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HERMITE-HADAMARD TYPE INEQUALITIES
FOR OPERATOR (p,h)-CONVEX FUNCTIONS

ZHIWEI HAO AND LI1BO L1*

(Communicated by J. Mi¢i¢ Hot)

Abstract. Motivated by the recent work on convex functions and operator convex functions, we
investigate the Hermite-Hadamard inequalities for operator (p,h)-convex functions. We also
present the estimates of both sides of the Hermite-Hadamard type inequality for operator (p,h)-
convex functions, where % is a non-negative function with x(¢) +h(1 —17) < k (x is a positive
constant) for # € (0,1). The results are new even for the commutative case. Applications for
particular cases of these inequalities are also provided.

1. Introduction

For every real convex function f on [a,b], we have

(E52) < s [ o L0

which is well known in the literature as the Hermite-Hadamard inequality. It was first
published by Hermite in 1883 in an elementary journal and independently proved in
1893 by Hadamard in [14]. The Hermite-Hadamard inequality provides estimates of
the mean value of a continuous convex function f : [a,b] — R. It is also a matter of
great interest and one has to note that some of the classical inequalities for means can
be obtained from the Hermite-Hadamard inequality under the utility of peculiar convex
function f.

The Hermite-Hadamard inequality plays a crucial role in analysis and in other
areas of applied mathematics as well. For more related results, generalizations, im-
provements and refinements to the Hermite-Hadamard inequality, see [1-5, 7-8, 15-17,
19-31]. In particular, Dragomir [9, 10] studied the Hermite-Hadamard inequality for
convex function of self-adjoint operators in Hilbert spaces. Since then, the Hermite-
Hadamard inequality for operator convex function has increasingly becoming one of
the hot topics, see [11, 13, 18, 32] and the references therein.
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In 2018, a new type operator convex function, operator (p,h)-convex function
(see Section 2), was proposed by Dinh and Vo [6]. They showed the Jensen inequality,
Hansen-Pedersen type inequality and Choi-Davis-Jensen type inequality for operator
(p,h)-convex function. To the best of our knowledge, there seems to be relatively little
work on the Hermite-Hadamard inequality as well as its generalizations, improvements
and refinements for operator (p,h)-convex functions.

The purpose of this paper is to present the Hermite-Hadamard type inequalities
for operator (p,h)-convex functions. More precisely, we firstly establish the Hermite-
Hadamard inequality for operator (p,h)-convex functions. In the second place, the im-
provement and refinement of Hermite-Hadamard inequality for operator (p,/)-convex
functions will be studied. Finally, applications for particular cases of these inequalities
are provided.

2. Preliminaries

In this paper, B(.#) stands for the %™ -algebra of all bounded linear operators
on a complex Hilbert space .7 with inner product (-,-). An operator A € B(.%¢) is
positive and write A > 0 if (Ax,x) > 0 for all x € #. Denote by B(#)" the set of all
positive operators in B(.7”). Over B(7¢) there exists a partial order relation by means
of

A>B if A—B>0

for self-adjoint operators A,B € B(.7¢).

Let A € B(J#) be a self-adjoint operator. The Gelfand map established a -
isometrically isomorphism ® between the set ¢ (0(A)) of all continuous functions
defined on the spectrum of A, denoted by 6(A), and the € *-algebra ¢ (A) generated
by A and the identity operator I ;> on 7 (see [12]) as follows:

Forany f,g € ¥(0(A)) and o, B € C (Complex numbers) we have

(1) ®(af+Pg)=o0d(f)+pP(g);

2) ©(fg) = D(f)®(g) and O(f) = D(f)";
G) ([P = 71 := sup f(r);

tec(A)
4) O(fo) =1, and O(f1) =A, where fo(r) =1 and fi(r) =¢,forz € c(A).
With this notations, we define
f(A):=®(f) forall fe€(c(A))

and we call it the continuous functional calculus for a self-adjoint operator A.

If A € B(57) is a self-adjoint operator and f is a real valued continuous function
on o(A), then f(r) >0 forany r € 6(A) implies that f(A) > 0,i.e. f(A) is a positive
operator on . Moreover, if both f and g are real valued functions on o(A), then
the following important property holds: f(¢) > g(¢) for any 7 € o(A) implies that
f(A) > g(A) in the partial order of B(J¢).
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A real valued continuous function f on an interval / is said to be operator convex
if
f((1—a)A+aB) < (1—a)f(A)+of(B)

in the partial order, for all o € [0,1] and all self-adjoint operators A, B € B(.##") whose
spectra are contained in /. For some fundamental results on operator convex function,
see [12] and the references therein.

Now we introduce the operator (p,/)-convex function which generalizes the op-
erator convex function. Assume that p is a positive constant, J is an interval in R*
such that [0,1] C J. Let K be a subset of R", we say that K is a p-convex, if

(AxP +(1 —k)yp)l/p €K forall x,y € K and A € [0,1].

DEFINITION 2.1. [6] Let h:J — R be a non-negative function, & # 0 and K be
a p-convex subset of R™. A non-negative continuous function f : K — R is said to be
operator (p,h)-convex if

£([aa? + (1= )] 17 < h(0) £(4) +h(1 - o) £(B) @)
forall A,B € B(2)" whose spectra are in K, and o € (0,1).

REMARK 2.2. Note that the notation of operator (p,h)-convex function unifies
and generalizes the known classes of operator 4 -convex function, operator convex func-
tion, operator s-convex function, operator P-function and operator Q-class function.
To be precise,

(1)if p =1, one gets the definition of operator i-convex function on B(#)";

(2)if p=1 and h(r) =1t, one gets the definition of operator convex function on
B(#)";

(3)if p=1 and h(r) =1¢*, one gets the definition of operator s-convex function
on B(#)",

(4)if p=1 and h(r) = 1, one gets the definition of operator P-function on
B(#)";

(5)if p=1 and h(r) = 1/t, one gets the definition of operator Q-class function
on B(s#)*.

The following result shows the connection between operator (p,h)-convex func-
tion and %Z-convex function, which will be useful in the sequel. We refer to [28] for the
definition of h-convex function.

LEMMA 2.3. Let h:J — R be a non-negative function, h 20 and f : K — R be
an operator (p,h)-convex function, then @y p:[0,1] — R is a h-convex function for
all A,B € B(A)" whose spectra are in K and any x € A with ||x|| = 1, where

peanl@) = (£([ea” +(1-a)B"]/")x,x), Ve 0,1].
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Proof. Let f be an operator (p,h)-convex function, then for u,v € [0,1] we have
Peas(ou+(1—a)v)
<f< [(om + (1= a))AP + (1 — o+ (1 — a)v})B”] 1/p>x,x>
£ ([ (ua? + (1 = 0)87) + (1 — @) (uA? + (1 - B l/p>x,x>
(

F( [l + (1= 0)B7) 717 4 (1= @) [(va7 + (1= v)B7) /77 Y ”)x,x>

<f([uAp+ (1—u)B? 1/17))c,x> +h(1— Oz)<f([vAp+ (1—v)B?] l/p)x,x>
Pran(u) +h(1=)@eap(v).

This implies that @, 4 p is a h-convex function on [0,1]. O

3. Main results

In this section, we firstly establish the Hermite-Hadamard inequality for the class
of operator (p, h)-convex functions. More importantly, we study refinements of Hermite-
Hadamard inequality for operator (p,h)-convex functions. Finally, applications for
particular cases of these inequalities are also provided. To simplify the writing, we
always assume that [0,1] C J is an interval in R* and K is a p-convex.

THEOREM 3.1. (Hermite-Hadamard inequality for operator (p,h)-convex func-
tion) Let h:J — R be a non-negative function, h(1/2) #0 and f: K — R be an
operator (p,h)-convex function, then for every A,B € B()" with 6(A),0(B) € K
we have

Zhe)f((Ap;Bp)l/p) < /Olf([zAP+(1—t)BP]1/”)dz< (F(A)+£(B)) /Olh(a)da,

For the proof of Theorem 3.1, we need the following Lemma, proved in [28].

LEMMA 3.2. Let h:J — R be a non-negative function with h(1/2) #0. If g :
[0,1] — R is a h-convex function, then for a,b € [0, 1] with a < b, we have

1 at+b 1 b 1
i (57) < g [0 < [st@ )] [ neyder

Let us proceed now to prove Theorem 3.1.

Proof. Let f be an operator (p,h)-convex function. For every x € 2 with ||x|| =
1 and o € [0, 1], we suppose that

pern(e) = (f([@a?+ (1 a)B’]")xx).
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It follows from Lemma 2.3 that @, 4 5(-) is a h-convex function on [0,1]. According
to Lemma 3.2, we have

1 O+1 1
X, X dt < @y aB(0)+ @ (1 /had(x
2h(%)‘P'A7B( 1—0/ Prap(0)dt < [@ea5(0) + @rap()] | h(e)

which implies that

th%)<f({AP;BP}1/p>x,x> < /01 <f([tAp+(1_t)Bp:Il/p)x,x>dt

Now, the desired result follows by taking into account that
1 1
AP+ (1= 08" PV x x )t = / AP+ (1=0)B") Ve \xx). O
/O<f([t +(1—1)B”] )xx>t <{ Of([t +(1—1)B”] )t}xx>

Now we establish the refinement of the Hermite-Hadamard inequality for operator
(p,h)-convex functions by Theorem 3.1.

THEOREM 3.3. Let h:J — R be a non-negative function, h(1/2) # 0 and f :
K — R be an operator (p,h)-convex function. For every A,B € B(J¢)" with 6(A),
0(B) € K, then the following inequalities hold:

(1) If n is a positive even, we have

w557

| f(<(2n 2m—1)f2\Z+(2m+l)Bp>1/17>

[y )

1

(ii) If n is a positive odd, we have

n+2hr(l%)—l 1 f((Ap—l—BP)l/P)

4h(3)? 2
- (2n—2m—1)AP+ (2m+1)BP\1/p
< g 2 i )
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g/olf([tAp+(1—t)Bp]l/p>dt
S (N PRES U v

n
Proof. According to the definition of operator (p,h)-convex function, it holds for
every 0< A <1and me {0,1,...,n—1} that

m=1

f(<(2n—2m— AP+ (2m+ l)BP>1/p>

f( (CiA,B +D§L,A7B> 1/P>
2n

2
< h(%) {f(C)L,AJs) +f(D)L,A7B)}a

where

(n—m)A”+me+(1_A)(n—m—l)AP—i-(m—Fl)Bp]l/P

CA’A’B - PL n n

and

(n —m)A? +mBP +/l(n—m— l)Ap+(m+1)BP}1/p

Dian=|(1-1)
n n

Because of the monotonicity and linearity of the integral operator, we have

(2n—2m— D)AP+ (2m + 1)BP\ 1/p
7(( % )" G
1 1 1
< h(z){/o f(CA,A,B)d/l‘f'/O f(DA,A,B)‘M}-
Lett=1—A, we have
1 1
/ F(Cya8)dA =/ f(Dj ap)dA. 4
0 0

Let r = "% for A € [0, 1], we have

(-2 o
m+1

n/m ([ =nar+87)"")ar.

n

1
| r@ing)ar

Applying Theorem 3.1, one can get

/01 F(Crap)dh = /01 f( [/x ([M} ””) ' ©)

+(1 _M<[(n—m— I)AP+(m+l)BP]1/p>p] ””)M

n
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{f<[(n—m)A1’+mBl’} 1/p>
n

+f<[(n—m— 1)AP + (m+ l)Bl’} 1/1?)} /Olh(a)doc.

n

<

Hence, it follows from formulas (3), (4), (5) and (6) that

AP+ (2m+ l)Bl’) 1/p>

2n
m+1

<2nh(%>/m £ ([ =0ar 1877 ar

(=)

f<<(2n—2m—1)

n

+f([(n—m— 1)AP 4+ (m+ l)BP] 1/p>} /Olh(a)da.

n

Sum these inequalities above over m, we get

2]’(( (2n—2m— 1)1;\2+(2m+1)B1’>1/17> o
< 2nh<§> /Olf<[(1 —0A? 18] 1" )i
(n—m)AP+m>B”>1/P)] / 'n(o)da
0

w(p[ e (e

Now we prove the inequality (i). If n = 2k is even, we get

f

2

( (2n—2m— 1A1’+ 2m—|—1)Bl’>1/p>

(
(( (4k —2m — IAP+ 2m+1)B1’>1/17>
l (( (4k —2m — IAP+(2m+l)BP>1/p>

+f(((2m—|— l)Ap+‘(:]1€k—2m— l)Bl’)l/P)] .
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By the definition of operator (p,h)-convex function, it follows

AP 4 BP\ (4k— 2m71)12’;+(2m+1)3” n (2m+1)A”+z(:]lck72m71)B” 1p
A(E52)") = o((- 5 )7)
1

h<2> [f(<(4k—2m— 1)iz+ (2m+ 1)BP>1/p)

+f<<(2m+ l)AP+ijl(k—2m— l)BP>1/p>1 .

This implies that

() - S

=0
(%) i (( (4k — 2m—1)2Z+(2m+1)Bp>1/P>
+f(<(2m+1)A1’+‘(:]1€k—2m— 1)317)1/17)]

_ h(%) "Zlf((@n—zm— l)fzx:+ 2m+ 1)31’)1/;7).

Combining (7) with the above inequality, (i) holds. Finally, we prove the inequality (ii).
If n=2k+1 is odd, we have

(2n—2m— 1)A17+(2m+1)BI’)1/p)

(S 7

_ zf<( (4k — 2m+2)£j—;(2m+l)3p>l/p>

_ ”;2; lf(<(4k—2m+ 1‘3/;4-1;-—; (2m + 1)BP>1/p>

+f(<(2m+ 1)AP Zk(ikz_ 2m— l)BP>1/p> +f((AP—;BP>1/p>]

which implies that

()] (=5)")
= 3G () )
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) B (B ey

_|_f<<(2m—|— l)Ap:k(ikz— 2m — I)BP> 1/1’)] +h<%>f<<A1’—12—Bl’>1/17>

< )Zf(( (2n— 2m—1)Ap+(2m+l)Bp>l/p>.

2n

Thus it follows that

n (-1
—|—2hn2 4h(1%)2f<<AP;_BP>1/P>

Zf(< 2n—2m—l)AP+(2m+l)BP>1/17>.

2nh 2n

Combining (7) with the above inequality, we obtain the result. [

If we put n =1 in Theorem 3.3 (ii), then we can obtain Theorem 3.1. As an

application of Theorem 3.3, we state the following result, which is a refinement of
Theorem 3.1.

COROLLARY 3.4. Let h:J — R be a non-negative function, h(1/2) # 0 and
f K — R be an operator (p,h)-convex function. For every A,B € B(¢)" with
0(A),0(B) € K, then the following inequality holds:

i (50 ) < (7))o ((58) )
< [+ a-0m]
{ (<AP+BP>1/p> (A)42— f(B)] /Olh(t)dt
< (a ) +sm) [ nwa
om0 (1) 0]

Proof. Setting n =2 in Theorem 3.3, we have

e (52 < () ) () )
/f([zAP+(1—z)BP] Y ar

[ ((AP+BP>1/P> +f(A);f(B)] /Olh(t)dt

where
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Since f is an operator (p,h)-convex function, it follows from Theorem 3.1 that

((2EY™) <on(3) lrar +18) [ wioya

According to the definition of operator (p,h)-convex function, we have

(A2 <n(3) L) + 7).

which implies that

[f<<Ap;BP>l/p>+M}gmm /h dt A)+ f(B)].

Hence the result is proved. [

Let p =1 in Corollary 3.4, then we immediately get the following result:

COROLLARY 3.5. Let h:J — R be a non-negative function, h(1/2) #0 and f :
K — R be an operator h-convex function. For every A,B € B(#)" with 6(A),c(B) €
K, then the following inequality holds:

s () < G ) (2]

. [f<A42—8>+f(A)42'f(B)] Olh(t)d,
< (Gt ) +s8) [ noyar,

where
Cj, = mi h(l) 2h(1>/1h(t)dt
= min = = .
" 2)7\2) Jo
Now we give the generalization of Corollary 3.4 and Corollary 3.5 as follows.

THEOREM 3.6. Let h:J — R be a non-negative function, h(1/2) # 0 and f :
K — R be an operator (p,h)-convex function. For every A,B € B(J#)" with 6(A),
0 (B) € K and for each A € [0,1], then the following inequality holds:

1 ) [(l_x)f<<(l—7L)AP+(1+7L)BP>1/p> Htf((wy/p)}

2 2

Sh(D)
2
1
/ tAP +(1—1)B”] W)dr
0
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< [(1_A)f(B)Hf(A)Jrf(((l—A)APMB!’ 1/” /lh(t)dt
g[(h(l—)tﬂ—?t)f(A) (h(A)+1—2 /h

Moreover; if h(t) < kt fort € (0,1) and K is a positive constant, then we have

ZK}:(% f( (AP 42_31?> 1/p>

)
< 1 [(1 —)L)f(((l —?L)AP—Zf- (1 +?L)Bp>1/p> Htf((w)l/pﬂ

f
(

B —

NIK\ N

)
( [tAP + (1 —1)B] U”) dt
(1-

A)+A)F(A) + (h(A) + 1 _x)f(B)]

[

Proof. Let C = ( A)AP + 7LBP> v . It follows from Theorem 3.1 that
BP +CP\1/ 1
f(( ) p) /0 f([zBP+(1—z)CP]‘/”)dz ®)

B)+ f(C)] /0 1 h(t)dt

LA < [ (e o o

)+ f(A)] /01 h(r)dr

We use the change of variables x = A +7—A, x =tA for (8) and (9) with A # 1
and A # 0, respectively, we have

(i a-nen = o [ ([0 0ar s

(%)

and

and

/olf([’cp+ (1=0a?] " )dt = %/;f([(l —n)ar+187) ),

which implies that
/Olf<[tA1’+(1 —t)Bp]l/p>dt :/Olf<[(1 —t)Ap+th]l/p)dt
= (1—?L)/Olf([th—I—(l—t)Cp]l/p>dt+?L/Olf<[th+(1—t)Ap]l/p>dt
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< [ASA)+ (1= A)f(B) + £(C)] / o)
< [AFA) +(1—A)f(B)+h(1—A)f /h
= [(h(1 = A)+ M) F(A) + (h(A) + 1~ A)f /h
That is
1;){(1 )L)f<<(1—JL)AP—;(1+7L)BP>1/17>+Af<<(2—7t)f;1’+7LBl’>l/p>}
50/ (5 ) i (5))

1 y
\/Of<[tA1’+(1 1)BY] p)dt
< [(h(1=2) + A F(A) + (h(A) +1—A)f /h

Hence we obtain the first result. Now we turn to last part of the proof. Let f be
an operator (p,h)-convex function, we have

((52)")
<<(1 A)l A)AP + (14 A4)BP +)L(2—7L)AP+7LBP>1/17>
<<(1 A)[( (1- JLAZP—i- 1+7L)BP>1/17} +)2L{((2—&)@1’4—131’)1/17}17)1/17)

f(( (I—=2)AP +( l—l-l)BP)l/P)+h(l)f(<(2—l)f;p+7LBp>l/p>

BV A v

Since h(t) < kt for t € (0,1), we can obtain that

H((557)") < ela-mr((555) ") 2 ((55%))]

This means that

e (5

f
)

< 1 [(1_ )f(((l—/l)Al’+(l+/l)Bl’>l/p>+/lf(<(2—/l)A1’+7LBp>l/p>}
[tA?+(1—1)

n(D) 2 2
lf(
[(h(1 —A)+ A)VF(A) + (h(A) + 1 _x)f(B)] 0

P (=077 ) dr

VA

<
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If the non-negative function % satisfies with h(r) +h(1 —r) < k (K is a positive
constant) for each 7 € (0,1), in Theorem 3.3, we have the following new result for
operator (p,h)-convex functions.

THEOREM 3.7. Let h:J — R be a non-negative function, h(1/2) # 0 with h(t) +
h(l —1) < K (K is a positive constant) for each t € (0,1), and f: K — R be an
operator (p,h)-convex function. For every A,B € B()" with 6(A),0(B) € K, then
the following inequality holds:

—_
=

f<<(2n 2m — l)z;:-i- (2m+ I)BP>1/P>

1
2
< /Olf<[tA”+(l—t)Bl’]l/”>dt

< g["ijf(((n—m)AZ—l-(m)Bl’)l/P) +f(A)—;—f(B)]

n— 12
< PR ) 4 p)

Proof. Since h:(0,1) — R is a non-negative function and A(¢) + (1 —r) < k for
any t € (0,1), we have

/h

( h(t)dt+/01h(l —t)dt) = %/01 (h(t)+h(1—1))dt  (10)

1 1 K
<= dt = —.
2/0 =3

From Theorem 3.3 and the inequality (10), we have

l\)l'—‘

2n;(%> :gof(<(2n 2m— l)le:+ (2m+ l)Bp>1/17>

< f([tAp-l—(l—t)Bp]l/p)dt

f(<(n—m)fr\l1’+mBP>1/17> N f(A) —;f(B)} /Olh(t)dt

e

According to the definition of operator (p,/)-convex function and (7)) +h(1 —1) < k
for ¢ € (0,1), we have

SIS () LA

- (e )y )

(11)
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[h(”"”)f(AHh(%)f(B)+h(@)f<A>+h(”"")f<B>]

n n

N

This completes the proof. [l

Note that the condition A(¢) +h(1 —1) < k is weaker than h(7) < k¢ (in Theorem
3.6) for r € (0,1). Indeed, if h(r) < Kkt holds for # € (0,1), then, forany ¢ € (0,1) we
have h(t) +h(1 —1) < Kkt + k(1 —¢) = k. But the inverse is not true. As applications,
we give the following two corollaries.

COROLLARY 3.8. Suppose that s € (0,1]. Let f:K — R be an operator s-
convex function. For every A,B € B(¢)" with 6(A),0(B) € K, then the following
inequality holds:

4s—1f<‘#> 25 HIZ,f( 2n—2m—1;12—|—(2m—|—1) )
1
</O f(tA+(1—t)B)dt

{Zf( n— m:+mB>+f(A)—2kf(B)]

1 m=1
2 —L17a) +£(B)].

Son(s+1)

Proof. Let h(t) =1 for 0 <t < 1, itis easy to calculate that

n42h(1/2) —1=n+2""—1>n, 4h(1/2)> =47
which means
+2h(3) —1 1 1 |
n (2) 217 - :4S—l, / h(l)dt:
n 4h(3)? 0 14

and, h(t)+h(l —1) =1+ (1 —1)* < 2 foreach 7 € [0, 1]. Combining Theorem 3.3 and
the inequality (11), we can obtain the result. []

From results above, one can easily get the refinement of the Hermite-Hadamard
inequality for operator convex function.
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COROLLARY 3.9. Let f: K — R be an operator convex function. For every
€ B(7)" with 6(A),0(B) € K, the following inequality holds

f<A+B> §f< 2n—2m—1;2—|—(2m—|—1)3> 12)

< /Olf(tA—i— (1—1)B)dt

[Zf< n— mnA+mB>+f(A)—£—f(B)}

W+ 1(B)
2

Proof. Applying Theorem 3.7 and Corollary 3.8 by setting h(r) = ¢, we can get

inequality (12). O
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