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WEIGHTED ESTIMATES FOR BILINEAR
FRACTIONAL INTEGRAL OPERATOR OF ITERATED
PRODUCT COMMUTATORS ON MORREY SPACES

XIANG LI, QIANJUN HE* AND DUNYAN YAN

(Communicated by Y. Sawano)

Abstract. In this paper we prove several weighted estimates for iterated product commutators
generated by BMO -functions and the bilinear fractional integral operators on Morrey spaces.
As a corollary we obtain new weighted estimates for Adams type inequality.

1. Introduction

In this paper, we study the bilinear fractional integral form as follows

o2 (f,8)(x) = / F)g()

rn (|x = yi|+ [x—yal)?=

dyidy;, 0<o<2n. (1.1)

Given a linear operator T and a function b, the commutator [b, T] is defined to be

[b,T](f) = bT () = T(bf).

Coifman, Rochberg and Weiss [2] considered commutators of singular integral opera-
tors as a tool to extend the classical factorization theory of H” spaces. They proved that
if b € BMO and T is a singular integral operator, then [b,T] in bounded on L?(R")
for 1 < p < . Here BMO denote the space of functions of bounded mean oscillation,
i.e. functions b such that

I6llamo = sup f Ib(x) — boldx < o
0 Jo

where bg 1= be(x)dx and be(x)dx denotes the usual integral average of b over Q.

Weighted estimates for the linear fractional integral operator I, acting on Lebesgue
spaces with one weight were obtained by Muckenhoupt and Wheedn [7]. Pérez [8]
found a sufficient condition on weights w and v which ensures the boundedness of the
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fractional integral I, from L?(v,R") to LP(w,R") with 1 < p < g < oo, where I is
defined as

Ia(f)(x)—/R IO 4 oca<n

n |x =y
The commutator of I, was first considered by Chanillo [1], who showed that if b €
BMO, then [b,I,] maps L?(R") into LY(R") with 1/p—1/q = o/n. Tida, Sato,
Sawano and Tanaka [5] introduced the condition of two weights for the boundedness of
I, on Morrey space. Weighted estimates for [b,1,] were studied by Tida in [4] where
it was shown thatif » € BMO, O <o <n, 1 <p<pg<oo, 1 <g<qgg<rg<oo,

1/po>o/n>1/ry, 1/q0=1/po+1/ro—a/n, q/q0 = p/po, 1 <a <ry/qo and
(v,w) is a pair of Weights satisfying

L 1
sup ( |Q/‘ ) 0 ‘,O (][ v(x)“‘fdx> aq (][ w(x)(p/a)/dx) (p/a) <o,
Q€2 (R") ‘Q ‘ [ /

we have
2, Ta) (£ g0 < CliEllmmollfw] 0.

where Z(R") denotes the family of all dyadic cubes (see below) and .Z}° (R") = .#}°
denotes Morrey space which is defined by the norm

1
1120 = e 0|7 (][ f(x |de) < oo

When considering a bilinear operator I, we define the commuators [b,1,]; and
[b,142]> on the first and the second components to be

[b,10.2)1(f.8) =blua(f.8) —la2(bf.8)
and

[b,102]2(f,8) = bl (f,8) — Lap(f,bg).
Let b= (by,...,by), where b;’s are given functions, and B= (B1,---,By) € {1,2}V,
the iterated product commutators of I, > is given by

[Balmﬂﬁ = [bN, [bN-1,--+,[b2, (b1, 1 2] g, g, -1y Iy - (1.2)

Now we consider bilinear fractional integral operators having rough kernel which were
studied by Tida [3]. Let 0 < & < 2n. For a measurable function Q on R?"\ {0,0} and
a measurable function b, we define

[ Q—yi,x—y2)f)egl2)
loa(fg)(e)= [ St BBy, 4y,

and
b, 10.alg = [bn: [bn—15--+ (b2, [b1soalp, g, -+ 1gy- gy
In [11], Pérez and Rivera-Rios studied these types of commutators in the linear case.

Given a bilinear operator I, >, we may rearrange the commutators in any order as the
following proposition states.
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PROPOSITION 1.1. For any permutation ¢ on {1,...,N},
[0(5) 1)) = B 12l (1.3)

where & (b) = (bo(1)s--->bo(n)) and G(ﬁ) = (Bs(1):---»Bs(n))- In particular, equality
(1.3) is valid for any permutation oy be such that G()(B) =(1,...,1,2,...,2).

For simplicity in the notation and proof, from now on we will always assume that
ﬁ =(1,...,1,2,...,2), and reserve the notation m = m(ﬁ) to denote the number of 1°s
in B

In this paper, a symbol C is a positive constant. Whenever we evaluate the oper-
ator, the constant C may be change from one constant to another. Let |E| denote the
Lebesgue measure of E. All cubes are assumed to have their sides parallel to the co-
ordinate axes. For a cube Q C R”, we use cQ to denote the cube with the same center
as Q but with side-length ¢ times. For 1 < p,p’ < o, p and p’ are conjugate indices,
ie,1/p+1/p'=1.

2. Main results and their corollaries

Our departure is the following result of lida, Sato, Sawano and Tanaka [5].

THEOREM 2.1. Let w = (wy,wy) be a collection of two weights on R", 0 < o/ <
2n, P=(p1,p2), 1 <p1,p2<e2, 0<p<po<es, 1<q<qo<ro<eandl<a<
min(ro/qo, p1,p2). Here, p is givenby 1/p=1/py+ 1/p,. Assume that

1 o 1 1 1 1 o
—>—, —=—+4——— and izﬁ.
n.r q9 po Ty n q0 Po

Suppose that the weights v and w satisfy condition:

[ } 0,490 ( ‘Q| )1/aq0| /|1/ (x) e
v, w00 = qup Q' (7[ v(x)® dx)
aPla o oegmn \|Q 0

QCQ’
1/(pi/a)

x H (f ~(pi/a) dx) < oo, (2.4)

Then we have

1/p
ol g0 < COnaIg, sup 017 (f (170 )7

02 (R")

x (][Q (4w "
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For the general commutators defined as in (1.2), we investigate the boundedness
of [b,1y7] jon Morrey spaces corresponding to Theorem 2.1. In this paper, we obtain

two main theorems.
Now, we formulate our main results as follows.

THEOREM 2.2. Let W, p, po 4, qo, ro, &, a be same as in Theorem 2.1. Sup-
pose that the weights v and W satisfy condition (2.4). Then, for b € BMOV (R"), we
have

1B, Za 2] (£ &)V_g0 < CllBllgyov v, W50 sup |Q|'/e
[ a]ﬁ M MOV [ ] ¢.Pla 0ea ()

A wrmmwpan) (£ seomatora)
0 0

REMARK 2.3. The condition of Theorem 2.2 corresponds with condition of The-
orem 2.1. This implies that Theorem 2.2 gives us the same type of corollaries as in
Theorem 2.1.

Taking wj (x) = wa(x) = 1, we obtain the following corollary.

COROLLARY 2.4. Let p, po 4. qo0, o, O, a be same as in Theorem 2.1. Sup-
pose that v € M a9 (R"). Then, for b € BMOY (R"), we have

1/py
b 10‘, B v l///q‘fo Clib BMO ///ag (R

“(f g(x)!’wx)lm.

On the other hand, letting ro — o, 1/po = 1/p}+1/p3 and p/po = p1/p} =
p2/ p%, we obtain the weighted inequality Adams type for the general commutator

b.10.2)5 -

COROLLARY 2.5. Let w = (wy,ws) be a collection of two weights on R", 0 <
a<2n, P=(p1,p2), 1 <p1,p2<e, 0<p<po<eo, 1<g<qo<o and 1<

a < min(py,ps). Here, p is given by 1/p=1/p;+1/py and 1/po=1/p}+1/p}.
Assume that

g0 po n q0 pd  pE
Suppose that the weights v and w satisfy condition:

[v, ] = sup < 1Y )1/6"10 <][ v(x)“qu) e
abla o geqrn \ Q' 0

oco
2 1/(pi/a)

<1 (7[ wi(x)~(Pi/@) dx> < oo, (2.5)
i=1 /
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Then, for b € BMOY (R™), we have

H[b IOC 2} (f7 )V” //q() CHb”BMON[V W]aqo ||f IH 1 HgWZH p%'
1 '/[1’2
Corollary 2.5 gives us the following inequality in letting ¢ = qo, p1 = p(l), P2 = p(z)
and v=ww,.

COROLLARY 2.6. Let w = (w1,wa) be a collection of two weights on R", 0 <
o <2n, P=(p1,p2), 1 <pi,pa<oo, 1 <g<ooand 1/p=1/p1+1/ps. Assume
that 1/q=1/p — o/n. Suppose that a vector of the weights W satisfies Ap_q (R"), i.e

g o= s (fomtomra) T fwerar) " <o o

QeZ(R")
Then, for b € BMOY (R"), we have

||[Bala,ﬂg(f7g)||Lq((w1wz)q) < CHB”BMON [V_"']AI;H(R")”JCHLM (W’l’l) HgHLﬁz(W'Z’Zy

By a similar argument to the proof Theorem 2.2, we have the following theorem.

THEOREM 2.7. Let w = (wy,w2) be a collection of two weights on R", 1 < s <
o, 0<a<2n, P=(p1,p2), | <’ <p1,pa<eo, 0<p<po<oo, 1 <qg<qo<ry<
oo and 1 < a < min(ro/qo,p1,p2). Here, p is given by l/p— L/p1+1/p>. Assume

//’/

]aq 5 < co. Moreover, assume

¥ 5a

that Q € L*(S"~! x §"1) satisfies the following homogeneity: For any Ai,2, > 0,
Q(Ax1, Ax2) = Q(x1,%2). Then, for b € BMOY(R"), we have
) 1/s'

1/pi
X sup Q|1/p°H<][ I fi(x |w,-(x))”idx) )

QGJ(R") i=1

that (2.1) holds and the weights v and w satisfy [v* 4 W

\‘o

J !

I faal3 .01 < Bl @l (17,717

<8 "\\S‘
\‘ TRl

Theorem 2.7 recovers the following result.

COROLLARY 2.8. Let w = (wy,wy) be a collection of two weights on R", 1 < s <
0, 0< o <2n, P= (p1,02), 1<5 <p1,pa<es, l<qg<ooand 1/p=1/p1+1/ps.
Assume that 1/q = 1/p — o/n. Suppose that a vector of the weights W satisfies
Ap ,(R") and Q € L(S"' x S"1) satisfies the following homogeneity: for any

A, A >0, Q(A1x1,Aoxp) = Q(x1,x2). Then, for be BMO" (R"), we have
1

1[5, T0.0l5 (f:&)lla(owrn)e) < ClBllamon 1R st 715 g

ENa-Th
“Jo

5
X ”fHLm (W’1’1)||g||LP2(W3’2)'

In this paper, we only give proof of Theorem 2.2. Theorem 2.7 can be proved
using similar techniques as in the proof of Theorem 2.2.
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3. Preliminaries

In this section, we prepare some lemmas for proving main results.
The following inequality about BMO function which is given by John and Niren-
berg [6].

LEMMA 3.1. Let 1 < p < oo and let Q be a cube. Then there exists a constant
C > 0 such that

1

P
(00~ boPax) " <l
0
forall b € BMO(R").

We invoke the following decomposition which is derived in [8, 9, 10].

A dyadic grid Z(R") is a countable collection of cubes that satisfies the following
properties:

(a) Q€ 2(R") = ((Q) = 2 for some k € Z.

(b) For each k € Z, the set {Q € 2(R") : £(Q) = 2} forms a partition of R".

(c) O,Pe 2(R")=0NPe{0,P,0}.

One very clear example for this concept is the dyadic grid that is formed by trans-
lating and then dilating the unit cube [0,1)" all over R”. More precisely, it is formu-
lated as

2R ={27%([0,1)"+m) : k€ Z,m € Z"}.
Let 2(Qo) be the collection of all dyadic subcubes of Qp, that is, all those cubes
obtained by dividing Qg into 2" congruent cubes of half its length, dividing each of
those into 2" congruent cubes. By convention Qy itself to Z(Qy), and so on.
The following lemma resembles the results in [12, 13].
SN
LEMMA 3.2. For 0,0, > 1, let A= (4-18")% "% and

1

yim (]fQ fonPa )" (]fQ 600/ %

For k=1,2,--- we take

D= {Q € 2(00) (]fQ If(yl)"‘dyl) i (]fQ |g(>’2)62d>’2) %, yAk}.

Considering the maximality cube, we have

D= e}
J
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Then we have

1
2
yA* < ][ )|y ][ lg0n)| %y | < 2" o) k.
30k 30k

Let Ey:= Qo \ D) and E’; = Q’J‘-\DkH. Moreover, we obtain

.

|Qo| <2|Eo| and |Q\ 2|Ek\

Proof. By the maximality of QX, we obtain the following:

1 1
o () SRy
yA* < (f v|f<y1>|91dy1> (f |g(y2)|92dy2> <2"mtElpk (3
3% 304
Let Eg = Qo \ Dy and Ef = Q¥\ Dy ;. Then {Eo} and {E}} are disjoint and satisfied
B (UE) -
k.j
Fix fixed Qf; we set

|

J

(L,

J

L7 7076,

% 6
(/3Qk g(yz)lezdyz> (yARH) o

J

S

f(}’l)|eldYI>

o
f(yl)leldm)
and

6
1776406,

0 g 0 ” K1\ ot

avi= | ([ 1ro0fman ) ([ leta) s (yak+!)y e
3% 3%

>< /

30k

J

%
g(yz)lezdyz> -

Observe that AjA; = yAK! . Define

Me, (f)(x) == sup (][ [f(y1) |61d)’1)%

2(R")>0>x
and

Moy ()(¥) = sup (f 502 |92dy2)

2(R")>0>x
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and

Mo, 6, (f,8)(x) := RSUPQ (][ |f(v1)] 1dy1>e (J[ lg(y2) 2dyz)
M>05x

By (3.7), we see that
QiNDyy C {x €0l M91792(XQ§f7XQ§g)(x) > YAkH}
C {x € 0+ Mo, (xg1£) () Moy (ge8) () > 74+ |
C {xe 0 Mo, (2 £)(x) > A1 U {x € O : Moy (xgue)(0) > 42
{x ER": Mg f*)(x) > A" } U{x ER": M(xgie®)(¥) >A;’2}.

C

Using the weak- (1, 1) boundedness of M, we have

0D | < [{x e R MOxge ™)) > Y |+ | {x e R : Mz > A3}

3" / ] 3" [¢)
<2 [ )y 2 / (@)% de
A?l 30% Agz 30k

006

1 17 554
1 ( 0 0, 1792
=2.3" | — / |f()’1)|eld}’1> (/ Ig(yz)lezdyz>
k+1 )
YA 30k 304
where we have used the defintions of A; and A;. From (3.7) we further have
11 a

1
1 01 6
0| <23 | (£ o0l | (£ Js)]%a
‘ J +1 yAk+T 30t 30t

1

k k

<o < |

Similarly, we see that |Qg| < 2|Eo|. This finishes the proof of Lemma 3.2. [
The following key lemma essentially due to lida [4].

LEMMA 3.3. Let p1, p» and a satisfy the conditions of Theorem 2.2. Let 6;
(1 <i<6) satisfy the following conditions :

1. 61,6, € (Lpl), 6,05 € (1,[?2) and 03,04 > 1.

2. For L> 1 and s € (q,ro) suchthat s6; < Lq and 5’05 < ¢'.

3. For the indices 0, € (1,p1) and 6, € (1,p2), we can choose a. > 1 such that

a0 <p; and a.6; < p;.
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Assume in addition that, for these indices,

P1 P2 P1 P2
a 2 max ’ I ’ 796 > 1
{(el(u—fgh)f)' (0:(5)) (0 (5 (65(B)Y }

! 1
D1 P1 Py’
o < (2=
max{91 (a*91> 704(94) }\(a>
p2 ) P2\’ P2y’
Ll < (=)
max{@z (a*92> ’95<95> }\<a>

Let 0 < o < 2n. For f,g be locally integrable functions and let R = (r{,r2).
Define a bilinear maximal operator as follows

Moalr = s 101 (f 1roran)” (£ lsvaras)”

For bilinear maximal operator M Wi Iida, Sato, Sawano and Tanaka [5] obtained the
following result. /

Then we obtain

and

LEMMA 3.4. Let 0 < o < 2n. Set P = (py,p2) and R = (r1,r2). Assume in
addition that 0 < r;i < p;<eowith 1 =1,2. If 0 <g < go <o and 0 < p < py < oo
satisfy

1 1 o q )4
—=——— and —=—
q9 po n q0  Po

where p is givenby 1/p=1/p|+1/pa, then

1 1
g7l gn <€ sup 1013 (f 7man ) (f lea)man)

0e2(R")

4. Proof of Theorem 2.2

Proof of Theorem 2.2. Without loss of generality, we may assume that f and g
are non-negative, bounded and compactly supported. By induction, we can prove that

S Fo1)gk)
xi:]n:[+l(bz(x) bl(yz))(‘x_yl‘Hx_yz‘)znfadyldyz (4.8)
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Fix a dyadic cube Qg € Z(R"). For each QO € Z(Qy), letting A; = 4;(Q) = fQ bi(x)d

with i=1,...,N, we have

m m

L1519 = i) = TT1(616) = 0)+ (i = i)
= Y JIwix)—=2)]T—bikn))
AC{1,...,m} i€A icA

and similarly,

N N
[T ®itx) —bi(v2)) = 1 [(Bi(x) = X) + (A — bi(y2))]
i=m+1 i=m+1
= Y JI®ix) =) ]k — bi(y2))-
BC{m+1,...N}i€B i€B
Hence, we have that
m N
q(bi(x) —bi(y1)) 1 l(bi(x) —bi(y2))
= i=m-+
= > IT @ ) [T = bi(y) T T(Ai — bi(y2)).-
AC{1,...m} BC{m+1,...N} i€CAUB icA i€B

The volume of the elements in Z(R") is 2™ for some v € Z. For x € Qy, we have

16,1a]5(f,8) (x)]

N

[ TT 1) = 2T i)

R jcAUB icA

|f(v1)g(y2)]
(|x=yil+ [x = 2]

<C ¥ DI VD IR 10
AC{1,...m} BS{m+1,...N} vEZ Qe Z(R")

AC{l,...m} BC{m+1,...N}

< [T12i = bi(y2)]

)Zn—a d)’Id)’Z

IQ‘ 2”1
<[ T =2 T~
30icAUB icA
< [T12 = bi(y2) | £ (1)g (y2)dyrdy>

i€B

-c Y D Z( > o+ Y )2_V(2”_O‘)XQ(X)

AC{l,..m} BC{m+1,...N}v€Z ~QeP(R") QP (R")

0C0o 0200
// 1bi() = 24| T 124 — i)
QZEAUB IEA
) [T1i = bi(y2) 1f (v1)g(y2) |dy1dya

icB
C(X1+Xp).

X
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Estimate for X;. Taking 6,6, > 1, and using Holder’s inequality, we have

x= Y ¥ 3 \QI][][ TT [bi) — 2 TT 12 — bito)]
N} QE2(Qp) 30 icAUB

AcC{l,...m} BC{m+1,.. icA

< LTI = bi(y2)[1f (1)g (v2) |dy1dya
ieB
< Y > S lolF IT Ibitx) — Al
AcC{l,...m} BC{m+1,...N} Q€2(Qy) i€cAUB
][HM bi(y) %y, ][HM bi(y2) %y,
zeA zeB

X (]fg f(}’l)eld)’l) i (]fg Ig(yz)ezdyz) g : (4.9)

By Holder’s inequality and Lemma 3.1, we obtain that

1
e/
(7[ Hx,-—bi(yl)"ldm) el ) (I (4.10)

3Qica i€A

and

1
9/
(J[ [T1% = bi(y2) 62dY2> < CITlIbillemo-

lEB icB

Combining (4.9) and (4.10), it implies that

x<c ) Y I lbillsmo

AC{l,....m} BC{m+1,...N} icAUB

1 l
a (2} >
<y 1ol IT ki ll(j[ |f (1 e'dyl) (7[ lg(y2) |92dy2>
0€2(Qo) i€AUB
=C > IT l:llsmoll (4.11)

AC{Tem) BE{m+ 1N} icAUB

Now we will estimate /1. Let

P0(Q0) = {Q € Z(Q0) (]fg f(yl)leldm) d (]fg |g(y2>|f’2dy2) " < yA}

(4.12)
and for k> 1

25(Qo) = {Q € Z(Qo): Q C 0, yA*

* &
< (f |f<y1>91dy1) (f |g(yz>|92dyz> 2<yA"“}7 (4.13)
30 30
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where Q’j‘- is defined as in Lemma 3.2. Using the properties of (4.12) and (4.13), we
show that

2(Qo) = Z0(Qo) U (ng Qo )

By the duality argument, we obtain

</Q° " V(X)qu> - il = </Qol'v(x)|h(x>|dx> '

(Qo)

Let supp (k) C Qo, ||h||L,/(Q0) = 1. Then we get

/ 11 -v(x)|h(x)|dx
Qo

9 GL 2] 12
<c : (][ £on)] ldyl) (][ " )’22d)’2)
QEJQO

IT 15i(x) = Ailv(x)h(x)dx

QicAUB

=C( Y +X ZQ0>> |Q%(]£Qf(yl>dy1) / [T 16i(x) = Ailv(x)h(x)dx

0€7(Q0) ki gezk( QicAUB
= I+ Y11}
k,j

We need to estimate 11, and H}‘. For H}‘, if Qe QJ’-‘(QO), we have

(J[ f(yl)leldm) ! (J[ g(yz)ezdyz) 7 <Ak
30 30

Hence, we obtain

< Y ol Ak“/ IT 16(x) — Aifv(x)h(x)dx

0e7%(Q0) QicAUB
<a ¥ 0fut [T bt - 2o
0e7%(Q0) QicAUB

Since
1

5
(][ " g(yz)ezdyz> 7
3Qj

=

yA' < (]fg f(yneldyl)
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we obtain

) ; i
m<a Y |04 <][ k|f()’1)eld}’l> <][ klg(yz)ezdyz>
0<7%(00) 3 3

></Q IT 16(x) = Ailv(x)h(x)dx.

i€AUB

By Holder’s inequality for 63 > 1 as in Lemma 3.3, we obtain

1 1
" o o
1 < A|Qj| (f klf(yl)leldm) (f k|g(>’2)|92d>’2> >
30; 30;

0<75(Qo)
X/Q IT 16(x) = Ailv(x)h(x)dx

iCAUB

1 1
., o 0]
< AlQY| f(y0)|*dyy 18(v2)|®dy,
3Q_’; 3Q_’;
1

1
o} a
X Z |Q‘ (f H |b(x) —Al.Gédx) 3 (f v(x)93h(x)93dx> 03 .
Qe@j{(go) QicAUB 0

Using Lemma 3.1, we obtain

11 < AiellgBHbiHBMdQlﬂ% (]éQI; f(Y1)6'd)’1> <]£QI; g()’z)"”)’z)
< 3 [ (fo0motar) s

0<7%(Qo)

1
a o 6,
<A ] Hb‘||BMo|Qk-|” (][ |f (}H)e'd)’l) <][ g()’z)"”)’z)
i€cAUB 3Q 3Q’j<,
/M (vhR) ] (x) % dlx,

where v’j‘- = VYo and the symbol M is the ordinary Hardy-Littlewood maximal opera-
J
tor. Using Lemma 3.2, we have

Qe@k (Qo)

1 1
" ) [2)
1y <A [] ||bi||BMoQ’;|Q’;|"<][ klf(yl)l"ldy1> (][ k|g(y2)|92dy2>
i€AUB 305 30;

J
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1
o 0 6,
<24 [T llbillsmolES|IQ51 (][ |f(y1)9‘dy1> (][ |g(y2)|92dy2>
iCAUB 30 304
1
X M[(vlj‘-h)e3] (x) % dx

o
1 1
0 6

—24 T IIbillsmo / 04 ][ o)y,
i€AUB E} 304

x ( QkM[(v’jh)e3](x)el3dx> dy.

Taking s € (¢,r0) and L > 1 as in Lemma 3.3. Using Holder’s inequality for s > 1,
we have

£,

J

Ig(yz)ezdm)

1 1

MI(KR)%](x) % < M[(V5)"%](x )sés Mk %](x) 7 .

Using Holder’s inequality for Lg > 1, we obtain the following inequality:

1 Lq 7 , (Lq/ ﬁ
( kM[(v’j‘-h)%](x)@dx) < ( kM[(v’j‘.)s%](x)de) ( kM[hs 6] (x) s dx) )
9 9 9

Lg Lg
Since s03 < Lq, the boundedness of M : L% (R") — L*% (R") gives us the following
inequality:

1 1 qu , (l;q)’
( QfMKV’,‘-h)"ﬂ(x)%dx) <C<Q—§| / nv’,‘-(x>qux> ( QﬁM[hS %] (x) % dx>.

Since a > L > 1, using Holder’s inequality for % > 1, we obtain

1

( M[(v’;h)%}(x)%dx) <C <][ v(x)“qu> : ( MR %) (x) 7o dx) .
ok ‘ ok ok

Using Lemma 3.2, this implies that

ol 1
1 <2 T oo [ MEE )0 M0 ) 577

i€AUB

where

1

91 6, _ a 01 ° 92

Mg'ig (f,8,v)(x) == j(RSL)po 0| 3Qlf( dyi Ig y2)|7dy>
7, n303x

x ( fQ v(x)”qu> ﬁ .
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A similar argument gives us the following estimate:

o Ly 1
Iy <24 T Ilbillemo / M2 (f,g,v)(x) - MIM[R* %] 7% | (x) T dx.
I€AUB

By summing up Iy and II¥ » we obtain
(Lq)' 1

m+2@<z4HHmmmfﬂﬁﬁugw@%MMW%WM@WWw
k,j i€AUB Qo

Using Holder’s inequality for g > 1, we have

/

rg, . La 1
/ M2 (f,g,v)(x) - MIM[R* %] 705 ] (x) ) dx
Qo

1
0,.6 é 0 (eq)/ L’ ?
s </Q Maad <f7g,v><x>qu) | MIMAT] 7% ) Pl ds
0 0

! /

)
Since (Lq)' < ', the boundedness of M : L&' (R") — L i (R") gives us the follow-
ing inequality:

1

1
) g\ , L) ¢\
MM[h* 93] 503 () L) dx <C MK 93](x) N
Qo R?

o A\
=C ( MR %] (x) dx) :
R’l

q_ q_
Since /65 < ¢', the boundedness of M : L¥'% (R") — L% (R") gives us the following

inequality:

/0 ,’1—, i 563 ,’1—, i
M[R* 3] (x)*%dx ) <C |h(x)| 7% (x)dx
R” Qo

]

e ( 5 h(x)|7 (x)dx) R—el

Using Holder’s inequality for 25~ > 1 and 2~ > 1 as in Lemma 3.3, we obtain
0] ax by

MP2 (f,8,v)(x)

o no O\ o\ 7
< sup Q|n(f |f<y1>wl<y1>|a*dy1) (][ g(yz)W2(y2)|”*dyz>
2(R")>0>5x 30 30

1

1
aq _p. (P v Py
% (][ v(x)“qu) 4q (/ Wl(}’l) 91(“*01)dy1> 91(:1*91)
o] 30
1
P2 T
X (/ wa(ya2) e("*%’z)d ) @)
30




1264 X. L1, Q. HE AND D. YAN

/
Using the results 6; (u 91) < (%)/ and 6, (a%z
Holder’s inequality, we have

M2 (f,g,v)(x)

< sp Qﬁ(f |f<y1>wl<y1>|5—idy1)” (][ g<y2>Wz<yz>|5—fdyz)”2
2(R")>0>5x 30
1 1

|3Q|>% (IQI) (7[ . )—

PL ™3 30 9d
<(Tgr) " her (ragy) ™ el (e

1 1

X(/ wi ()~ <”‘>dy1>(”l)/ (/ w2<y2>—<%2>’dyz)(£y'

30 30

Using condition (2.4), we obtain

9 6
Moag (f.8,v)(x)
. no O\ 7
<SCb WL, (Rsr})‘agax (7[ FODwi(yn)] e dy1>

(7[ 802w (32)] dy2) ”

< Cly, W]Z;Tllg/oaMa*%f/“* (fwi,8w2)(x).

!/
) < (2)" as in Lemma 3.3 and

This implies that

1
Q0] (][Q MES ()01 ) < Ch My g, (Forgms) -
0
Since

@ po n a0 o
using Lemma 3.4, we obtain

HMOC_%’P/Q* (fwi,gw2) H,///qq()

<C sp |V (][Q<|f<x>|wl<x>>mdx)1/m (][Q (|g<x>|W2<x>>mdx)l/m.

02 (R")

Therefore, we conclude that

[1X1-v1[Bllmon | 0

< Cly, W}’o’aqo sup 0| 1/Po (]i(|f(x)|wl(x))l’1dx)l/m (7{2(|g(x)|W2(x))P2dx> 1/p2.
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Estimate for X,. A normalization allows us to assume that
| 1/p1 1/pa
sup 017 (f (rommyax)  (f eomaoyar) =1 s
Qc2(R") Q 0

Using Holder’s ineqeulity for 64 € (1,p1) and 65 € (1, p2) as in Lemma 3.3, we obtain

n< X 2 Y 10" xe) TT Ibitx
Ac{l,...m} BC{m+1,...N} 0200 i€cAUB
0eZ(R")

x <]§Qf(y1)e4dy1> % (]ng(yz)esdyz)els
(][ [T1%—bi(n) 94d)’1> (7[ TT1%—bi(y2) de2>§ 4.15)

tEA zeB

Applying Lemma 3.1 and (4.15), we have

Xx<Co ) Y I lbillsmo

AC{l,...m} BC{m+1,...N} icAUB

1 1

a 05

< S 102000 TT i) x|(f o) ) (f g<y2>95dy2)5.
0200 i€AUB 30

0eZ(R")

Using Holder’s inequality for S_i > 1 and ’5—: > 1, we obtain

n<c Y Y I lblewo X 101" %)

AC{1,...m} BC{m+1,...N}icAUB 0209
02 (R")
1
/ T
< 1 I6:0)— A (f m(yl)"““éi)dyl) ()
iCAUB 30
1 1
—g<(P2y o (P2 he 2
x (f wa(2) 95(05%) S5 ;30]m (f <f<y1>wl<y1>>mdy1) 1
30 30
1
P
X (][ (g(Y2)W2(Y2))de2) . (4.16)
30

Since the assumption conditions a > —X4— >1 and a > —%%— > 1 as in Lemma
(0a(;)") (65(52)")
3.3, using Holder’s inequality and (4.14), we show that

a1
N<C 3 )y IT loidlemo X, 101" mxo(x) TT [bilx) — Al
Ac{l,...,m} BC{m+1,...N} icAUB 0200 i€cAUB
Q<2 (R")

p 71/ / P2y
X (][ wi(y1)” (”)dyl) “ (][ Wz(yz)_(%z)dyz)(“) .
30 30

—
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The integral of X, - v(x) on Qy is evaluated as follows:

0] (][Q |x2-v<x>qu)”

<C Y > I lzillemo

AC{l,...m} BC{m+1,...N} icAUB
1

a_ 1 €1 a

x Y |Q]" M |Qo|% (7[ 1T bi(x)—/liqv(x)qu>
020 Qo icAUB

Qe7(R")

1
Py D
X (7[ wl(yl)‘(Tl)dw)(“) (7[ wa(y2)~ (’z)dyz)
30 30

Using Holder’s inequality for a > 65 > 1 and Lemma 3.1, we have

1

E‘S

)/

0o ( |x2-v<x>qu)q
Qo

1 1

= a 1 1 a aq (4)
<Clloor 3 10% 10 ( veraax)™ (F woHan )|
0200 Qo 30

0€7(R")
J/
)dy2> 2)

X <]£sz(y2) .

. 5(1-2) a1
<Clilwo 3 (fo)" " (1) B

0200 ‘3Q
02 (R")

:‘S

)/

:\N

1 1

X (Jéo V(x)aqu)% (]fQWI(YI) (& d)’1) @@ (ﬁsz(Yz) (72)0%)

Using condition (2.4), we obtain

Q‘S

)/

: 1 1
1 2 . 100 a4
|Qol %0 <][ |X2.v(x)‘1dx> CHb” ¥ [, i0]70:440 ( )
0eZ(R")

0,440

< ClBllyion [ 71250

This finishes proof of Theorem 2.2. [
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