∣u
t

∣∣∣p
(

Λα ,p +
C0

A1(t)2

))
tα p dt (3.5)

� C4

∫ 1

0

(
|u′|p +

∣∣∣u
t

∣∣∣p
(

Λα ,p− C0

C4

))
1

A1(t)2 tα p dt +L|u(1)|p.

Now we set C0 = Λα ,pC4/3,C′
1 = C4/3. Assuming that C0 � Λα ,p(logR)2 , we have

C0/A1(t)2 � C0/(logR)2 � Λα ,p , and hence

Λα ,p− C0

C4
=

2
3

Λα ,p � 1
3

(
Λα ,p +

C0

A1(t)2

)
.

Then we have

∫ 1

0

(
|u′|p−

∣∣∣u
t

∣∣∣p
(

Λα ,p +
C0

A1(t)2

))
tα p dt

� C′
1

∫ 1

0

(
|u′|p +

∣∣∣u
t

∣∣∣p
(

Λα ,p +
C0

A1(t)2

))
1

A1(t)2 tα p dt +L|u(1)|p.

By a calculation we see that tA2
1 � 4R/e2 (t ∈ [0,1]). Thus the desired inequality holds

for C1 = C′
1e

2/(4R) . �
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3.3. Auxiliary inequalities in the critical case

The following lemma will be established in Section 6 together with Lemma 3.2.

LEMMA 3.4. (Critical case)

1. Assume that α > 1−1/p, 1 < p < ∞ and R > e. There exist positive numbers
C5 =C5(α, p,R) and L = L(α, p,R) such that for every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p)
tα p dt +L|u(1)|p � C5

∫ 1

0

∣∣∣u
t

∣∣∣p tα p

A2
1

dt. (3.6)

2. Assume that α = 1−1/p, 1 < p < ∞ and R > e. There exist positive numbers
C5 =C5(α, p,R) and L = L(α, p,R) such that for every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p 1
Ap

1

)
t p−1 dt +L|u(1)|p � C5

∫ 1

0

∣∣∣u
t

∣∣∣p t p−1

Ap
1A2

2

dt. (3.7)

LEMMA 3.5. (Critical case)

1. Assume that α > 1−1/p, 1 < p < ∞ and R > e. There exist positive numbers
C6 =C6(α, p,R) and L = L(α, p,R) such that for every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p)
tα p dt +L|u(1)|p � C6

∫ 1

0
|u′|p tα p

A2
1

dt. (3.8)

2. Assume that α = 1−1/p, 1 < p < ∞ and R > ee . There exist positive numbers
C6 =C6(α, p,R) and L = L(α, p,R) such that for every u ∈C∞

c ((0,1]) , we have

∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p 1
Ap

1

)
t p−1 dt +L|u(1)|p � C6

∫ 1

0
|u′|p t p−1

A2
2

dt. (3.9)

Proof of Lemma 3.5. Admitting Lemma 3.4 for the moment, we prove Lemma 3.5.
Unfortunately we can not employ a counterpart of Lemma 3.1, hence we use a direct
argument. We establish (3.9) (the assertion 2) only because the argument for (3.8) is
quite similar. We prepare the following fundamental inequalities which are established
in [1] as Lemma 2.1 for X > −1.

LEMMA 3.6. 1. For p � 2 we have

|1+X |p−1− pX � c(p)|X |q, for any q ∈ [2, p] and X ∈ R. (3.10)

2. For 1 < p � 2 and M � 1 , we have

|1+X |p−1− pX � c(p)

{
Mp−2X2, |X | � M,

|X |p, |X | � M.
(3.11)

Here c(p) is a positive number independent of each X , M � 1 and q ∈ [2, p] .
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Proof. By Taylar expansion we have (3.10) with q = 2. For p > 1, we note that

lim
X→0

|1+X |p−1− pX
X2 =

p(p−1)
2

, lim
|X |→∞

|1+X |p−1− pX
|X |p = 1. (3.12)

Therefore (3.10) is valid for any q∈ [2, p] for a small c(p) > 0. If X >−1, then (3.11)
also follows from Taylar expansion and (3.12). If we choose c(p) sufficiently small,
then it remains valid for X � −1. �

First we assume that p � 2 and α = 1− 1/p . For any u ∈ C1
c ((0,1]) , let us set

u = Aα
1 h , where A1(t) = log(R/t) and h ∈C1

c ((0,1]) . Without a loss of generality we
assume u � 0. Letting X = −tA1h′/(αh)(h �= 0);0(h = 0) , we have

|u′|pt p−1−Λα ,pu
p t p−1

t pAp
1

= Λα ,p
hp

tA1
(|1+X |p−1) (3.13)

� −(Λα ,p)
1− 1

p (hp)′ + c(p)|h′|p(A1t)p−1.

Here we used (3.10) with q = p . On the other hand we have

|u′|p t p−1

A2(t)2 = α p hp

tA1A2
2

|1+X |p � 2pα p hp

tA1A2
2

(1+ |X |p) (3.14)

= 2pα p up

tAp
1A2

2

+2p|h′|p(tA1)p−1 1

A2
2

.

Here we used a trivial inequality: |1+X |p � 2p(1+ |X |p). By integrating (3.13) and
(3.14) on (0,1) and employing Lemma 3.4, the desired inequality follows for a suffi-
ciently small constant C6 > 0.

Secondly we assume that 1 < p < 2. If |X |� M , then (3.14) is valid. If |X |� M ,
again from (3.14) we immediately have

|u′|p t p−1

A2(t)2 � 2pα p (1+Mp)
hp

tA1A2
2

= C(M)
up

tAp
1A2

2

(|X | � M) . (3.15)

Thus we have

|u′|p t p−1

A2(t)2 � C(M)
up

tAp
1A2

2

+2pχ|X |�M(t)|h′|p(tA1)p−1 1

A2
2

. (3.16)

Here χS(t) is a characteristic function of S . We have (3.13) provided that |X | � M .
Since A−2

2 � 1, for a sufficiently small C6 the desired inequality (3.9) follows from
(3.13), (3.16) and Lemma 3.4 (2). �
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3.4. Proof of Theorem 2.2

It follows from (3.7) and (3.9) that we have∫ 1

0

(
|u′|p−Λα ,p

∣∣∣u
t

∣∣∣p 1
Ap

1

)
t p−1 dt +L|u(1)|p (3.17)

� C7

∫ 1

0

(
|u′|p + Λα ,p

∣∣∣u
t

∣∣∣p 1
Ap

1

)
t p−1

A2
2

dt

for every u ∈C∞
c ((0,1]) . Here C7 = min(C5,Λα ,pC6)/2. By adding

−C0

∫ 1

0

∣∣∣u
t

∣∣∣p 1
A1(t)p

1
A2(t)2 t p−1 dt

to the both side of (3.9) we have∫ 1

0

(
|u′|p−

∣∣∣u
t

∣∣∣p 1
A1(t)p

(
Λα ,p +

C0

A2(t)2

))
t p−1dt +L|u(1)|p

� C7

∫ 1

0

(
|u′|p +

∣∣∣u
t

∣∣∣p 1
A1(t)p

(
Λα ,p− C0

C7

))
1

A1(t)2 t p−1 dt,

Now we set C0 = Λα ,pC7/3 and C′
1 = C7/3. Assuming that C0 � Λα ,p(log logR)2 ,

we have C0/A2(t)2 � C0/(loglogR)2 � Λα ,p . Then∫ 1

0

(
|u′|p−

∣∣∣u
t

∣∣∣p 1
A1(t)p

(
Λα ,p +

C0

A2(t)2

))
t p−1 dt +L|u(1)|p

� C′
1

∫ 1

0

(
|u′|p +

∣∣∣u
t

∣∣∣p 1
A1(t)p

(
Λα ,p +

C0

A2(t)2

))
1

A1(t)2 t p−1dt.

By a calculation we see that for some C(R) > 0, tA2
2 � C(R) for any t ∈ [0,1].

Therefore the desired inequality holds for C1 = C′
1C(R)−1 . �

4. Proofs of Theorems 2.3, 2.5 and Corollaries 2.3, 2.4

We first establish Theorem 2.3 using Theorem 2.1. Theorem 2.5 is proved in a
quite similar way using Theorem 2.2. Then we prove Corollary 2.3 and Corollary 2.4.

Proofs of Theorem 2.3 and Theorem 2.5. Let us prepare some notations and fun-
damental facts. Define Σ = ∂Ω and Σt = {x ∈ Ω : δ (x) = t} . Since Σ is is of class C2 ,
there exists an η0 > 0 such that we have a C2 diffeomorphism G : Ωη 
→ (0,η)×Σ for
any η ∈ (0,η0) . By G−1(t,σ)((t,σ) ∈ (0,η0)×Σ) we denote the inverse of G . Let
Ht denote the mapping G−1(t, ·) of Σ onto Σt . This mapping is also a C2 diffeomor-
phism and its Jacobian is close to 1 in (0,η0)×Σ . Therefore, for every non-negative
continuous function u on Ωη with η ∈ (0,η0) we have∫

Ωη
u =

∫ η

0
dt

∫
Σt

udσt =
∫ η

0
dt

∫
Σ
u(t,Ht(σ))(JacHt)dσ , (4.1)

|JacHt(σ)−1|� ct, for every (t,σ) ∈ (0,η0)×Σ, (4.2)
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where c is a positive constant independent of each (t,σ) , dσ and dσt denote surface
elements on Σ and Σt respectively. Further we have

∫ η

0
dt

∫
Σ
u(t,Ht(σ))(1− ct)dσ �

∫
Ωη

u �
∫ η

0
dt

∫
Σ
u(t,Ht(σ))(1+ ct)dσ , (4.3)

∫
Σ
u(η ,Hη(σ))(1− cη)dσ �

∫
Ση

udση �
∫

Σ
u(η ,Hη (σ))(1+ cη)dσ . (4.4)

Then we immediately have

∫
Σ

dσ
∫ η

0

∣∣∣∣∂u
∂ t

∣∣∣∣
p

(1− ct)tα pdt �
∫

Ωη
|∇u|pδ α p

∫
Σ

dσ
∫ η

0

∣∣∣u
t

∣∣∣p
(1− ct)tα pdt �

∫
Ωη

|u|pδ p(α−1) �
∫

Σ
dσ

∫ η

0

∣∣∣u
t

∣∣∣p
(1+ ct)tα pdt.

Proof of (2.10) . Under these consideration, (2.10) is reduced to one-dimensional
Hardy’s inequality. Setting v(t) = u(t,σ) and v′ = ∂u/∂ t we have

∫ η

0

(
|v′|p−

∣∣∣v
t

∣∣∣p
(

Λα ,p +
C2

A1(t)2

))
tα p dt

� c
∫ η

0

(
|v′|p +

∣∣∣v
t

∣∣∣p
(

Λα ,p +
C2

A1(t)2

))
tα p+1 dt +L|v(η)|pηα p(1+ cη). (4.5)

By a change of variable t = sη , putting w(s) = v(sη) with v ∈C1
c ((0,1]) ,

∫ 1

0

(
|w′|p−

∣∣∣w
s

∣∣∣p
(

Λα ,p +
C2

A1(sη)2

))
sα p ds (4.6)

� cη
∫ 1

0

(
|w′|p +

∣∣∣w
s

∣∣∣p
(

Λα ,p +
C2

A1(sη)2

))
sα p+1 ds+L|w(1)|pη p−1(1+ cη).

On the other hand, by Theorem 2.1 with R changed to R/η , we have, for every
w ∈C1

c ((0,1]) ,

∫ 1

0

(
|w′|p−

∣∣∣w
t

∣∣∣p
(

Λα ,p +
C0

A1(tη)2

))
tα p dt (4.7)

� C1

∫ 1

0

(
|w′|p +

∣∣∣w
t

∣∣∣p
(

Λα ,p +
C0

A1(tη)2

))
tα p+1 dt +L|w(1)|p,

where C0 and C1 may depend on η but independent of each function v . Now we take
η and C2 so that C1/η > c , C2 � C0 and η p−1(1+ cη) < 1 respectively. Since w is
an arbitrary function in C1

c ((0,η ]) , we get (2.10).

Proof of (2.12) and (2.13) . In parallel to the verification of (2.10), (2.12) and
(2.13) can be proved using (2.4) and (2.5) together with (4.4). Hence we omit the
detail.
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Proof of Corollary 2.3. Assume on the contrary that Hardy inequality (2.11) does
not hold. Then there exists a sequence of functions {uk} ⊂W 1,p

α ,0 (Ω) such that

lim
k→∞

∫
Ω
|∇uk|pδ α p dx = 0,

∫
Ω
|uk|pδ p(α−1) dx = 1 (k = 1,2, · · ·). (4.8)

By Theorem 2.3 we have∫
Ω
|∇uk|pδ α p dx =

∫
Ωη

|∇uk|pδ α p dx+
∫

Ω\Ωη
|∇uk|pδ α p dx

� Λα ,p

(
1−

∫
Ω\Ωη

|uk|pδ p(α−1) dx

)
+L

∫
Ση

|uk|pδ α p +
∫

Ω\Ωη
|∇uk|pδ α p dx.

Since δ � η in Ω \ Ωη , by the standard argument we have uk → C (constant) in
W 1,p(Ω \Ωη) as k → ∞ . Since L > 0, we have C = 0. Hence we see 0 � Λα ,p ,
and we reach to a contradiction. �

Proof of Corollary 2.4. Assume on the contrary that Hardy inequality (2.14) does
not hold. Then there exists a sequence of functions {uk} ⊂W 1,p

α ,0 (Ω) such that

{
limk→∞

∫
Ω |∇uk|pδ α p dx = 0, limk→∞

∫
Ση

|u|pδ α p = 0,∫
Ω |uk|pδ p(α−1) dx = 1 (k = 1,2, · · ·). (4.9)

By Theorem 2.5 we have∫
Ω
|∇uk|pδ α p dx+L

∫
Ση

|uk|pδ α p

� Λα ,p

(
1−

∫
Ω\Ωη

|uk|pδ p(α−1) dx

)
+

∫
Ω\Ωη

|∇uk|pδ α p dx.

Since δ � η in Ω\Ωη , as before we have uk → 0 in W 1,p(Ω\Ωη) as k → ∞ . Hence
we have 0 � Λα ,p , and we get a contradiction. �

5. Proof of Theorem 2.4

It suffices to show the implication 1 → 2. Since A1(δ )−1 � 1 in Ω and the trace
operator T :W 1,p

0,α (Ωc
η) 
→ Lp(Ση ;δ α p) is continuous for a small η > 0, one can assume

that C2 = L = 0. Now, we assume on the contrary that there exists a sequence of
functions {uk} ⊂W 1,p

α ,0 (Ω) such that

lim
k→∞

∫
Ωη

|∇uk|pδ α p dx = 0,

∫
Ωη

|uk|pδ p(α−1) dx = 1 (k = 1,2, · · ·). (5.1)

Here we prepare a lemma on extension:



1216 X. LIU, T. HORIUCHI, H. ANDO

LEMMA 5.1. (Extension) For any η > 0 there exists an extension operator E =
E(η) : W 1,p

α ,0 (Ωη) 
→W 1,p
α ,0(Ω) such that:

1. E(u) = u a.e. in Ωη

2. There exists some positive number C = C(η) such that for any u ∈W 1,p
α ,0 (Ωη) ,

|||∇E(u)|||Lp(Ω,δ α p) � C
(
|||∇u|||Lp(Ωη/2,δ α p) + ||u||

W1,p
α,0(Ωη\Ωη/2)

)
.

Admitting this for the moment, we prove Theorem 2.4. Let vk = E(uk) ∈W 1,p
α ,0 (Ω)

for k = 1,2, . . . . It follows from (3.15), the assumption 1 and the property of E that vk

becomes a Cauchy sequence and vk → v in W 1,p
α ,0 (Ω) for some v ∈W 1,p

α ,0(Ω) as k → ∞ .
On the other hand by choosing a subsequence if necessary, we see that uk → c a.e. in
Ωη for some constant c as k → ∞ . Then, by the assumption 1

1 �
∫

Ω
|E(uk)|pδ p(α−1) � γ−1

∫
Ω
|∇E(uk)|pδ α p

� γ−1C
(
|||∇uk|p||Lp(Ωη/2,δ α p) + ||uk||W 1,p

α,0 (Ωη\Ωη/2)

)
< ∞.

Since (α − 1)p < −1, we have c = 0. Thus uk → 0 in Lp(Ωη \Ωη/2) . Thus we
see that ||uk||W 1,p

α,0 (Ωη\Ωη/2) → 0 as k → ∞ . From this together with (2.10) we have a

contradiction. �

Proof of Lemma 5.1. Since δ is Lipschitz continuous, we see that ∂Ωη and
∂Ωη/2 are Lipschitz compact manifolds. By the standard theory we have an extension
operator Ẽ :W 1,p(Ωη \Ωη/2) 
→W 1,p(Ω\Ωη/2) such that Ẽ(u) = u a.e. in Ωη \Ωη/2 ,
and

|||∇Ẽ(u)|p||Lp(Ω\Ωη/2,δ α p) � C(η)||u||
W 1,p

α,0 (Ωη\Ωη/2)
.

Define for u ∈W 1,p
α ,0 (Ωη)

E(u) = u (x ∈ Ωη/2,); Ẽ(u) (x ∈ Ω\Ωη/2). (5.2)

Then the assertion follows. �

6. Proofs of Propositions 2.1 and 2.2

Proposition 2.1 is known in a more general fashion. In fact a variant is seen in
Maz’ya [14] (Lemma 2, p144). For the sake of reader’s convenience we give a direct
verification. We note that Proposition 2.2 is a consequence of Proposition 2.1.

Proof of Proposition 2.1. First we assume that α > 1− 1
p . Define for ε ∈ (0,1) ,

uε = t/ε (0 � t � ε) ; 1 (t � ε). Then we immediately have uε(0) = 0,uε(1) = 1 and
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∫ 1
0 |u′ε |ptα p dt → 0 as ε ↓ 0. By using C1 approximation of each uε , the assertion is

proved. Further we note that
∫ 1
0 |uε |pt(α−1)p dt → 1/(α p− p+1) > 0 as ε ↓ 0. In the

critical case, define for ε ∈ (0,1/2)

uε = 0(0 � t � ε);
A1(ε)−A1(t)

A1(ε)−A1(1/2)
(ε � t � 1/2); 1 (1/2 � t � 1). (6.1)

Then
∫ 1
0 |u′ε |pt p−1 dt = (A1(ε)−A1(1/2))1−p → 0 as ε ↓ 0. On the other hand we have

uε(0) = 0,uε(1) = 1 and hence the assertion is now clear. Further we note that

∫ 1

ε
|uε |p 1

tA1(t)p dt � A1(1)1−p−A1(1/2)1−p

p−1
> 0 as ε ↓ 0. �

Proof of Proposition 2.2. We give a proof when α > 1− 1
p , because the argument

is quite similar in the rest of the case. If a positive number η0 is sufficiently small, then
one can assume that δ ∈C2(Ωη0) and a manifolds {x ∈ Ω;δ = η} is of C2 class for
η ∈ (0,η0] . By virtue of (4.3) we have∫

Ωη
|u|pδ p(α−1) �

∫
Σ

dσ
∫ η

0

∣∣∣u
t

∣∣∣p
(1+ ct)tα pdt,

hence the assertion follows from Proposition 2.1. �

7. Appendix; Proofs of Lemma 3.2 and Lemma 3.4

7.1. Preliminary

In this section we prepare a series of one dimensional weighted Hardy’s inequali-
ties. The followings are given in [2] as Lemma 3.1 and Lemma 3.4 respectively.

LEMMA 7.1. Assume that R > e. Then, for any h ∈C1
c ((0,1]) we have

∫ 1

0
|h′(t)|2tdt � 1

4

∫ 1

0
|h(t)|2A1(t)−2 dt

t
− 1

2
A1(1)−1h(1)2. (7.1)

Proof. Let h(t) = A1(t)
1
2 w(t) . Then we have

|h′(t)|2t =
t

A1(t)

(
− 1

2t
w(t)+w′(r)A1(t)

)2

� |h(t)|2
4tA1(t)2 −

1
2

(
d
dt

w2(t)
)

. (7.2)

Since w(0) = 0, we have (7.1) and the rest of the proof is clear. �

LEMMA 7.2. Assume that R > ee . Then, for any h ∈C1
c ((0,1]) we have

∫ 1

0
|h′(t)|2tA1(t)dr � 1

4

∫ 1

0

|h(t)|2
A1(t) ·A2(t)2

dt
t
− 1

2
A2(1)−1h(1)2. (7.3)
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Proof. For h(t) = A2(t)
1
2 w(t) , we have in a similar way

|h′(t)|2tA1(t) � 1
4

|h(t)|2
A1(t)A2(t)2 − 1

2

(
d
dt

w2(t)
)

. (7.4)

Then the rest of the proof is clear. �

DEFINITION 7.1. A function ϕ ∈ C1([0,1]) is said to belong to G([0,1]) if and
only if

ϕ(0) = 0, ϕ ′(0) �= 0 and ϕ ′(1) = 0. (7.5)

DEFINITION 7.2. For ϕ ∈ G([0,1]) and M > 1 we define three subsets of [0,1]
as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
A(ϕ ,M) =

{
t ∈ [0,1] | |ϕ ′(t)| � M |ϕ(t)|

t

}
,

B(ϕ ,M) =
{
t ∈ [0,1] | |ϕ ′(t)| > M |ϕ(t)|

t

}
,

C(ϕ ,M) =
{
t ∈ [0,1] | |ϕ ′(t)| = M |ϕ(t)|

t

}
.

(7.6)

Clearly [0,1] = A(ϕ ,M)∪B(ϕ ,M) . From (7.5) we see 0,1 ∈ A(ϕ ,M) . We note
that the set C(ϕ ,M) coincides with the set of critical points of log(|ϕ |r±M) . By a
standard argument we have the following approximation lemma (cf. Lemma 3.5 in
[2]).

LEMMA 7.3. Let M > 1 and ϕ ∈G([0,1])∩C2([0,1]) . Assume that ϕ � 0 . Then
there exists a sequence of functions ϕk ∈ G([0,1])∩C2([0,1]) such that ϕk > 0 in
(0,1) , ϕk → ϕ in C1([0,1]) as k → +∞ and C(ϕk,M) consists of finite points for any
k .

We prepare some estimates for the proofs of Lemma 3.2 and Lemma 3.4.

LEMMA 7.4. Assume that 1 < p < 2 and R > e. Then for any ε > 0 there is a
positive number M such that we have for any ϕ ∈ G([0,1])

∫
B(ϕ,M)

|ϕ ||ϕ ′|
A1(t)

dt � ε
∫

B(ϕ,M)
|ϕ |2−p|ϕ ′|pt p−1 dt. (7.7)

Proof. We may assume that ϕ > 0. Then by the definition we have t|ϕ ′|/ϕ > M
on B(ϕ ,M) . Hence we immediately have

ϕ2−p|ϕ ′|pt p−1 = ϕ |ϕ ′| ·
(

t
|ϕ ′|
ϕ

)p−1

� Mp−1ϕ |ϕ ′|, on B(ϕ ,M). (7.8)

Therefore it suffices to choose M so that M1−p(logR)−1 � ε . �
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LEMMA 7.5. Assume that 1 < p < 2 and R > e. Then we have for any ϕ ∈
G([0,1])

∫
A(ϕ,M)

|ϕ ′(t)|2t dt � 1
4

∫
A(ϕ,M)

|ϕ |2
tA1(t)2 dt− 1

2
ϕ(1)2

A1(1)
(7.9)

+
1
2

∫
B(ϕ,M)

|ϕ |2
tA1(t)2 dt−

∫
B(ϕ,M)

|ϕ ||ϕ ′|
A1(t)

dt.

Proof. By Lemma 7.3 we can assume that C(ϕ ,M) consists of finitely many
points. Recall that 0,1 ∈ A(ϕ ,M) . From the argument of Lemma 7.1 we have

∫
A(ϕ,M)

|ϕ ′(t)|2t dt � 1
4

∫
A(ϕ,M)

|ϕ |2
tA1(t)2 dt− 1

2

∫
A(ϕ,M)

d
dt

(
ϕ(t)2

A1(t)

)
dt (7.10)

=
1
4

∫
A(ϕ,M)

|ϕ |2
tA1(t)2 dt +

1
2

∫
B(ϕ,M)

d
dt

(
ϕ(t)2

A1(t)

)
dt− 1

2
ϕ(1)2

A1(1)
.

Thus we have the desired estimate. �

In a quite similar way we have

LEMMA 7.6. Assume that 1 < p < 2 and R > ee . Then we have for any ϕ ∈
G([0,1])

∫
A(ϕ,M)

|ϕ ′(t)|2rA1(t)dt � 1
4

∫
A(ϕ,M)

|ϕ |2
tA1(t)A2(t)2 dt− 1

2
ϕ(1)2

A2(1)
(7.11)

+
1
2

∫
B(ϕ,M)

|ϕ |2
tA1(t)A2(t)2 dt−

∫
B(ϕ,M)

|ϕ ||ϕ ′|
A2(t)

dt.

7.2. Proof Lemma 3.2

Assume that α < 1−1/p . For u ∈C1
c ((0,1]) , we define

u(t) = h(t)tβ , β = 1− 1
p
−α, (β p = Λα ,p). (7.12)

Without the loss of generarity we assume that u � 0 in (0,1) , then we have

∫ 1

0
|u′|ptα p dt−Λα ,p

∫ 1

0

|u|p
t p tα p dt = Λα ,p

∫ 1

0
hp

{∣∣∣∣1+
rh′

βh

∣∣∣∣
p

−1

}
dt
t

. (7.13)

For the moment we assume p � 2. By the fundamental inequality (3.10) with q = 2,
we obtain

(R.H.S.) of (7.13) � Λα ,p

β

∫ 1

0
php−1h′ dt + c(p)

Λα ,p

β 2

∫ 1

0
hp−2(h′)2t dt

= β p−1h(1)p + c(p)β p−2 4
p2

∫ 1

0

∣∣∣∣(h
p
2 (t)

)′∣∣∣∣
2

tdt. (Note that h(0) = 0.)
(7.14)
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Using Lemma 7.1 we get

∫ 1

0

∣∣∣∣(h
p
2 (t)

)′∣∣∣∣
2

tdt � 1
4

∫ 1

0

|u(t)|p
t p A1(r)−2tα pdt− 1

2
A1(1)−1h(1)p.

Combining this with (7.14), we get the inequality (3.3) with C3 = c(p)β p−2/p2 and
L = β p−1−2C3A1(1)−1 , making c(p) smaller if necessary.

We proceed to the case that 1 < p < 2. For u ∈C1
c ((0,1]) , we retain the notation

(7.12). Suppose that M is sufficiently large. In Definition 7.2 we replace ϕ and M by
h and βM respectively, and assume that h ∈ G([0,1]) again. Lemma 3.6 (2) implies∫ 1

0
|u′|ptα p dt−Λα ,p

∫ 1

0

|v|p
t p tα p dt = Λα ,p

∫ 1

0
hp(t)

{∣∣∣∣1+
th′

βh

∣∣∣∣
p

−1

}
dt
t

(7.15)

� β p−1h(1)p +
4c(p)(Mβ )p−2

p2

∫
A(h,βM)

((h
p
2 )′)2t dt + c(p)

∫
B(h,βM)

|h′|pt p−1 dt.

Using Lemma 7.5 with A(h,βM) = A(h
p
2 , pβM/2) and B(h,βM) = B(h

p
2 , pβM/2) ,∫

A(h,βM)
((h

p
2 )′)2t dt (7.16)

� 1
4

∫
A(h,βM)

hp

tA1(t)2 dt− 1
2

h(1)p

A1(1)
+

1
2

∫
B(h,βM)

hp

tA1(t)2 dt− p
2

∫
B(h,βM)

hp−1|h′|
A1(t)

dt.

We can estimate the last term to obtain

p
2

∫
B(h,βM)

hp−1|h′|
A1(t)

dt � p
2

1
(βM)p−1 logR

∫
B(h,βM)

|h′|pt p−1 dt. (7.17)

Here we simply used the fact that t|h′| > βMh holds on the set B(h,βM) . Combining
this with (7.15) and (7.16) for sufficiently large M , we have the desired inequality. �

7.3. Proof of Lemma 3.4

We treat the case α = 1− 1/p only, because the argument for α > 1− 1/p is
similar to the previous subsection. For u ∈C1

c ((0,1]) we define

u(t) = A1(t)β h(t), β = 1− 1
p
. (7.18)

Without loss of generality we assume u,h � 0. First we assume p � 2. Using (3.10)
with q = 2 and X = −β−1tA1(t)h′(t)h(t)−1 , we obtain∫ 1

0
|u′|pt p−1 dt−β p

∫ 1

0

|u(t)|p
tA1(t)p dt

= β p
∫ 1

0

h(t)p

tA1(t)

(∣∣∣∣1− tA1(t)h′(t)
βh(t)

∣∣∣∣
p

−1

)
dt

� −β p−1h(1)p +
4c(p)β p−2

p2

∫ 1

0

∣∣∣∣(h(t)
p
2 (t)

)′∣∣∣∣
2

tA1(t)dt.

(7.19)
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Using Lemma 7.2 we get

∫ 1

0

∣∣∣∣(h(t)
p
2

)′∣∣∣∣
2

tA1(t)dt � 1
4

∫ 1

0

|u(t)|p
tA1(t)pA2(t)2 dt− 1

2
A−1

2 (1)h(1)p. (7.20)

Combining this with (7.19) we get the desired inequality where C5 = c(p)β p−2p−2 and
L = A1−p

1 (β p−1 + 2C5A
−1
2 ) . Then we proceed to the case that 1 < p < 2. Since the

argument is quite similar, we give a sketch of proof. Suppose that M is sufficiently
large. We retain the notation (7.18) and modify Definition 7.2 as follows:

DEFINITION 7.3. For ϕ ∈ G([0,1]) and M > 1 we define three subsets of [0,1]
as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
A(ϕ ,M) =

{
t ∈ [0,1] | |ϕ ′(t)| � M |ϕ(t)|

tA1(t)

}
,

B(ϕ ,M) =
{
t ∈ [0,1] | |ϕ ′(t)| > M |ϕ(t)|

tA1(t)

}
,

C(ϕ ,M) =
{
t ∈ [0,1] | |ϕ ′(t)| = M |ϕ(t)|

tA1(t)

}
.

(7.21)

Again we replace ϕ and M by h and βM respectively and assume h � 0 in (0,1) .
By Lemma 3.7, the first line of (7.19) is estimated from below by the following:

−β p−1
∫ 1

0
php−1h′ dt + β p

∫
A(h,βM)

hpc(p)Mp−2
(

tA1(t)h′

βh

)2 A1(t)−1

t
dt (7.22)

+ β p
∫

B(h,βM)
hpc(p)

∣∣∣∣ tA1(t)h′

βh

∣∣∣∣
p A1(t)−1

t
dt

= −β p−1h(1)p + c(p)(Mβ )p−2
∫

A(h,βM)
hp−2|h′|2tA1(t)dt

+ c(p)
∫

B(h,βM)
|h′|pt p−1A1(t)p−1 dt.

Here we note that A(h,βM) = A(h
p
2 , pβM/2) and B(h,βM) = B(h

p
2 , pβM/2) . Then

applying Lemma 7.6 for ϕ = h
p
2 , A(h

p
2 , pβM/2) and B(h

p
2 , pβM/2) we have∫

A(h,βM)
hp−2(h′)2tA1(t)dt =

4
p2

∫
A(h,βM)

((h
p
2 )′)2tA1(t)dt (7.23)

� 4
p2

(
1
4

∫
A(h,βM)

h(t)p

tA1(t)A2(t)2 dt− 1
2
A2(1)−1h(1)p

+
1
2

∫
B(h,βM)

h(t)p

tA1(t)A2(t)2 dt− p
2

∫
B(h,βM)

h(t)p−1|h′(t)|
A2(t)

dt

)
.

From an easy variant of Lemma 7.4 we can estimate the last term to obtain

p
2

∫
B(h,βM)

hp−1|h′|
A2(t)

dt � p
2

1
(βM)p−1 log(logR)

∫
B(h,βM)

|h′|pA1(t)p−1t p−1dt. (7.24)

Here we simply used the fact that tA1(t)|h′| > βMh holds on the set B(h,βM) . Com-
bining this with (7.22) and (7.23), for a large M , we have the desired inequality. �
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