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HERMITE–HADAMARD TYPE INEQUALITIES

FOR OPERATOR (p,h)–CONVEX FUNCTIONS

ZHIWEI HAO AND LIBO LI ∗

(Communicated by J. Mićić Hot)

Abstract. Motivated by the recent work on convex functions and operator convex functions, we
investigate the Hermite-Hadamard inequalities for operator (p,h) -convex functions. We also
present the estimates of both sides of the Hermite-Hadamard type inequality for operator (p,h) -
convex functions, where h is a non-negative function with h(t)+ h(1− t) � κ (κ is a positive
constant) for t ∈ (0,1) . The results are new even for the commutative case. Applications for
particular cases of these inequalities are also provided.

1. Introduction

For every real convex function f on [a,b] , we have

f
(a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
, (1)

which is well known in the literature as the Hermite-Hadamard inequality. It was first
published by Hermite in 1883 in an elementary journal and independently proved in
1893 by Hadamard in [14]. The Hermite-Hadamard inequality provides estimates of
the mean value of a continuous convex function f : [a,b] −→ R . It is also a matter of
great interest and one has to note that some of the classical inequalities for means can
be obtained from the Hermite-Hadamard inequality under the utility of peculiar convex
function f .

The Hermite-Hadamard inequality plays a crucial role in analysis and in other
areas of applied mathematics as well. For more related results, generalizations, im-
provements and refinements to the Hermite-Hadamard inequality, see [1–5, 7–8, 15–17,
19–31]. In particular, Dragomir [9, 10] studied the Hermite-Hadamard inequality for
convex function of self-adjoint operators in Hilbert spaces. Since then, the Hermite-
Hadamard inequality for operator convex function has increasingly becoming one of
the hot topics, see [11, 13, 18, 32] and the references therein.
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In 2018, a new type operator convex function, operator (p,h)-convex function
(see Section 2), was proposed by Dinh and Vo [6]. They showed the Jensen inequality,
Hansen-Pedersen type inequality and Choi-Davis-Jensen type inequality for operator
(p,h)-convex function. To the best of our knowledge, there seems to be relatively little
work on the Hermite-Hadamard inequality as well as its generalizations, improvements
and refinements for operator (p,h)-convex functions.

The purpose of this paper is to present the Hermite-Hadamard type inequalities
for operator (p,h)-convex functions. More precisely, we firstly establish the Hermite-
Hadamard inequality for operator (p,h)-convex functions. In the second place, the im-
provement and refinement of Hermite-Hadamard inequality for operator (p,h)-convex
functions will be studied. Finally, applications for particular cases of these inequalities
are provided.

2. Preliminaries

In this paper, B(H ) stands for the C ∗ -algebra of all bounded linear operators
on a complex Hilbert space H with inner product 〈·, ·〉 . An operator A ∈ B(H ) is
positive and write A � 0 if 〈Ax,x〉� 0 for all x ∈H . Denote by B(H )+ the set of all
positive operators in B(H ) . Over B(H ) there exists a partial order relation by means
of

A � B if A−B � 0

for self-adjoint operators A,B ∈ B(H ) .
Let A ∈ B(H ) be a self-adjoint operator. The Gelfand map established a ∗ -

isometrically isomorphism Φ between the set C (σ(A)) of all continuous functions
defined on the spectrum of A , denoted by σ(A) , and the C ∗ -algebra C ∗(A) generated
by A and the identity operator IH on H (see [12]) as follows:

For any f ,g ∈ C (σ(A)) and α,β ∈ C (Complex numbers) we have

(1) Φ(α f + βg) = αΦ( f )+ β Φ(g) ;

(2) Φ( f g) = Φ( f )Φ(g) and Φ( f ) = Φ( f )∗ ;

(3) ‖Φ( f )‖ = ‖ f‖ := sup
t∈σ(A)

f (t) ;

(4) Φ( f0) = IH and Φ( f1) = A , where f0(t) = 1 and f1(t) = t , for t ∈ σ(A) .

With this notations, we define

f (A) := Φ( f ) for all f ∈ C (σ(A))

and we call it the continuous functional calculus for a self-adjoint operator A .
If A ∈ B(H ) is a self-adjoint operator and f is a real valued continuous function

on σ(A) , then f (t) � 0 for any t ∈ σ(A) implies that f (A) � 0, i.e. f (A) is a positive
operator on H . Moreover, if both f and g are real valued functions on σ(A) , then
the following important property holds: f (t) � g(t) for any t ∈ σ(A) implies that
f (A) � g(A) in the partial order of B(H ) .
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A real valued continuous function f on an interval I is said to be operator convex
if

f
(
(1−α)A+ αB

)
� (1−α) f (A)+ α f (B)

in the partial order, for all α ∈ [0,1] and all self-adjoint operators A,B ∈ B(H ) whose
spectra are contained in I . For some fundamental results on operator convex function,
see [12] and the references therein.

Now we introduce the operator (p,h)-convex function which generalizes the op-
erator convex function. Assume that p is a positive constant, J is an interval in R

+

such that [0,1] ⊂ J . Let K be a subset of R+ , we say that K is a p-convex, if(
λxp +(1−λ )yp

)1/p ∈ K for all x,y ∈ K and λ ∈ [0,1] .

DEFINITION 2.1. [6] Let h : J → R be a non-negative function, h 	≡ 0 and K be
a p -convex subset of R+ . A non-negative continuous function f : K → R is said to be
operator (p,h)-convex if

f
([

αAp +(1−α)Bp]1/p
)

� h(α) f (A)+h(1−α) f (B) (2)

for all A,B ∈ B(H )+ whose spectra are in K , and α ∈ (0,1) .

REMARK 2.2. Note that the notation of operator (p,h)-convex function unifies
and generalizes the known classes of operator h -convex function, operator convex func-
tion, operator s-convex function, operator P-function and operator Q-class function.
To be precise,

(1) if p = 1, one gets the definition of operator h -convex function on B(H )+ ;
(2) if p = 1 and h(t) = t , one gets the definition of operator convex function on

B(H )+ ;
(3) if p = 1 and h(t) = ts , one gets the definition of operator s-convex function

on B(H )+ ;
(4) if p = 1 and h(t) = 1, one gets the definition of operator P-function on

B(H )+ ;
(5) if p = 1 and h(t) = 1/t , one gets the definition of operator Q-class function

on B(H )+ .

The following result shows the connection between operator (p,h)-convex func-
tion and h -convex function, which will be useful in the sequel. We refer to [28] for the
definition of h -convex function.

LEMMA 2.3. Let h : J → R be a non-negative function, h 	≡ 0 and f : K → R be
an operator (p,h)-convex function, then ϕx,A,B : [0,1] → R is a h-convex function for
all A,B ∈ B(H )+ whose spectra are in K and any x ∈ H with ‖x‖ = 1 , where

ϕx,A,B(α) =
〈

f
([

αAp +(1−α)Bp]1/p)
x,x
〉
, ∀ α ∈ [0,1].
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Proof. Let f be an operator (p,h)-convex function, then for u,v ∈ [0,1] we have

ϕx,A,B
(
αu+(1−α)v

)
=
〈

f
([(

αu+(1−α)v
)
Ap +

(
1− [αu+(1−α)v]

)
Bp
]1/p)

x,x
〉

=
〈

f
([

α
(
uAp +(1−u)Bp)+(1−α)

(
vAp +(1− v)Bp)]1/p)

x,x
〉

=
〈

f
([

α
[(

uAp +(1−u)Bp)1/p]p +(1−α)
[(

vAp +(1− v)Bp)1/p]p]1/p)
x,x
〉

� h(α)
〈

f
([

uAp +(1−u)Bp]1/p)
x,x
〉

+h(1−α)
〈

f
([

vAp +(1− v)Bp]1/p)
x,x
〉

= h(α)ϕx,A,B(u)+h(1−α)ϕx,A,B(v).

This implies that ϕx,A,B is a h -convex function on [0,1] . �

3. Main results

In this section, we firstly establish the Hermite-Hadamard inequality for the class
of operator (p,h)-convex functions. More importantly, we study refinements of Hermite-
Hadamard inequality for operator (p,h)-convex functions. Finally, applications for
particular cases of these inequalities are also provided. To simplify the writing, we
always assume that [0,1] ⊂ J is an interval in R+ and K is a p -convex.

THEOREM 3.1. (Hermite-Hadamard inequality for operator (p,h)-convex func-
tion) Let h : J → R be a non-negative function, h(1/2) 	= 0 and f : K → R be an
operator (p,h)-convex function, then for every A,B ∈ B(H )+ with σ(A),σ(B) ∈ K
we have

1

2h( 1
2)

f
((Ap +Bp

2

)1/p)
�
∫ 1

0
f
([

tAp+(1−t)Bp]1/p
)
dt �

(
f (A)+ f (B)

)∫ 1

0
h(α)dα.

For the proof of Theorem 3.1, we need the following Lemma, proved in [28].

LEMMA 3.2. Let h : J → R be a non-negative function with h(1/2) 	= 0 . If g :
[0,1]−→ R is a h-convex function, then for a,b ∈ [0,1] with a < b, we have

1

2h( 1
2)

g
(a+b

2

)
� 1

b−a

∫ b

a
g(t)dt �

[
g(a)+g(b)

]∫ 1

0
h(α)dα.

Let us proceed now to prove Theorem 3.1.

Proof. Let f be an operator
(
p,h)-convex function. For every x∈H with ‖x‖=

1 and α ∈ [0,1] , we suppose that

ϕx,A,B(α) =
〈

f
([

αAp +(1−α)Bp]1/p)
x,x
〉
.
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It follows from Lemma 2.3 that ϕx,A,B(·) is a h -convex function on [0,1] . According
to Lemma 3.2, we have

1

2h( 1
2)

ϕx,A,B

(0+1
2

)
� 1

1−0

∫ 1

0
ϕx,A,B(t)dt �

[
ϕx,A,B(0)+ ϕx,A,B(1)

]∫ 1

0
h(α)dα,

which implies that

1

2h( 1
2)

〈
f
([Ap +Bp

2

]1/p)
x,x
〉

�
∫ 1

0

〈
f
([

tAp +(1− t)Bp]1/p)
x,x
〉
dt

�
[〈 f (A)x,x〉+ 〈 f (B)x,x〉]∫ 1

0
h(α)dα

=
〈(

f (A)+ f (B)
)
x,x
〉∫ 1

0
h(α)dα.

Now, the desired result follows by taking into account that

∫ 1

0

〈
f
([

tAp +(1− t)Bp]1/p)
x,x
〉
dt =

〈{∫ 1

0
f
([

tAp +(1− t)Bp]1/p)
dt
}

x,x
〉
. �

Now we establish the refinement of the Hermite-Hadamard inequality for operator
(p,h)-convex functions by Theorem 3.1.

THEOREM 3.3. Let h : J → R be a non-negative function, h(1/2) 	= 0 and f :
K → R be an operator (p,h)-convex function. For every A,B ∈ B(H )+ with σ(A) ,
σ(B) ∈ K , then the following inequalities hold:

(i) If n is a positive even, we have

1

4h( 1
2)

2
f
((Ap +Bp

2

)1/p)

� 1

2nh( 1
2)

n−1

∑
m=0

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

� 2
n

[ n−1

∑
m=1

f
(( (n−m)Ap +mBp

n

)1/p)
+

f (A)+ f (B)
2

]∫ 1

0
h(t)dt.

(ii) If n is a positive odd, we have

n+2h( 1
2)−1

n
1

4h( 1
2)2

f
((Ap +Bp

2

)1/p)

� 1

2nh( 1
2)

n−1

∑
m=0

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)
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�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

� 2
n

[ n−1

∑
m=1

f
(( (n−m)Ap +mBp

n

)1/p)
+

f (A)+ f (B)
2

]∫ 1

0
h(t)dt.

Proof. According to the definition of operator (p,h)-convex function, it holds for
every 0 � λ � 1 and m ∈ {0,1, . . . ,n−1} that

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)
= f

((Cp
λ ,A,B +Dp

λ ,A,B

2

)1/p)
� h

(1
2

){
f (Cλ ,A,B)+ f (Dλ ,A,B)

}
,

where

Cλ ,A,B =
[
λ

(n−m)Ap +mBp

n
+(1−λ )

(n−m−1)Ap+(m+1)Bp

n

]1/p

and

Dλ ,A,B =
[
(1−λ )

(n−m)Ap+mBp

n
+ λ

(n−m−1)Ap+(m+1)Bp

n

]1/p
.

Because of the monotonicity and linearity of the integral operator, we have

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)
(3)

� h
(1

2

){∫ 1

0
f (Cλ ,A,B)dλ +

∫ 1

0
f (Dλ ,A,B)dλ

}
.

Let t = 1−λ , we have ∫ 1

0
f (Cλ ,A,B)dλ =

∫ 1

0
f (Dλ ,A,B)dλ . (4)

Let t = m+λ
n for λ ∈ [0,1] , we have

∫ 1

0
f (Dλ ,A,B)dλ =

∫ 1

0
f
(([

1− m+ λ
n

]
Ap +

m+ λ
n

Bp
)1/p)

dλ (5)

= n
∫ m+1

n

m
n

f
([

(1− t)Ap + tBp]1/p
)
dt.

Applying Theorem 3.1, one can get

∫ 1

0
f (Cλ ,A,B)dλ =

∫ 1

0
f

([
λ
([ (n−m)Ap +mBp

n

]1/p
)p

(6)

+(1−λ )
([ (n−m−1)Ap+(m+1)Bp

n

]1/p
)p
]1/p)

dλ
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�
[

f
([ (n−m)Ap +mBp

n

]1/p)

+ f
([ (n−m−1)Ap +(m+1)Bp

n

]1/p)]∫ 1

0
h(α)dα.

Hence, it follows from formulas (3), (4), (5) and (6) that

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)

� 2nh
(1

2

)∫ m+1
n

m
n

f
([

(1− t)Ap + tBp]1/p
)
dt

� 2h
(1

2

)[
f
([ (n−m)Ap +mBp

n

]1/p)

+ f
([ (n−m−1)Ap +(m+1)Bp

n

]1/p)]∫ 1

0
h(α)dα.

Sum these inequalities above over m , we get

n−1

∑
m=0

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)
(7)

� 2nh
(1

2

)∫ 1

0
f
([

(1− t)Ap + tBp]1/p
)
dt

� 4h
(1

2

)[ f (A)+ f (B)
2

+
n−1

∑
m=1

f
(((n−m)Ap +m)Bp

n

)1/p)]∫ 1

0
h(α)dα.

Now we prove the inequality (i). If n = 2k is even, we get

n−1

∑
m=0

f
(( (2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)

=
2k−1

∑
m=0

f
(((4k−2m−1)Ap+(2m+1)Bp

4k

)1/p)

=
k−1

∑
m=0

[
f
(( (4k−2m−1)Ap+(2m+1)Bp

4k

)1/p)

+ f
(((2m+1)Ap +(4k−2m−1)Bp

4k

)1/p)]
.
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By the definition of operator (p,h)-convex function, it follows

f
((Ap +Bp

2

)1/p)
= f

(( (4k−2m−1)Ap+(2m+1)Bp

4k + (2m+1)Ap+(4k−2m−1)Bp

4k

2

)1/p)

� h
(1

2

)[
f
(( (4k−2m−1)Ap+(2m+1)Bp

4k

)1/p)

+ f
(((2m+1)Ap +(4k−2m−1)Bp

4k

)1/p)]
.

This implies that

k · f
((Ap +Bp

2

)1/p)
=

k−1

∑
m=0

f
((Ap +Bp

2

)1/p)

� h
(1

2

) k−1

∑
m=0

[
f
(((4k−2m−1)Ap+(2m+1)Bp

4k

)1/p)

+ f
(( (2m+1)Ap +(4k−2m−1)Bp

4k

)1/p)]

= h
(1

2

) n−1

∑
m=0

f
(( (2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)
.

Combining (7) with the above inequality, (i) holds. Finally, we prove the inequality (ii).
If n = 2k+1 is odd, we have

n−1

∑
m=0

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)

=
2k

∑
m=0

f
(((4k−2m+1)Ap+(2m+1)Bp

4k+2

)1/p)

=
k−1

∑
m=0

[
f
(( (4k−2m+1)Ap+(2m+1)Bp

4k+2

)1/p)

+ f
(( (2m+1)Ap +(4k−2m−1)Bp

4k+2

)1/p)
+ f
((Ap +Bp

2

)1/p)]

which implies that

[
k+h

(1
2

)]
· f
((Ap +Bp

2

)1/p)

=
k−1

∑
m=0

f
((Ap +Bp

2

)1/p)
+h
(1

2

)
f
((Ap +Bp

2

)1/p)
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� h
(1

2

) k−1

∑
m=0

[
f
(( (4k−2m+1)Ap+(2m+1)Bp

4k+2

)1/p)

+ f
(( (2m+1)Ap +(4k−2m−1)Bp

4k+2

)1/p)]
+h
(1

2

)
f
((Ap +Bp

2

)1/p)

= h
(1

2

) n−1

∑
m=0

f
(( (2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)
.

Thus it follows that

n+2h( 1
2)−1

n
1

4h( 1
2)2

f
((Ap +Bp

2

)1/p)

� 1

2nh( 1
2)

n−1

∑
m=0

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)
.

Combining (7) with the above inequality, we obtain the result. �
If we put n = 1 in Theorem 3.3 (ii), then we can obtain Theorem 3.1. As an

application of Theorem 3.3, we state the following result, which is a refinement of
Theorem 3.1.

COROLLARY 3.4. Let h : J → R be a non-negative function, h(1/2) 	= 0 and
f : K → R be an operator (p,h)-convex function. For every A,B ∈ B(H )+ with
σ(A),σ(B) ∈ K , then the following inequality holds:

1

4h( 1
2)2

f
((Ap +Bp

2

)1/p)
� 1

4h( 1
2)

[
f
((3Ap +Bp

4

)1/p)
+ f
((Ap +3Bp

4

)1/p)]

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

�
[

f
((Ap +Bp

2

)1/p)
+

f (A)+ f (B)
2

]∫ 1

0
h(t)dt

�
(
Ch +

1
2

)[
f (A)+ f (B)

]∫ 1

0
h(t)dt,

where

Ch = min

{
h
(1

2

)
,2h
(1

2

)∫ 1

0
h(t)dt

}
.

Proof. Setting n = 2 in Theorem 3.3, we have

1

4h( 1
2)2

f
((Ap +Bp

2

)1/p)
� 1

4h( 1
2)

[
f
((3Ap +Bp

4

)1/p)
+ f
((Ap +3Bp

4

)1/p)]

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

�
[

f
((Ap +Bp

2

)1/p)
+

f (A)+ f (B)
2

]∫ 1

0
h(t)dt.
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Since f is an operator (p,h)-convex function, it follows from Theorem 3.1 that

f
((Ap +Bp

2

)1/p)
� 2h

(1
2

)[
f (A)+ f (B)

]∫ 1

0
h(t)dt.

According to the definition of operator (p,h)-convex function, we have

f
((Ap +Bp

2

)1/p)
� h
(1

2

)[
f (A)+ f (B)

]
,

which implies that[
f
((Ap +Bp

2

)1/p)
+

f (A)+ f (B)
2

]
� min

{
h
(1

2

)
,2h
(1

2

)∫ 1

0
h(t)dt

}[
f (A)+ f (B)

]
.

Hence the result is proved. �

Let p = 1 in Corollary 3.4, then we immediately get the following result:

COROLLARY 3.5. Let h : J → R be a non-negative function, h(1/2) 	= 0 and f :
K →R be an operator h-convex function. For every A,B∈B(H )+ with σ(A),σ(B)∈
K , then the following inequality holds:

1

4h( 1
2)2

f
(A+B

2

)
� 1

4h( 1
2)

[
f
(3A+B

4

)
+ f
(A+3B

4

)]

�
∫ 1

0
f
(
tA+(1− t)B

)
dt

�
[

f
(A+B

2

)
+

f (A)+ f (B)
2

]∫ 1

0
h(t)dt

�
(
Ch +

1
2

)[
f (A)+ f (B)

]∫ 1

0
h(t)dt,

where

Ch = min

{
h
(1

2

)
,2h
(1

2

)∫ 1

0
h(t)dt

}
.

Now we give the generalization of Corollary 3.4 and Corollary 3.5 as follows.

THEOREM 3.6. Let h : J → R be a non-negative function, h(1/2) 	= 0 and f :
K → R be an operator (p,h)-convex function. For every A,B ∈ B(H )+ with σ(A) ,
σ(B) ∈ K and for each λ ∈ [0,1] , then the following inequality holds:

1

2h( 1
2)

[(
1−λ

)
f
(( (1−λ )Ap +(1+ λ )Bp

2

)1/p)
+ λ f

(( (2−λ )Ap + λBp

2

)1/p)]

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt
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�
[
(1−λ ) f (B)+ λ f (A)+ f

((
(1−λ )Ap + λBp

)1/p)]∫ 1

0
h(t)dt

�
[(

h(1−λ )+ λ
)
f (A)+

(
h(λ )+1−λ

)
f (B)

]∫ 1

0
h(t)dt.

Moreover, if h(t) � κ t for t ∈ (0,1) and κ is a positive constant, then we have

1

2κh( 1
2)

f
((Ap +Bp

2

)1/p)

� 1

2h( 1
2)

[(
1−λ

)
f
(( (1−λ )Ap +(1+ λ )Bp

2

)1/p)
+ λ f

(((2−λ )Ap + λBp

2

)1/p)]

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

� κ
2

[(
h(1−λ )+ λ

)
f (A)+

(
h(λ )+1−λ

)
f (B)

]
.

Proof. Let C =
(
(1−λ )Ap + λBp

)1/p
. It follows from Theorem 3.1 that

1

2h( 1
2)

f
((Bp +Cp

2

)1/p)
�
∫ 1

0
f
([

tBp +(1− t)Cp]1/p
)
dt (8)

�
[
f (B)+ f (C)

]∫ 1

0
h(t)dt

and

1

2h( 1
2)

f
((Cp +Ap

2

)1/p)
�
∫ 1

0
f
([

tCp +(1− t)Ap]1/p
)
dt (9)

�
[
f (C)+ f (A)

]∫ 1

0
h(t)dt.

We use the change of variables x = λ + t− tλ , x = tλ for (8) and (9) with λ 	= 1
and λ 	= 0, respectively, we have∫ 1

0
f
([

tBp +(1− t)Cp]1/p
)
dt =

1
1−λ

∫ 1

λ
f
([

(1− t)Ap + tBp]1/p
)
dt

and ∫ 1

0
f
([

tCp +(1− t)Ap]1/p
)
dt =

1
λ

∫ λ

0
f
([

(1− t)Ap + tBp]1/p
)
dt,

which implies that∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt =

∫ 1

0
f
([

(1− t)Ap + tBp]1/p
)
dt

=
(
1−λ

)∫ 1

0
f
([

tBp +(1− t)Cp]1/p
)
dt + λ

∫ 1

0
f
([

tCp +(1− t)Ap]1/p
)
dt
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�
[
λ f (A)+ (1−λ ) f (B)+ f (C)

]∫ 1

0
h(t)dt

�
[
λ f (A)+ (1−λ ) f (B)+h(1−λ ) f (A)+h(λ ) f (B)

]∫ 1

0
h(t)dt

=
[
(h(1−λ )+ λ ) f (A)+ (h(λ )+1−λ) f (B)

]∫ 1

0
h(t)dt.

That is

1

2h( 1
2)

[(
1−λ

)
f
(( (1−λ )Ap +(1+ λ )Bp

2

)1/p)
+ λ f

(( (2−λ )Ap + λBp

2

)1/p)]

=
1−λ
2h( 1

2)
f
((Bp +Cp

2

)1/p)
+

λ
2h( 1

2)
f
((Cp +Ap

2

)1/p)

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

�
[
(h(1−λ )+ λ ) f (A)+ (h(λ )+1−λ ) f (B)

]∫ 1

0
h(t)dt.

Hence we obtain the first result. Now we turn to last part of the proof. Let f be
an operator (p,h)-convex function, we have

f
((Ap +Bp

2

)1/p)
= f

(((
1−λ

)(1−λ )Ap +(1+ λ )Bp

2
+ λ

(2−λ )Ap + λBp

2

)1/p)
= f

(((
1−λ

)[( (1−λ )Ap +(1+ λ )Bp

2

)1/p]p
+ λ

[((2−λ )Ap + λBp

2

)1/p]p)1/p)
� h(1−λ ) f

(( (1−λ )Ap +(1+ λ )Bp

2

)1/p)
+h(λ ) f

(((2−λ )Ap + λBp

2

)1/p)
= h(1−λ ) f

((Bp +Cp

2

)1/p)
+h(λ ) f

((Cp +Ap

2

)1/p)
.

Since h(t) � κ t for t ∈ (0,1) , we can obtain that

f
((Ap +Bp

2

)1/p)
� κ

[
(1−λ ) f

((Bp +Cp

2

)1/p)
+ λ f

((Cp +Ap

2

)1/p)]
.

This means that

1

2κh( 1
2)

f
((Ap +Bp

2

)1/p)

� 1

2h( 1
2)

[(
1−λ

)
f
(( (1−λ )Ap +(1+ λ )Bp

2

)1/p)
+ λ f

(((2−λ )Ap + λBp

2

)1/p)]

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

� κ
2

[(
h(1−λ )+ λ

)
f (A)+

(
h(λ )+1−λ

)
f (B)

]
. �
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If the non-negative function h satisfies with h(t)+ h(1− t) � κ (κ is a positive
constant) for each t ∈ (0,1) , in Theorem 3.3, we have the following new result for
operator (p,h)-convex functions.

THEOREM 3.7. Let h : J →R be a non-negative function, h(1/2) 	= 0 with h(t)+
h(1− t) � κ (κ is a positive constant) for each t ∈ (0,1) , and f : K → R be an
operator (p,h)-convex function. For every A,B ∈ B(H )+ with σ(A),σ(B) ∈ K , then
the following inequality holds:

1

2nh( 1
2)

n−1

∑
m=0

f
(( (2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

� κ
n

[ n−1

∑
m=1

f
(((n−m)Ap +(m)Bp

n

)1/p)
+

f (A)+ f (B)
2

]

� (n−1)κ2 + κ
2n

[
f (A)+ f (B)

]
.

Proof. Since h : (0,1)→ R is a non-negative function and h(t)+h(1− t) � κ for
any t ∈ (0,1) , we have∫ 1

0
h(t)dt =

1
2

(∫ 1

0
h(t)dt +

∫ 1

0
h(1− t)dt

)
=

1
2

∫ 1

0

(
h(t)+h(1− t)

)
dt (10)

� 1
2

∫ 1

0
κ dt =

κ
2

.

From Theorem 3.3 and the inequality (10), we have

1

2nh( 1
2)

n−1

∑
m=0

f
(((2n−2m−1)Ap+(2m+1)Bp

2n

)1/p)

�
∫ 1

0
f
([

tAp +(1− t)Bp]1/p
)
dt

� 2
n

[ n−1

∑
m=1

f
(((n−m)Ap +mBp

n

)1/p)
+

f (A)+ f (B)
2

]∫ 1

0
h(t)dt

� κ
n

[ n−1

∑
m=1

f
(((n−m)Ap +mBp

n

)1/p)
+

f (A)+ f (B)
2

]
.

According to the definition of operator (p,h)-convex function and h(t)+h(1− t) � κ
for t ∈ (0,1) , we have

κ
n

[ n−1

∑
m=0

f
(( (n−m)Ap +mp

n

)1/p)
+

f (A)+ f (B)
2

]
(11)

=
κ
2n

n−1

∑
m=1

[
f
(( (n−m)Ap +mBp

n

)1/p)
+ f
((mAp +(n−m)Bp

n

)1/p)]
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+
κ
[
f (A)+ f (B)

]
2n

� κ
2n

n−1

∑
m=1

[
h
(n−m

n

)
f (A)+h

(m
n

)
f (B)+h

(m
n

)
f (A)+h

(n−m
n

)
f (B)

]

+
κ
[
f (A)+ f (B)

]
2n

=
κ
[
f (A)+ f (B)

]
2n

[
1+

n−1

∑
m=1

(
h
(n−m

n

)
+h
(m

n

))]

�
κ
[
f (A)+ f (B)

]
2n

[
1+

n−1

∑
m=1

κ
]

=
(n−1)κ2 + κ

2n

[
f (A)+ f (B)

]
.

This completes the proof. �
Note that the condition h(t)+h(1− t)� κ is weaker than h(t) � κ t (in Theorem

3.6) for t ∈ (0,1) . Indeed, if h(t) � κ t holds for t ∈ (0,1) , then, for any t ∈ (0,1) we
have h(t)+h(1− t) � κ t + κ (1− t) = κ . But the inverse is not true. As applications,
we give the following two corollaries.

COROLLARY 3.8. Suppose that s ∈ (0,1] . Let f : K → R be an operator s-
convex function. For every A,B ∈ B(H )+ with σ(A),σ(B) ∈ K , then the following
inequality holds:

4s−1 f
(A+B

2

)
� 2s−1

n

n−1

∑
m=0

f
( (2n−2m−1)A+(2m+1)B

2n

)

�
∫ 1

0
f
(
tA+(1− t)B

)
dt

� 2
n(s+1)

[ n−1

∑
m=1

f
( (n−m)A+mB

n

)
+

f (A)+ f (B)
2

]

� 2n−1
n(s+1)

[
f (A)+ f (B)

]
.

Proof. Let h(t) = ts for 0 � t � 1, it is easy to calculate that

n+2h(1/2)−1= n+21−s−1 � n, 4h(1/2)2 = 41−s

which means

n+2h( 1
2)−1

n
� 1,

1

4h( 1
2)2

= 4s−1,

∫ 1

0
h(t)dt =

1
1+ s

and, h(t)+h(1− t) = ts +(1− t)s � 2 for each t ∈ [0,1] . Combining Theorem 3.3 and
the inequality (11), we can obtain the result. �

From results above, one can easily get the refinement of the Hermite-Hadamard
inequality for operator convex function.
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COROLLARY 3.9. Let f : K → R be an operator convex function. For every
A,B ∈ B(H )+ with σ(A),σ(B) ∈ K , the following inequality holds

f
(A+B

2

)
� 1

n

n−1

∑
m=0

f
( (2n−2m−1)A+(2m+1)B

2n

)
(12)

�
∫ 1

0
f
(
tA+(1− t)B

)
dt

� 1
n

[ n−1

∑
m=1

f
( (n−m)A+mB

n

)
+

f (A)+ f (B)
2

]

� f (A)+ f (B)
2

.

Proof. Applying Theorem 3.7 and Corollary 3.8 by setting h(t) = t , we can get
inequality (12). �
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