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BEST BOUNDS FOR THE LAMBERT W FUNCTIONS

AHMED SALEM

(Communicated by E. Neuman)

Abstract. This paper is devoted to provide tractable closed-form upper and lower bounds for the
two real branches of the Lambert W function W(z(t)) for all positive real variable t where z(t)
is increasing function on (0,∞) and bounded by zero and −e−1 .

1. Introduction

The Lambert W function which satisfies the exponential equation

W (z)eW (z) = z, z ∈ C, (1.1)

has a rich variety of applications ranging from physics and computer science, to statis-
tics and biology. It has many applications in pure and applied mathematics, some of
which are briefly described in [1, 2]. It has also appeared in recent research in com-
munications, such as relaying strategies [3], moment generating functions for modeling
signal fading [4] and long-haul cooperative power allocation methods [5]. The table
in [6] shows the applications of the real-valued W -function including the branch used.
Also, an extensive study on approximations of Lambert function was published by Ia-
cono and Boyd [7].

The Lambert W function is a multi-valued function defined in general for complex
and assuming values W (z) complex. If z is real and z < −1/e , then W (z) is multi-
valued complex. If z is real and −1/e � z < 0, there are two possible real values of
W (z) : The branch satisfying W (z) � −1 is denoted by W0(z) and called the principal
branch of the W function, and the other branch satisfying W (z) � −1 is denoted by
W−1(z) . If z is real and z � 0, there is a single real value for W (z) , which also belongs
to the principal branch W0(z) . The Lambert W -function has the derivative

W ′(z) =
W (z)

z(W (z)+1)
, z ∈ C, (1.2)

Recently, sharp bounds for the real branch W−1 function established in [8]. Also,
both branches W0(z) and W−1(z) of Lambert W function appeared as terms in best
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sharp bounds of the q -gamma function and some of related functions [9] where the
variable function z is defined as

z(t) = − te
1
2 t−1

et −1
, t > 0. (1.3)

It has been proven in [9] that the function z(t),t > 0 is increasing on (0,∞) and satisfies
the sharp inequality −e−1 < z(t) < 0 which declares that the Lambert W function
W (z(t)) has two possible real branches W0(z(t)) � −1 and W−1(z(t)) � −1 for all
positive real t .

In order to prove the results in [9], the author established the following functional
inequalities

(W0(z(t))+1)2 > tg(t)W0(z(t)), t > 0 (1.4)

(W 2
−1(z(t))+1)2 < tg(t)W−1(z(t)), t > 0 (1.5)

where g(t)= z′(t)/z(t) , for the both branches of the Lambert W function. Furthermore,
according to Lemma 3.6 in [9], we can state the following Lemma:

LEMMA 1.1. The function (W (z(t))+1)/t is decreasing on (0,∞) for both bran-
ches and has the best bounds

0 <
W0(z(t))+1

t
<

√
3

6
, t > 0 (1.6)

−1
2

<
W−1(z(t))+1

t
< −

√
3

6
, t > 0 (1.7)

Inspired of the great important role of the function z(t) in providing sharp bounds
of the q -gamma function in terms of the Lambert W function, we devote this paper
to provide sharp bounds for both branches W0(z(t)) and W−1(z(t)) of the Lambert W
function.

It is worth remarkable to mention that the field of finding inequalities for the spe-
cial functions has been drawn the attention of many contributors [10, 11, 12, 13, 14, 15,
16].

2. Bounds for the principal branch W0(z)

This section is devoted to provide tractable closed-form upper and lower bounds
for the principal branch W0(z(t)) for all positive real variable t where z(t) is defined in
(1.3). To do these, we use functional analysis methods and the monotonicity properties
for some certain functions involving the principal branch W0(z(t)) .

LEMMA 2.1. Let z(t) be defined as in (1.3) . Then the principal branch of Lam-
bert W function satisfies the inequality

W0(z(t))+1 <
et −1
et +1

, for all t > 0. (2.1)
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Proof. Let the function

Q(t) = (et +1)W0(z(t))+2

be defined for all t > 0. It is easy from the asymptotic expansion (3.1) in [1] to find
that

Q(t) = (et +1)W0(z(t))+2 < (et +1)z(t)+2 = q1(t)

Differentiation gives

q′1(t) = − e
1
2 t−1

2(et −1)2

[
e2t(t +2)−4tet − t−2

]

= − e
1
2 t−1

2(et −1)2

∞

∑
n=1

tn

n!

[
2n−1(n+4)−4n

]
< 0

and q1(0) = 2(1− e−1) > 0 and limt→∞ q1(t) = −∞ which lead to the function q1(t)
has a unique zero at q1(t) = 0 which can be easily computed by software of Mathemat-
ica as t = 1.61948. These mean that q1(t) < 0 for all t > 1.62 and so is the function
Q(t) .

Also, from (1.6), we find that

Q(t) = (et +1)W0(z(t))+2 < (et +1)

(√
3

6
t −1

)
+2 = q2(t)

Differentiation gives

q′2(t) =
√

3
6

et(t +1)− et +
√

3
6

q′′2(t) =
√

3
6

et(t +2−2
√

3).

It is obvious that q′′2(t) > 0 for all t > 2(
√

3−1) and q′′2(t) < 0 for all t < 2(
√

3−1)
which lead to the function q′2(t) is increasing on (2(

√
3− 1),∞) and decreasing on

(0,2(
√

3− 1)) . Since q′(0) = (
√

3− 3)/3 < 0 and q′2(2) = e2(
√

3− 2)/2+
√

3/6 �
−0.701271, then q′2(t) < 0 for all t < 2 which yields that q2(t) is decreasing on (0,2) .
By virtue of q2(0) = 0, we get q2(t) < 0 for all t ∈ (0,2) and so is the function Q(t) .
Conclusion, the function Q(t) < 0 for all t > 0 which gives the desired result. �

LEMMA 2.2. Let z(t) be defined as in (1.3) and g(t) = z′(t)/z(t) . Then g(t) is
decreasing on (0,∞) and g′(t) is increasing on (0,∞) and

g(t)g′(t)
g′′(t)

>
et −1
et +1

. (2.2)

Proof. Salem [9] proved that −1/2 < g(t) < 0. To prove the monotonicity of
g(t) , we have g′(t) = −λ (t)/[t2(et −1)2] where

λ (t) = e2t − et(t2 +2)+2.
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Whence

λ ′(t) = et [2et −2−2t− t2] > 0 and λ (0) = 0

which leads to λ (t) > 0 for all t > 0. This proves the decreasing of g(t) . Also, we
have g′′(t) = μ(t)/[t3(et −1)3] where

μ(t) = 2e3t − e2t(t3 +6)− et(t3−6)−2.

The series of exponential function and derivative give

μ ′(t) = et [6e2t − et(t3 +3t2 +6)− t3−3t2 +6]

> et [6tet − t3−3t2 +6]

> et [2t3 +3t2 +6t +6] > 0 and μ(0) = 0

which leads to μ(t) > 0 for all t > 0. This proves the increasing of g′(t) . Finally, we
have

g(t)g′(t)
g′′(t)

− et −1
et +1

=
u(t)

2(et +1)v(t)

where

u(t) = e4t(t−6)+ e3t(t3 +2t2 +20)−2e2t(t3 + t +12)− et(3t3 +2t2−12)+ t−2

v(t) = 2e3t − e2t(t3 +6)− et(t3−6)−2

The proof of positivity of the two functions u(t) and v(t) is similar, so we suffice to
prove v(t) > 0. Differentiation gives v′(t) = etv1(t) where

v1(t) = 6e2t − et(2t3 +3t2 +12)− t3−3t2 +6.

Differentiations again, give

v′1(t) =12e2t − et(2t3 +9t2 +6t +12)−3t2−3t2−6t

v′′1(t) =24e2t − et(2t3 +15t2 +24t +18)−6t−6

v′′′1 (t) =48e2t − et(2t3 +21t2 +54t +42)−6

v(4)
1 (t) =et(96et −2t3−27t2−96t−96)

>et
[
96

(
1+ t +

1
2
t2 +

1
6
t3
)
−2t3−27t2−96t−96

]
=7t2et(2t +3] > 0.

It is easy to see that v(i)
1 (0) = 0, i = 0,1,2,3 which lead to v1(t) > 0 for all t > 0 and so

does v′(t) . Since v(0) = 0, then v(t) > 0 for all t > 0. This completes the proof. �
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LEMMA 2.3. Let z(t) be defined as in (1.3) . Then the principal branch of Lam-
bert W function satisfies the functional inequality

(W0(z(t))+1)2 >
g2(t)
g′(t)

W0(z(t)) t > 0. (2.3)

Proof. Let the function

y(t) = (W0(z(t))+1)2− g2(t)
g′(t)

W0(z(t)). (2.4)

be defined for all t > 0. Differentiating with using results in Lemma 2.1 and Lemma
2.2 give

y′(t) =
g2(t)g′′(t)

g′2(t)
W0(z(t))

W0(z(t))+1

[
W0(z(t))+1− g(t)g′(t)

g′′(t)

]

>
g2(t)g′′(t)

g′2(t)
W0(z(t))

W0(z(t))+1

[
et −1
et +1

− g(t)g′(t)
g′′(t)

]
> 0.

L’Hospital rule gives limt→0 y(t) = 0 which means that y(t) > 0 for all t > 0. This
ends the proof. �

THEOREM 2.4. Let z(t) be defined as in (1.3) . Then the principal branch of
Lambert W function satisfies the inequality

−αg(t) < W0(z(t))+1 < −βg(t) t > 0. (2.5)

for all α � 2 and β � 2
√

3 with the best possible constant α = 2 and β = 2
√

3 .

Proof. Let the function

f (a) = W0(z(t))+1+ag(t)

be defined for all a ∈ R , then f ′(a) = g(t) < 0. Thus f (a) is decreasing on R . It is
clear that f (0) > 0 and lima→∞ f (a) = −∞ which mean that the function f (a) has a
unique root at a = a(t) where

a(t) = −W0(z(t))+1
g(t)

t > 0.

Differentiation gives

a′(t) =
g′(t)y(t)

g2(t)(W0(z(t))+1)
< 0

where y(t) is defined in (2.4), which concludes that the function a(t) is decreasing on
(0,∞) and

2 = lim
t→∞

a(t) < a(t) < lim
t→0

a(t) = 2
√

3.

Here, the lower bound comes from limt→∞W0(z(t)) =W0(0)= 0 and limt→∞(−1/g(t))
= 2 and the upper bound comes from limt→0(W0(z(t))+1)/t =

√
3/6 (see the relation

(3.4) in [9]) and limt→0(−t)/g(t) = 12 (using L’Hospital rule). In view of the above,
we obtain f (a) � 0 for all a � 2 and f (a) � 0 for all a � 2

√
3 which yield the desired

results. �
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LEMMA 2.5. Let t be non-negative real. Then, the function

p(t) = t(t−1)+2
√

3g(t)(t−2
√

3) (2.6)

is non-negative.

Proof. In view of the definition of g(t) , the function p(t) can be read as p(t)t(et −
1) = p1(t) where

p1(t) = et(t3− (1+
√

3)t2 +2(3+
√

3)t−12)− t3 +(1−
√

3)t2 +2(3−
√

3)t +12.

On differentiating and the fact that et > 1+ t , we find that

p′1(t) = et(t3 +(2−
√

3)t2 +4t−2(3−
√

3))−3t2 +2(1−
√

3)t +2(3−
√

3)

p′′1(t) = et(t3 +(5−
√

3)t2 +2(4−
√

3)t −2(1−
√

3))−6t +2(1−
√

3)

> t2(t2 +(6−
√

3)t +13−2
√

3) > 0

Since p1(0) = p′1(0) = p′′1(0) = 0, then p1(t) > 0 for all t > 0 and so does the function
p(t) . �

THEOREM 2.6. Let z(t) be defined as in (1.3) . Then the principal branch of
Lambert W function satisfies the inequality

W0(z(t))+1 >

√
3

6
te−t , t > 0 (2.7)

with the best possible constant
√

3/6 .

Proof. Let the function

h(t) = (W0(z(t))+1)
et

t

be defined for all t > 0. Differentiation gives

h′(t) =
et

t2(W0(z(t))+1)
[(t−1)(W0(z(t))+1)2 + tg(t)W0(z(t))].

It is clear that h′(t) > 0 for all t � 1. Now, let 0 < t < 1. Then, from (1.6), we get

h′(t) >
et

12t(W0(z(t))+1)
p(t) > 0

where p(t) is defined in (2.6), which yields h(t) is increasing on (0,∞) . By reference
to the relation (3.4) in [9], we get limt→0 h(t) =

√
3/6. This ends the proof. �
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LEMMA 2.7. Let z(t) be defined as in (1.3) and the functions

�1(t) =et(t2−6t +12)− t2−6t−12

�2(t) =6et(t−2)+
√

3t2e−t −
√

3t2 +6t +12

be defined for all t � 0 . The function �1(t) � 0 for all t � 0 and �2(t) is less than zero
for all t < t0 ∼ 0.554405 and greater than zero for all t > t0 .

Proof. It is easy to see that �′′′1 (t) = t2et � 0, t � 0 and �1(0) = �′1(0) = �′′1(0) = 0
which reveal that �1(t) � 0, t � 0. On differentiating �2(t) gives

�′2(t) =6et(t−1)−
√

3te−t(t−2)−2
√

3t +6

�′′2(t) =6tet +
√

3e−t(t2 −4t +2)−2
√

3

�′′′2 (t) =6et(t +1)−
√

3e−t(t2−6t +6)

�
(4)
2 (t) =e−t [6e2t(t +2)+

√
3(t2−8t +12)].

It is well known that e2t > 1+2t which leads to �
(4
2 (t) > 0 for all t > 0. Since �′′′2 (0) =

6(1−√
3) < 0 and �′′′2 (1)∼ 32 > 0, then there exists a unique number 0 < t3 < 1 such

that �′′′2 (t3) = 0. Thus �′′′2 (t) < 0 for all t < t3 and �′′′2 (t) > 0 for all t > t3 which reveals
that �′′2(t) is decreasing on (0,t3) and decreasing on (t3,∞) . Since �′′2(0) = 0 and
�′′2(1) ∼ 12.2, then there exists a unique number t3 < t2 < 1 such that 0 < �′′2(t2) = 0.
Thus �′′2(t) � 0 for all 0 � t < t2 and �′′2(t) > 0 for all t > t2 which reveals that �′2(t)
is decreasing on (0, t2) and decreasing on (t2,∞) . Similarly, we can deduce that there
exists a unique number 0 < t0 < 1 such that �0(t) � 0 for all 0 � t < t0 and �0(t) > 0
for all t > t0 . By carrying out Mathematica 9 software, we find that t0 ∼ 0.554405.
This ends the proof. �

REMARK 2.8. Although some bounds have simpler form than others but may not
be the sharpest. Therefore, we will do a comparison to determine the best upper and
lower bounds among all. By subtracting the upper bounds of (1.6) and (2.5), we find
that

−2
√

3g(t)−
√

3
6

t = − �1(t)
2
√

3(et −1)
< 0, t > 0

which means that the upper bound of (2.5) is better than the upper bound of (1.6) for
all t > 0. Also, to compare the lower bounds of (2.5) and (2.7), we find that

√
3

6
te−t +2g(t) = − �2(t)

6t(et −1)

{
> 0 if 0 < t < t0 ∼ 0.554405

< 0 if t > t0

which means that the lower bound of (2.7) is better than the lower bound of (2.5) if
t < t0 (near zero) and the lower bound of (2.5) is better than the lower bound of (2.7) if
t > t0 (large t ).
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3. The branch W−1(z)

In this section, we provide tractable closed-form upper and lower bounds for the
branch W−1(z(t)) for all positive real variable t where z(t) is defined in (1.3). To do
these, we use functional analysis methods and the monotonicity properties for some
certain functions involving the branch W−1(z(t)) .

LEMMA 3.1. Let z(t) be defined as in (1.3) . Then the branch W−1 satisfies the
functional inequality

tg(t)
t +1

W−1(z(t)) < (W−1(z(t))+1)2 <
g2(t)
g′(t)

W−1(z(t)) t > 0. (3.1)

Proof. Using (1.7) gives

(W−1(z(t))+1)2− tg(t)
t +1

W−1(z(t)) >
1
12

t2− tg(t)
t +1

(
−1

2
t−1

)

>
η(t)

12(t +1)(et −1)
.

where
η(t) = et(t3−2t2 +12)− t3−4t2−12t−12

It is easy as above to prove that η(t) > 0 which reveals the lower bound. In order to
prove the upper bound, let the function

δ (t) = (W−1(z(t))+1)2− g2(t)
g′(t)

W−1(z(t))

be defined for all t > 0. Differentiation gives

δ ′(t) =
g2(t)W−1(z(t))

g′2(t)(W−1(z(t))+1)
[g′′(t)(W−1(z(t))+1)−g(t)g′(t)]

According to Lemma 2.2, it turns out that δ (t) is decreasing on (0,∞) which yields,
with noting δ (0) = 0, that δ (t) < 0 for all t > 0. �

THEOREM 3.2. Let z(t) be defined as in (1.3) . Then the branch W−1 satisfies
the inequality

W−1(z(t))+1 > −
√

3
6

tet , t > 0 (3.2)

with the best possible constant −√
3/6 .

Proof. Let the function

x(t) = (W−1(z(t))+1)
e−t

t
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be defined for all t > 0. Differentiation gives

x′(t) = − e−t(t +1)
t2(W−1(z(t))+1)

[(W−1(z(t))+1)2− tg(t)
t +1

W−1(z(t))]

It is clear, from Lemma 3.1, that x′(t) > 0 for all t > 0 which yields that x(t) is
increasing on (0,∞) . Invoking relation (3.5) in [9] to show that limt→0 x(t) = −√

3/6.
This ends the proof. �

REMARK 3.3. In order to compare the lower bound of (1.7) and the bound of
(3.2), we see that

−
√

3
6

tet −
(
−1

2
t

)
= −

√
3

6
t(et −

√
3)

{
> 0 if 0 < t < ln

√
3

< 0 if t > ln
√

3.

Therefore, the bound of (3.2) is greater (better) than the lower bound of (1.7) for all
0 < t < ln

√
3 and vice versa for all t > ln

√
3.

THEOREM 3.4. Let z(t) be defined as in (1.3) . Then the branch W−1 satisfies
the inequality

W−1(z(t))+1 < 2
√

3g(t), (3.3)

W−1(z(t))+1 < 2
√

3tg′(t) (3.4)

with the best possible constant 2
√

3 .

Proof. Let the function

r(t) =
W−1(z(t))+1

g(t)

be defined for all t > 0. Differentiation gives

r′(t) = − g′(t)
g2(t)(W−1(z(t))+1)

[(W−1(z(t))+1)2− g2(t)
g′(t)

W−1(z(t))]

It is clear, from Lemma 3.1, that r′(t) > 0 for all t > 0 which yields that r(t) is in-
creasing on (0,∞) . Invoking relation (3.5) in [9] and limt→0 t/g(t) =−12 to show that
limt→0 r(t) = 2

√
3. Lemma 1.1 tells that (W−1(z)+1)/t is decreasing and negative on

(0,∞) and since 1/g′(t) is also decreasing and negative on (0,∞) , then the function
(W−1(z(t))+1)/(tg′(t)) is increasing on (0,∞) . Therefore (W−1(z(t))+1)/(tg′(t)) >
2
√

3. This ends the proof. �

THEOREM 3.5. Let z(t) be defined as in (1.3) . Then the branch W−1 satisfies
the inequality

−αt(1+ e−t) < W−1(z)+1 < −β t(1+ e−t), for all t > 0. (3.5)
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for all possible constants α � 1/2 and β �
√

3/12 with the best possible constants
α = 1/2 and β =

√
3/12 .

Proof. It is easy to see that the function 1/(1+ e−t) is increasing on (0,∞) and
satisfying 1/2 < 1/(1+ e−t) < 1. In view of the above and Lemma 1.1, the function
−(W−1(z)+1)/[t(1+e−t)] is increasing on (0,∞) and satisfying

√
3/12 <−(W−1(z)+

1)/[t(1+ e−t)] < 1/2. This ends the proof. �

THEOREM 3.6. Let z(t) be defined as in (1.3) . Then the branch W−1 satisfies
the inequality

αt
g(t)−1

< W−1(z)+1 <
β t

g(t)−1
, t > 0. (3.6)

for all possible constants α � 3/4 and β �
√

3/6 with the best possible constants
α = 3/4 and β =

√
3/6 .

Proof. Let the function

ψ(d) = W−1(z)+1− bt
g(t)−1

, t > 0

be defined for all d ∈R . Differentiation gives ψ ′(d) =−t/(g(t)−1)> 0 which means
that ψ(d) is increasing on R . It is obvious that ψ(0) < 0 and ψ(∞) = ∞ , hence there
is a unique root for the function ψ(d) at d = d(t) where

d(t) =
W−1(z)+1

t
(g(t)−1), t > 0.

Lemma 1.1 tells that (W−1(z) + 1)/t is decreasing and negative on (0,∞) and since
g(t)− 1 is also decreasing and negative on (0,∞) , then d(t) is increasing on (0,∞) .
Therefore

√
3/6 < d(t) < 3/4 which concludes that ψ(d) < 0 for all d <

√
3/6 and

ψ(d) > 0 for all d > 3/4. This ends the proof. �

REMARK 3.7. Several upper and lower bounds to the standard branch W−1 are
provided in the last three theorems which are best with their form and may be useful.
However, we have to declare that they are not sharper than the bounds obtained in (1.7)
and (3.2).
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