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Abstract. In this paper we establish several analytic inequalities and convexity properties for the
Weighted Exponential-Beta function

F (α ,β ;γ) :=
∫ 1

0
exp
[
γxα (1− x)β

]
dx,

where α , β and γ are positive numbers.

1. Introduction

Construction industry is notoriously recognized for high level of liquidation. To
this end, timely availability of the necessary capital is critical for the success of the
project and possibly the organization, as cash-flow mishaps account for much of the
failures of contractors. The graphical representation of the incurred cumulative expen-
diture of construction projects typically assumes the familiar S-curve, which inherits
the characteristics of an exponential behavior. The history of systematic and scientific
approach to construction cash-flow forecasting dates back to 1970s. The subsequent
generations of models can be categorized into nomothetic vs idiographic (see [7]),
stochastic vs deterministic, elemental vs mathematical and parametric. The elemen-
tal approach places the emphasis on the exact details of quantity, rates and timing of
expenditure of all construction elements and activities. The time and cost overhead of
this approach, in conjunction with lack of evidence on the accuracy led to a surge of
alternative approaches in the 1980s. In particular, easy, fast, cheap and pragmatic solu-
tions gained popularity. This trend paved the way for the development of mathematical
models.

Extensive analysis of project expenditure patterns has revealed that the main fea-
tures of the shape YC of the project periodic expenditure pattern are defined in terms
of a number of variables, which can be simulated using the following expression (see,
[8]):

YC := exp
[
bxa(1− x)d

]
−1.
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Here
xp := R =

a
a+d

and yp := Q = exp
[
bRa(1−R)d

]
−1,

Q, R , represent the positions of the project expenditure peak on both the cost and time
access, a and b are parameterized in terms of xp and yp as follows

a =
xpd

1− xp
, b =

ln(1+ yp)

xa
p (1− xp)

d

and the parameter d is calculated through numerical method that is derived to rapidly
converge towards a solution within desired error tolerance.

A relationship is established between the properties of the project and the physical
shape of the project expenditure pattern. These are then related and reflected on the
mathematical expression through its parameters.

Motivated by the above considerations, in this paper we consider the three-parameter
family of functions introduced in [6]

fα ,β ,γ (x) := exp
[
γxα (1− x)β

]
, x ∈ [0,1] , α ,β , γ � 0

and the ”Weighted Exponential-Beta” (WEB) function defined by the integral

F (α,β ;γ) :=
∫ 1

0
fα ,β ,γ (x)dx =

∫ 1

0
exp
[
γxα (1− x)β

]
dx, α, β , γ � 0.

In the same paper [6] we obtained the following representation for the generating
function fα ,β ,γ :

THEOREM 1. Let α, β , γ > 0, then we have function series expansion

fα ,β ,γ (x) = 1+
∞

∑
k=1

1
k!

γkxαk (1− x)β k (1.1)

uniformly on the interval [0,1] .

As an important consequence, we also have the following series expansion for the
WEB-function:

COROLLARY 1. We have the Beta-Taylor series expansion

F (α,β ;γ) = 1+
∞

∑
k=1

1
k!

γkB(αk+1,βk+1) (1.2)

for all α, β , γ > 0.

We recall that the Beta function, also called the Euler integral of the first kind, is a
special function defined by

B(α,β ) :=
∫ 1

0
tα−1 (1− t)β−1 dt, α > 0, β > 0. (1.3)
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For some various inequalities for the Beta function see the survey paper [4].
In this paper we establish several analytic inequalities and convexity properties for

the generating function fα ,β ,γ and the Weighted Exponential-Beta function F (α,β ;γ)
where α, β and γ are positive numbers.

2. Some analytic inequalities for fα ,β ,γ

We start with the following fact:

THEOREM 2. Let α, β , γ > 0. For any p, q > 1 with 1
p + 1

q = 1, we have

0 � fα ,β ,γ (x)−1 � [exp(γxα p)−1]1/p
[
exp
(

γ (1− x)qβ
)
−1
]1/q

(2.1)

for all x ∈ [0,1] .
In particular, we have

[
fα ,β ,γ (x)−1

]2 �
[
exp
(
γx2α)−1

][
exp
(

γ (1− x)2β
)
−1
]

(2.2)

for all x ∈ [0,1] .

Proof. If we make use of Hölder’s discrete weighted inequality

0 �
n

∑
k=1

mkakbk �
(

n

∑
k=1

mka
p
k

)1/p( n

∑
k=1

mkb
q
k

)1/q

,

where mk, ak, bk � 0, k ∈ {1, . . . ,n} and p, q > 1 with 1
p + 1

q = 1, then we can write

for mk = 1
k! γk, ak = xαk and bk = (1− x)β k the following inequality

0 �
n

∑
k=1

1
k!

γkxαk (1− x)β k �
(

n

∑
k=1

1
k!

γkxα pk

)1/p( n

∑
k=1

1
k!

γk (1− x)qβ k

)1/q

(2.3)

=

(
n

∑
k=1

1
k!

γk (xα p)k

)1/p( n

∑
k=1

1
k!

γk
[
(1− x)qβ

]k)1/q

for all n > 1 and x ∈ [0,1] .
Since the series

∞

∑
k=1

1
k!

γkxαk (1− x)β k ,
∞

∑
k=1

1
k!

γk (xα p)k

and
∞

∑
k=1

1
k!

γk
[
(1− x)qβ

]k
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are convergent and

∞

∑
k=1

1
k!

γkxαk (1− x)β k = exp
[
γxα (1− x)β

]
−1 = fα ,β ,γ (x)−1,

∞

∑
k=1

1
k!

γk (xα p)k = exp(γxα p)−1

and
∞

∑
k=1

1
k!

γk
[
(1− x)qβ

]k
= exp

[
γ (1− x)qβ

]
−1,

then by taking the limit over n → ∞ in (2.3) and utilising the representation (1.1) we
get the desired result (2.1) �

The following result also provides some lower bounds for fα ,β ,γ (x) .

THEOREM 3. Let α, β , γ > 0. Then for all x ∈ [0,1] we have

1
eγ −1

[exp(γxα)−1]
[
exp
(

γ (1− x)β
)
−1
]

(2.4)

� fα ,β ,γ (x)−1

� 1
eγ −1

[exp(γxα)−1]
[
exp
(

γ (1− x)β
)
−1
]
+

1
4

(eγ −1)xα (1− x)β .

Proof. We use the weighted Chebyshev’s inequality for sequences ak, bk, k ∈
{1, . . . ,n} that have the same monotonicity

n

∑
k=1

mkak

n

∑
k=1

mkbk �
n

∑
k=1

mk

n

∑
k=1

mkakbk, (2.5)

where mk � 0, k ∈ {1, . . . ,n} .

Consider the sequences ak := xαk, bk := (1− x)β k , k ∈ {1, . . . ,n} , for x ∈ [0,1] .
We observe that both sequences are monotonic nonincreasing and by applying Cheby-
shev’s inequality for the positive weights mk := 1

k! γk we get

n

∑
k=1

1
k!

γkxαk
n

∑
k=1

1
k!

γk (1− x)β k �
n

∑
k=1

1
k!

γk
n

∑
k=1

1
k!

γkxαk (1− x)β k , (2.6)

for all x ∈ [0,1] and n � 1.

Since the series ∑∞
k=1

1
k! γkxαk, ∑∞

k=1
1
k! γk (1− x)β k and ∑∞

k=1
1
k! γk are convergent

and
∞

∑
k=1

1
k!

γkxαk =
∞

∑
k=1

1
k!

γk (xα)k = exp(γxα)−1,

∞

∑
k=1

1
k!

γk (1− x)β k =
∞

∑
k=1

1
k!

γk
(
(1− x)β

)k
= exp

(
γ (1− x)β

)
−1
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and ∑∞
k=1

1
k! γk = eγ − 1, then by taking the limit over n → ∞ in (2.6), we get the first

inequality in (2.4).
Further, we use the weighted Grüss inequality for the bounded sequences a � ak �

A,b � bk � B, k ∈ {1, . . . ,n} and nonnegative weights mk � 0, k ∈ {1, . . . ,n} , see for
instance [2], ∣∣∣∣∣

n

∑
k=1

mk

n

∑
k=1

mkakbk −
n

∑
k=1

mkak

n

∑
k=1

mkbk

∣∣∣∣∣ (2.7)

� 1
4

(
n

∑
k=1

mk

)2

(A−a)(B−b) .

Now, if we consider the sequences ak := xαk, bk := (1− x)β k k ∈ {1, . . . ,n} , for x ∈
[0,1] , then we observe that 0 � ak � xα and 0 � bk � (1− x)β for all positive integer k.
So, by utilising the inequality (2.7) for a = b = 0, A = xα , B = (1− x)β and mk := 1

k! γk

we get ∣∣∣∣∣
n

∑
k=1

1
k!

γk
n

∑
k=1

1
k!

γkxαk (1− x)β k −
n

∑
k=1

1
k!

γkxαk
n

∑
k=1

1
k!

γk (1− x)β k

∣∣∣∣∣ (2.8)

� 1
4

(
n

∑
k=1

1
k!

γk

)2

xα (1− x)β ,

that holds for all x ∈ [0,1] and n � 1.
Since all the series involved in (2.8) are convergent, then by taking the limit over

n → ∞ in this inequality, we get the second part of (2.4). �

THEOREM 4. Let α, β > 0. Then for all x ∈ (0,1) we have

(eγ −1)
[
xα (1− x)β

] γeγ
eγ−1

� fα ,β ,γ (x)−1 (2.9)

and

0 � ln

(
fα ,β ,γ (x)−1

eγ −1

)
− ln

{[
xα (1− x)β

] γeγ
eγ−1

}
(2.10)

� 1

(eγ −1)2
{

exp
[
γx−α (1− x)−β

]
−1
}{

exp
[
γxα (1− x)β

]
−1
}
−1.

Proof. Since ln is a concave function, then by Jensen’s discrete inequality for
concave functions g , namely

g

(
∑n

k=1 pkxk

∑n
k=1 pk

)
� ∑n

k=1 pkg(xk)
∑n

k=1 pk
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where pk > 0, k ∈ {1, . . . ,n} , we have for xk = xαk (1− x)β k and pk = 1
k! γk, k ∈

{1, . . . ,n} that

ln

(
∑n

k=1
1
k! γkxαk (1− x)β k

∑n
k=1 γk 1

k!

)
�

∑n
k=1

1
k!γ

k ln
[
xαk (1− x)β k

]
∑n

k=1
1
k! γk

(2.11)

=
∑n

k=1
k
k! γk ln

[
xα (1− x)β

]
∑n

k=1
1
k! γk

= ln
[
xα (1− x)β

] ∑n
k=1

k
k! γk

∑n
k=1

1
k! γk

= ln
[
xα (1− x)β

] ∑n
k=1

1
(k−1)!γ

k

∑n
k=1

1
k! γk

,

for all x ∈ (0,1) and n � 1.

Since the series ∑∞
k=1

1
(k−1)! γk = γ ∑∞

k=1
1

(k−1)!γ
k−1 = γeγ and ∑∞

k=1
1
k! γk = eγ −1,

then by taking the limit over n → ∞ in (2.11) and using representation (1.1) we get

ln

(
fα ,β ,γ (x)−1

eγ −1

)
� γeγ

eγ −1
ln
[
xα (1− x)β

]

= ln

{[
xα (1− x)β

] γeγ
eγ−1

}

that is equivalent to the first inequality in (2.9).
Further, we use Dragomir-Ionescu’s reverse of Jensen’s inequality [5] for concave

functions

0 � g

(
∑n

k=1 pkxk

∑n
k=1 pk

)
− ∑n

k=1 pkg(xk)
∑n

k=1 pk
(2.12)

� 1

∑n
k=1 pk

n

∑
k=1

pkg
′ (xk)

1

∑n
k=1 pk

n

∑
k=1

pkxk − 1

∑n
k=1 pk

n

∑
k=1

pkxkg
′ (xk) ,

which gives for g(x) = lnx, xk = xαk (1− x)β k and pk = 1
k! γk, k ∈ {1, . . . ,n} that

0 � ln

(
∑n

k=1
1
k! γkxαk (1− x)β k

∑n
k=1

1
k!γk

)
−

∑n
k=1

1
k! γk ln

[
xαk (1− x)β k

]
∑n

k=1
1
k! γk

(2.13)

� 1

∑n
k=1

1
k!γk

n

∑
k=1

1
k!

γkx−αk (1− x)−β k 1

∑n
k=1

1
k! γk

n

∑
k=1

1
k!

γkxαk (1− x)β k −1

for x ∈ (0,1) and n � 1.
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Since the series ∑∞
k=1

1
k!γ

kx−αk (1− x)−β k is convergent and

∞

∑
k=1

1
k!

γkx−αk (1− x)−β k =
∞

∑
k=1

1
k!

γk
[
x−α (1− x)−β

]k
= exp

[
γx−α (1− x)−β

]
−1

then by letting n → ∞ in (2.13) and using representation (1.1), we get

0 � ln

(
fα ,β ,γ (x)−1

eγ −1

)
− ln

{[
xα (1− x)β

] γeγ
eγ−1

}

� 1

(eγ −1)2
{

exp
[
γx−α (1− x)−β

]
−1
}{

exp
[
γxα (1− x)β

]
−1
}
−1,

which is equivalent to (2.10). �

REMARK 1. As a simple consequence of the inequality (2.10) we note that

(eγ −1)2 �
[
f−α ,−β ,γ (x)−1

][
fα ,β ,γ (x)−1

]
(2.14)

for all positive α, β , γ > 0 and x ∈ (0,1) .

In 1984, S. S. Dragomir obtained in [1] the following Cauchy-Bunyakovsky-Schwarz
related weighted inequality, see also [3, Theorem 2.20]

n

∑
k=1

mka
2
k

n

∑
k=1

mkb
2
k � ∑n

k=1 mkak ∑n
k=1 mkbk ∑n

k=1 mkakbk

∑n
k=1 mk

(2.15)

where ak, bk are real numbers and mk � 0 for k ∈ {1, . . . ,n} and ∑n
k=1 mk > 0.

THEOREM 5. Let α, β , γ > 0. Then for all x ∈ (0,1) we have

0 � fα ,β ,γ (x)−1 � (eγ −1)

[
exp
(
γx2α)−1

][
exp
(

γ (1− x)2β
)
−1
]

[exp(γxα)−1]
[
exp
(

γ (1− x)β
)
−1
] . (2.16)

Proof. By taking ak := xαk, bk := (1− x)β k and mk := 1
k! γk in (2.15) we get

n

∑
k=1

1
k!

γkx2αk
n

∑
k=1

1
k!

γk (1− x)2β k (2.17)

� ∑n
k=1

1
k! γkxαk ∑n

k=1
1
k! γk (1− x)β k ∑n

k=1
1
k! γkxαk (1− x)β k

∑n
k=1

1
k!γk

.

Since all the series involved in (2.17) are convergent, then by taking the limit over n →
∞ in this inequality and using representation (1.1), we get the desired result (2.16). �
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3. Convexity of fα ,β ,γ

Now, recall the well known inequality between the weighted arithmetic mean and
weighted geometric mean

a1−tbt � (1− t)a+ tb (3.1)

that holds for all a, b > 0 and t ∈ [0,1] . This inequality is also known in the literature
as Young’s inequality.

We have the following global convexity result for the function fα ,β ,γ (x) as a map-
ping of the positive parameters (α,β ,γ) . More precisely, we have

THEOREM 6. For any (α1,β1,γ1) , (α2,β2,γ2) ∈ (0,∞)× (0,∞)× (0,∞) and t ∈
[0,1] we have

f(1−t)α1+tα2,(1−t)β1+tβ2,(1−t)γ1+tγ2
(x) (3.2)

� (1− t)2 fα1,β1,γ1
(x)+ (1− t)t fα2,β2,γ1

(x)

+ t (1− t) fα1,β1,γ2
(x)+ t2 fα2,β2,γ2

(x)

for all x ∈ (0,1) .

Proof. Fix x ∈ (0,1) . Let (α1,β1,γ1) , (α2,β2,γ2) ∈ (0,∞)× (0,∞)× (0,∞) and
t ∈ [0,1] . Then

(1− t)(α1,β1,γ1)+ t (α2,β2,γ2)
= ((1− t)α1 + tα2,(1− t)β1 + tβ2,(1− t)γ1 + tγ2) ∈ (0,∞)× (0,∞)× (0,∞)

and

f(1−t)α1+tα2,(1−t)β1+tβ2,(1−t)γ1+tγ2
(x)−1

=
∞

∑
k=1

1
k!

((1− t)γ1 + tγ2)
k x[(1−t)α1+tα2]k (1− x)[(1−t)β1+tβ2]k

=
∞

∑
k=1

1
k!

((1− t)γ1 + tγ2)
k x(1−t)α1k+tα2k (1− x)k(1−t)β1+tβ2k

=
∞

∑
k=1

1
k!

((1− t)γ1 + tγ2)
k x(1−t)α1kxtα2k (1− x)k(1−t)β1 (1− x)tβ2k

=
∞

∑
k=1

1
k!

((1− t)γ1 + tγ2)
k x(1−t)α1k (1− x)k(1−t)β1 xtα2k (1− x)tβ2k

=
∞

∑
k=1

1
k!

((1− t)γ1 + tγ2)
k
[
xα1k (1− x)kβ1

](1−t) [
xα2k (1− x)β2k

]t
=: A.

By the convexity of the power function, we have

((1− t)γ1 + tγ2)
k � (1− t)γk

1 + tγk
2
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for all k � 1 and t ∈ [0,1] .
Therefore

A �
∞

∑
k=1

1
k!

[
(1− t)γk

1 + tγk
2

][
xα1k (1− x)kβ1

](1−t) [
xα2k (1− x)β2k

]t

= (1− t)
∞

∑
k=1

1
k!

γk
1

[
xα1k (1− x)kβ1

](1−t) [
xα2k (1− x)β2k

]t

+ t
∞

∑
k=1

1
k!

γk
2

[
xα1k (1− x)kβ1

](1−t) [
xα2k (1− x)β2k

]t
.

By Young’s inequality (3.1) we have[
xα1k (1− x)kβ1

](1−t) [
xα2k (1− x)β2k

]t
� (1− t)xα1k (1− x)kβ1 + txα2k (1− x)β2k

= (1− t)
[
xα1 (1− x)β1

]k
+ t
[
xα2 (1− x)β2

]k
for all k � 1, and by taking the sum in this inequality we get

A � (1− t)
∞

∑
k=1

1
k!

γk
1

{
(1− t)

[
xα1 (1− x)β1

]k
+ t
[
xα2 (1− x)β2

]k}

+ t
∞

∑
k=1

1
k!

γk
2

{
(1− t)

[
xα1 (1− x)β1

]k
+ t
[
xα2 (1− x)β2

]k}

= (1− t)2
∞

∑
k=1

1
k!

γk
1

[
xα1 (1− x)β1

]k
+(1− t)t

∞

∑
k=1

1
k!

γk
1

[
xα2 (1− x)β2

]k

+ t (1− t)
∞

∑
k=1

1
k!

γk
2

[
xα1 (1− x)β1

]k
+ t2

∞

∑
k=1

1
k!

γk
2

[
xα2 (1− x)β2

]k
= (1− t)2

[
fα1,β1,γ1

(x)−1
]
+(1− t)t

[
fα2,β2,γ1

(x)−1
]

+ t (1− t)
[
fα1,β1,γ2

(x)−1
]
+ t2

[
fα2,β2,γ2

(x)−1
]
,

which implies that

f(1−t)α1+tα2,(1−t)β1+tβ2,(1−t)γ1+tγ2
(x)−1

� (1− t)2
[
fα1,β1,γ1

(x)−1
]
+(1− t)t

[
fα2,β2,γ1

(x)−1
]

+ t (1− t)
[
fα1,β1,γ2

(x)−1
]
+ t2

[
fα2,β2,γ2

(x)−1
]

= (1− t)2 fα1,β1,γ1
(x)+ (1− t)t fα2,β2,γ1

(x)

+ t (1− t) fα1,β1,γ2
(x)+ t2 fα2,β2,γ2

(x)

− (1− t)2− (1− t)t− t (1− t)− t2

= (1− t)2 fα1,β1,γ1
(x)+ (1− t)t fα2,β2,γ1

(x)

+ t (1− t) fα1,β1,γ2
(x)+ t2 fα2,β2,γ2

(x)−1
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and the claim is thus proved. �

COROLLARY 2. The function

(0,∞)× (0,∞) � (α,β ) �→ fα ,β ,γ (x) ∈ [1,∞)

is globally convex on (0,∞)× (0,∞) for any x ∈ (0,1) and γ > 0.

Proof. Fix x ∈ (0,1) and γ > 0. Let (α1,β1) , (α2,β2) ∈ (0,∞)× (0,∞) and t ∈
[0,1] . Then by (3.2) for γ1 = γ2 = γ we get

f(1−t)α1+tα2,(1−t)β1+tβ2,γ (x)

= f(1−t)α1+tα2,(1−t)β1+tβ2,(1−t)γ+tγ (x)

� (1− t)2 fα1,β1,γ (x)+ (1− t)t fα2,β2,γ (x)

+ t (1− t) fα1,β1,γ (x)+ t2 fα2,β2,γ (x)

=
[
(1− t)2 + t (1− t)

]
fα1,β1,γ (x)+

[
(1− t)t + t2

]
fα2,β2,γ (x)

= (1− t) fα1,β1,γ (x)+ t fα2,β2,γ (x) ,

which proves the global convexity for the variables (α,β ) ∈ (0,∞)× (0,∞) . �

We also have:

COROLLARY 3. The function

(0,∞) � γ �→ fα ,β ,γ (x) ∈ [1,∞)

is convex on (0,∞) for any x ∈ (0,1) and α, β > 0.

Proof. Fix x ∈ (0,1) and α, β > 0. Let γ1, γ2 > 0 and t ∈ [0,1] . Then by (3.2)
for α1 = α2 = α and β1 = β2 = β we get

fα ,β ,(1−t)γ1+tγ2
(x)

= f(1−t)α+tα ,(1−t)β+tβ ,(1−t)γ1+tγ2
(x)

� (1− t)2 fα ,β ,γ1
(x)+ (1− t)t fα ,β ,γ1

(x)+ t (1− t) fα ,β ,γ2
(x)+ t2 fα ,β ,γ2

(x)

=
[
(1− t)2 +(1− t)t

]
fα ,β ,γ1

(x)+
[
t (1− t)+ t2

]
fα ,β ,γ2

(x)

= (1− t) fα ,β ,γ1
(x)+ t fα ,β ,γ2

(x) ,

which proves the desired convexity. �
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4. Inequalities and convexity properties for F (α,β ;γ)

We have:

THEOREM 7. Let α, β , γ > 0. For any p, q > 1 with 1
p + 1

q = 1, we have

0 � F (α,β ;γ)−1 � [F (pα,0;γ)−1]1/p [F (0,qβ ;γ)−1]1/q . (4.1)

In particular, we have

[F (α,β ;γ)−1]2 � [F (2α,0;γ)−1] [F (0,2β ;γ)−1] . (4.2)

Proof. Using Hölder’s integral inequality
∫ 1

0
f (x)g(x)dx �

(∫ 1

0
f p (x)dx

)1/p(∫ 1

0
gq (x)dx

)1/q

for any p, q > 1 with 1
p + 1

q = 1 and (2.1), we have

0 � F (α,β ;γ)−1 �
∫ 1

0
[exp(γxα p)−1]1/p

[
exp
(

γ (1− x)qβ
)
−1
]1/q

dx

�
[∫ 1

0

(
[exp(γxα p)−1]1/p

)p
dx

]1/p[∫ 1

0

([
exp
(

γ (1− x)qβ
)
−1
]1/q

)q

dx

]1/q

=
[∫ 1

0
[exp(γxα p)−1]dx

]1/p[∫ 1

0

[
exp
(

γ (1− x)qβ
)
−1
]
dx

]1/q

= [F (pα,0;γ)−1]1/p [F (0,qβ ;γ)−1]1/q ,

which proves (4.1). �
From a different view point we also have:

THEOREM 8. Let α, β , γ > 0. Then

0 � F (α,β ;γ)−1 (4.3)

� 1
eγ −1

[F (α,0;γ)−1] [F (0,β ;γ)]+
1
4

(eγ −1)B(α +1,β +1) .

Proof. If we take the integral in the second inequality of (2.4) we get

0 � F (α,β ;γ)−1 (4.4)

� 1
eγ −1

∫ 1

0
[exp(γxα)−1]

[
exp
(

γ (1− x)β
)
−1
]
dx

+
1
4

(eγ −1)
∫ 1

0
xα (1− x)β

=
1

eγ −1

∫ 1

0
[exp(γxα)−1]

[
exp
(

γ (1− x)β
)
−1
]
dx

+
1
4

(eγ −1)B(α +1,β +1) .
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We use the Chebyshev’s inequality for functions of opposite monotonicities f , g :
[0,1]→ R ∫ 1

0
f (x)g(x)dx �

∫ 1

0
f (x)dx

∫ 1

0
g(x)dx

for the increasing function f (x) = exp(γxα)−1 and decreasing function g(x)= exp(γ(1−
x)β )−1 to get

∫ 1

0
[exp(γxα)−1]

[
exp
(

γ (1− x)β
)
−1
]
dx

�
∫ 1

0
[exp(γxα)−1]dx

∫ 1

0

[
exp
(

γ (1− x)β
)
−1
]
dx

= [F (α,0;γ)−1] [F (0,β ;γ)] .

By utilizing (4.4) we obtain the desired result (4.3). �
We have:

THEOREM 9. For any (α1,β1,γ1) , (α2,β2,γ2) ∈ (0,∞)× (0,∞)× (0,∞) and t ∈
[0,1] we have

F ((1− t)(α1,β1,γ1)+ t (α2,β2,γ2)) (4.5)

� (1− t)2 F (α1,β1,γ1)+ (1− t)tF (α2,β2,γ1)

+ t (1− t)F (α1,β1,γ2)+ t2F (α2,β2,γ2) .

Proof. Let (α1,β1,γ1) , (α2,β2,γ2)∈ (0,∞)×(0,∞)×(0,∞) and t ∈ [0,1] . From
(3.2) we have by integration over x on [0,1] that

F ((1− t)(α1,β1,γ1)+ t (α2,β2,γ2))
= F ((1− t)α1 + tα2,(1− t)β1 + tβ2;(1− t)γ1 + tγ2)

=
∫ 1

0
f(1−t)α1+tα2,(1−t)β1+tβ2,(1−t)γ1+tγ2

(x)dx

� (1− t)2
∫ 1

0
fα1,β1,γ1

(x)dx+(1− t)t
∫ 1

0
fα2,β2,γ1

(x)dx

+ t (1− t)
∫ 1

0
fα1,β1,γ2

(x)dx+ t2
∫ 1

0
fα2,β2,γ2

(x)dx

= (1− t)2 F (α1,β1,γ1)+ (1− t)tF (α2,β2,γ1)

+ t (1− t)F (α1,β1,γ2)+ t2F (α2,β2,γ2) ,

which proves (4.5). �

COROLLARY 4. The function F (·, ·;γ) is globally convex on (0,∞)× (0,∞) for
any γ > 0. Also, the function F (α,β ; ·) is convex on (0,∞) for any α, β > 0.

Finally we have the following logarithmic convexity property:
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THEOREM 10. For each γ > 0, the function F (·, ·;γ) is globally logarithmically
convex on (0,∞)× (0,∞) .

Proof. Fix γ > 0. Let (α1,β1) , (α2,β2) ∈ (0,∞)× (0,∞) and t ∈ [0,1] . Then by
the representation (1.2) we have

F ((1− t)α1 + tα2,(1− t)β1 + tβ2;γ)−1

=
∞

∑
k=1

1
k!

γkB([(1− t)α1 + tα2]k+1, [(1− t)β1 + tβ2]k+1)

=
∞

∑
k=1

1
k!

γkB [(1− t)(α1k+1)+ t (α2k+1) ,(1− t)(β1k+1)+ t (β2k+1)]

=
∞

∑
k=1

1
k!

γkB [(1− t)(α1k+1,β1k+1)+ t (α2k+1,β2k+1)] =: T.

By the global logarithmic convexity of the beta function that was proved in [4], we have

B [(1− t)(α1k+1,β1k+1)+ t (α2k+1,β2k+1)]

� [B(α1k+1,β1k+1)]1−t [B(α2k+1,β2k+1)]t

for (α1,β1) , (α2,β2) ∈ (0,∞)× (0,∞) and t ∈ [0,1] .
This implies that

T �
∞

∑
k=1

1
k!

γk [B(α1k+1,β1k+1)]1−t [B(α2k+1,β2k+1)]t

�
[

∞

∑
k=1

1
k!

γk
(
[B(α1k+1,β1k+1)]1−t

) 1
1−t

]1−t [ ∞

∑
k=1

1
k!

γk ([B(α2k+1,β2k+1)]t
) 1

t

]t

=

[
∞

∑
k=1

1
k!

γk [B(α1k+1,β1k+1)]

]1−t [ ∞

∑
k=1

1
k!

γk [B(α2k+1,β2k+1)]

]t

,

where for the last inequality we used the weighted Hölder’s inequality with p = 1
1−t

and q = 1
t for which we have 1

p + 1
q = 1 with p, q > 1.

Therefore, we have

F ((1− t)α1 + tα2,(1− t)β1 + tβ2;γ)−1 (4.6)

� [F (α1,β1;γ)−1]1−t [F (α2,β2;γ)−1]t

for (α1,β1) , (α2,β2) ∈ (0,∞)× (0,∞) and t ∈ [0,1] .
Now, by utilising (4.6) and Hölder’s discrete inequality we have

F ((1− t)α1 + tα2,(1− t)β1 + tβ2;γ)

� [F (α1,β1;γ)−1]1−t [F (α2,β2;γ)−1]t +1
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= [F (α1,β1;γ)−1]1−t [F (α2,β2;γ)−1]t +11−t1t

�
[(

[F (α1,β1;γ)−1]1−t
) 1

1−t +1

]1−t [(
[F (α2,β2;γ)−1]t

) 1
t +1

]t
= [F (α1,β1;γ)]1−t [F (α2,β2;γ)]t

for (α1,β1) , (α2,β2)∈ (0,∞)×(0,∞) and t ∈ [0,1] , which proves the logarithmically
convexity of F (·, ·;γ) on (0,∞)× (0,∞) . �
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20. Faculty of Mathematics, Timişoara University, Romania.
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