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ON THE ERDÖS–MORDELL INEQUALITY

FOR TRIANGLES IN TAXICAB GEOMETRY

MAJA PETROVIĆ, BRANKO MALEŠEVIĆ AND BOJAN BANJAC

(Communicated by M. Krnić)

Abstract. In this paper the Erdös-Mordell’s inequality is examined for the case of a triangle
ABC in the taxicab plane geometry. It is shown that the Erdös-Mordell’s inequality RA +RB +
RC � w(ra + rb + rc) holds for triangles with appropriate positions for its points A , B and C , if
w = 3/2 .

1. Introduction

Let the distance between two points, as well as the distance between a line and a
point be defined in the Euclidean plane. Then, for a triangle ABC in such a plane the
Erdös-Mordell’s inequality holds [4], [19]:

RA +RB +RC � 2(ra + rb + rc) (1)

where RA , RB and RC are distances from the interior point M of �ABC to vertices A ,
B and C respectively and ra , rb and rc are distances from the point M of the triangle
to the corresponding edges which contain the vertices of �ABC (Fig. 1).

Figure 1: A geometric illustration of the Erdös-Mordell inequality in �ABC
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Let there be two points, A(xA,yA) and B(xB,yB) , then the distance between them in
taxicab geometry is defined as:

d1 (A,B) = |xA − xB|+ |yA− yB|. (2)

This distance is also called the Manhattan or city block distance. This metric is a
special case of the Minkowski metric of order k (where k � 1) which is defined by the
following formula:

dk (A,B) =
(
|xA − xB|k + |yA− yB|k

) 1
k

(3)

The Minkowski metric contains in itself the taxicab metric for the value k = 1 and the
Euclidean metric for k = 2 [9]. The term “taxicab” was first introduced by K. Menger
[17]. A graphical representation of distances between points A and B is given in Fig. 2,
in taxicab metric with d1 (dashed/long dashed lines) and in Euclidean metric with d2

(continuous line).

Figure 2: A geometric illustration of the Minkowski and the Euclidean distances
between two points

In the rest of this paper, only taxicab distances are considered.

Let the �ABC be a triangle with vertices A(0,r) , B(p,0) , C (q,0) , p �= q, r �= 0.
Without diminishing generality, let p < q . We denote by M (x,y) an arbitrary point in
the plane of the triangle �ABC (Fig. 1). The Taxicab distance from the point M to the
points A , B and C , are given by functions:

RA = d1 (M,A) = |x|+ |y− r|,
RB = d1 (M,B) = |x− p|+ |y|,
RC = d1 (M,C) = |x−q|+ |y|.

(4)

Recently, general formulae for distance in taxicab geometry were analyzed in the
paper [2]. Authors Kaya et al. [7] define the distance of a point to a line in taxicab
plane geometry with the following statement:
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LEMMA 1. Distance of point M (xM,yM) to the line � : ax + by + c = 0 in the
Taxicab plane is :

d1 (M, �) =
|axM +byM + c|
max{|a|, |b|} . (5)

Let us notice that

ra = d1(M, �BC ), rb = d1(M, �AC ), rc = d1(M, �AB ). (6)

Based on (4) and (6), the Erdös-Mordell’s inequality (1) for �ABC in taxicab metric
is defined by the following relation:

|x|+ |y− r|+ |x− p|+ |x−q|+2|y|� 2

(
|y|+ |qr− rx−qy|

max{|r|, |q|} +
|pr− rx− py|
max{|r|, |p|}

)
. (7)

Inequalities in the taxicab geometry are the topic of recent research, see e.g [8]. Let
us emphasize that the topic of the Erdös-Mordell inequality is current, as it has been
shown in the papers [3], [5], [10]–[15], [23] and books [1] and [18]. V. Pambuccian
proved that, in the plane of absolute geometry, the Erdös-Mordell inequality is an equiv-
alent to the non-positive curvature [21]. In the paper [16] is given an extension of the
Erdös-Mordell inequality on the interior of the Erdös-Mordell curve. In relation to the
Erdös-Mordell inequality N. Dergiades in the paper [3] proved one extension of the
Erdös-Mordell type inequality. Most notably, the Erdös-Mordell inequality has been
considered in the taxicab plane geometry by N. Sönmez who has shown that (1) is a
strict inequality: RA + RB + RC > 2(ra + rb + rc) , [22]. In this paper we prove that
the conclusion reached by N. Sönmez is incorrect. That shall be shown through the
following example.

EXAMPLE 1. (counterexample) Let the vertices of �ABC be given with p =
−20, q = 40, r = 30 and let point M(0,m) be defined with m = 2 (Fig. 3). The taxi-
cab distance from the point M to the vertices of �ABC is given by (4) and the distance
from point M to the lines �BC : y = 0, �AC :−rx−qy+qr = 0 and �AB :−rx− py+ pr = 0
is given by (5):

RA = d1 (M,A) = 28, RB = d1 (M,B) = 22, RC = d1 (M,C) = 42,

ra = d1 (M, �BC) = 2, rb = d1 (M, �AC) = 28, rc = d1 (M, �AB) =
56
3

.
(8)

Figure 3: A geometric illustration of the counterexample
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From (8) we obtain L = RA +RB+RC = 92 and R = ra +rb +rc = 146
3 . In the case

of the Erdös-Mordell inequality, it holds that L � 2R i.e 92 � 97.3 . From this follows
that the Erdös-Mordell inequality does not hold for all interior points of �ABC . �

In the rest of this paper, the Erdös-Mordell inequality in taxicab geometry is con-
sidered in the form:

RA +RB +RC � w(ra + rb + rc) , (9)

where the positive real number w is defined as such that the previous inequality holds
for all interior points of �ABC . The main goal of the paper is to, for all positive values
of the weight coefficient w , determine a upper bound M such that the Erdös-Mordell
inequality holds for 0 < w � M .

2. The main results

The Erdös-Mordell inequality in taxicab plane geometry has the following form:

|x|+ |y− r|+ |x− p|+ |x−q|+2|y|� w

(
|y|+ |qr− rx−qy|

max{|r|, |q|} +
|pr− rx− py|
max{|r|, |p|}

)
. (10)

It should be noted that the Erdös-Mordell inequality in the taxicab plane geometry
defined by (10) refers to triangles ABC with the appropriate positions of points A(0,r) ,
B(p,0) and C(q,0) in two cases. The first case is when coordinates p , q and r are
positive and the second case is when the p coordinate is negative, with positive q and
r coordinates. Furthermore, we do not consider the general position of the triangle in
the taxicab plane nor the rotation of such a triangle to �ABC .

1◦ We analyze �ABC with p,q,r > 0 (see Fig. 4), then, for all interior points of
the triangle holds:

|x| = x, |x− p|=
{

p− x : x < p

x− p : x � p
, |x−q|= q− x,

|y| = y, |y− r|= r− y,

|qr− rx−qy|= qr− rx−qy, |pr− rx− py|= −pr+ rx+ py.

(11)

Then, the form of the Erdös-Mordell inequality (10) becomes:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q+ r+ y+ p− x� w

(
y+

qr− rx−qy
max{r,q} +

−pr+ rx+ py
max{r, p}

)
: x < p

q+ r+ y+ x− p� w

(
y+

qr− rx−qy
max{r,q} +

−pr+ rx+ py
max{r, p}

)
: x � p

(12)

Symmetric positions of �ABC relative to the coordinate axes can be analogously con-
sidered.
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2◦ We analyze �ABC with p < 0 and q,r > 0 (see Fig. 4), then, for all interior
points of the triangle holds:

|x| =
{−x : x < 0

x : x � 0
, |x− p|= x− p, |x−q|= q− x,

|y| = y, |y− r|= r− y,

|qr− rx−qy|= qr− rx−qy, |pr− rx− py|= −pr+ rx+ py.

(13)

Then, the form of the Erdös-Mordell inequality (10) becomes:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−p+q+ r+ y− x� w

(
y+

qr− rx−qy
max{r,q} +

−pr+ rx+ py
max{r,−p}

)
: x < 0

−p+q+ r+ y+ x� w

(
y+

qr− rx−qy
max{r,q} +

−pr+ rx+ py
max{r,−p}

)
: x � 0

(14)

As in case 1◦, symmetric positions of �ABC relative to the coordinate axes can be
analogously considered.

Let us notice that for point A(0,r) , there exist the following subcases:

1◦ 〈a〉 0 < r � p < q, 〈b〉 0 � p < r � q, 〈c〉 0 � p < q < r;

For this subcase, see Fig. 4/1◦
with representations: 〈a〉 long and double-short

dashed line, 〈b〉 dashed line, 〈c〉 continuous line;

2◦ 〈a〉 0 < r � −p � q, 〈b〉 0 < −p � r � q, 〈c〉 0 < −p � q < r;

For this subcase, see Fig. 4/2◦
with representations: 〈a〉 long and double-short

dashed line, 〈b〉 dashed line, 〈c〉 continuous line.

Figure 4: The two types of triangles ABC with subcasses
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In formula (11), for the first triangle type (i = 1) , branching is achieved for x = p ,
where p will then be denoted with x1. In formula (13), for the second triangle type
(i = 2) , branching is achieved for x = 0, where 0 will then be denoted with x2 . Then,
the Erdös-Mordell inequality (10), with weight coefficient w > 0, is considered with
the following theorem:

THEOREM 1. It holds:

RA +RB +RC �w(ra + rb + rc) ⇐⇒
{

αi1x+ βi1y+ γi1 � 0 : x < xi [Πi1]

αi2x+ βi2y+ γi2 � 0 : x � xi [Πi2]
(15)

where coefficients αi j,βi j,γi j ( j=1,2) , are given by Tab. 1 for i=1 and Tab. 2 for i=2 .

Π1 j : α1 jx+ β1 jy+ γ1 j � 0
1◦ 〈a〉 〈b〉 〈c〉

0 < r � p < q 0 � p < r � q 0 � p < q < r

α11 (p−q)wr−pq r(w(r−q)−q) −r
Π11 β11 −pq(w−1) q(r− pw) w(q−p−r)+r

x < p γ11 pq(p+q+ r) qr(w(p− r)+ p+q+ r) r(w(p−q)+ p+q+ r)

α12 (p−q)wr + pq r(w(r−q)+q) r
Π12 β12 −pq(w−1) q(r− pw) w(q−p−r)+r

x � p γ12 pq(−p+q+ r) qr(w(p− r)− p+q+ r) r(w(p−q)− p+q+ r)

Table 1: The Erdös-Mordell inequality in the taxicab plane geometry for case 1◦

Π2 j : α2 jx+ β2 jy+ γ2 j � 0
2◦ 〈a〉 〈b〉 〈c〉

0 < r � −p � q 0 < −p � r � q 0 < −p � q < r

α21 pq−(p+q)wr r(w(r−q)−q) −r
Π21 β21 −pq(w+1) q(r− pw) w(q−p−r)+r

x < 0 γ21 pq(2rw+ p−q− r) qr(w(p−r)−p+q+ r) r(w(p−q)−p+q+ r)

α22 −pq−(p+q)wr r(w(r−q)+q) r
Π22 β22 −pq(w+1) q(r− pw) w(q−p−r)+r

x � 0 γ22 pq(2rw+ p−q− r) qr(w(p−r)−p+q+ r) r(w(p−q)−p+q+ r)

Table 2: The Erdös-Mordell inequality in the taxicab plane geometry for case 2◦

Let us notice that the Erdös-Mordell inequality reduces to a problem of the posi-
tivity of the linear function

fi j(x,y) = αi jx+ βi jy+ γi j � 0,

for some choice of interior points (x,y) of a triangle, for concretely defined values of
parameters αi j,βi j and γi j given by the above tables. The problem of determining the



ERDÖS-MORDELL INEQUALITY FOR TRIANGLES IN THE TAXICAB GEOMETRY 1305

minimum and maximum of linear functions fi j(x,y) reduces down to the determining
of the minimum and maximum in the vertices of the considered triangles, according to
[6]. Given that, it is enough to consider the cases of the minima and maxima of linear
functions fi j(x,y) in vertices of �ABD and �BCD for A(0,r) , B(p,0) , C(q,0) and
D(p, r

q (q− p)) when i = 1 and in vertices of �ABO and �ACO for A(0,r) , B(p,0) ,
C(q,0) and O(0,0) when i = 2.

The following statements hold:

STATEMENT 1. Let A(0,r) ∈ [Π11] . If the inequality (10) holds for A(0,r) , then
the following conclusion holds for the weight coefficient w :

〈a〉0<r� p<q ∨ 〈b〉0� p<r�q ∨ 〈c〉0� p<q<r =⇒ w � 2+
p+q

r
. (16)

Proof. From Table 1:

〈a〉 By substituting coordinates x = 0 and y = r into f11(x,y) = α11x+β11y+ γ11 the
following is obtained:

f11(0,r) � 0 ⇐⇒ ((p−q)wr− pq) ·0− pq(w−1) · r+ pq(p+q+ r)� 0

⇐⇒ −pq(w−1) · r+ pq(p+q+ r)� 0

=⇒
pq > 0

−wr+ p+q+2r � 0

=⇒
r > 0

w � 2+
p+q

r
;

〈b〉 q(r− pw) · r+qr(w(p− r)+ p+q+ r)� 0, from which follows w � 2+
p+q

r
;

〈c〉 w(q− p−r) · r + r(w(p−q)+ p+q+r)+r � 0, from which follows w � 2 +
p+q

r
. �

STATEMENT 2. Let A(0,r) ∈ [Π22] . If the inequality (10) holds for A(0,r) , then
the following conclusion holds for the weight coefficient w :

〈a〉0<r�−p�q ∨ 〈b〉0<−p�r�q ∨ 〈c〉0<−p�q<r =⇒ w � 2+
q− p

r
. (17)

Proof. By Table 2:

〈a〉 −pq(w+1)r+ pq(2rw+ p−q− r)� 0, from which follows w � 2+
q− p

r
;

〈b〉 q(r− pw)r+qr(w(p− r)− p+q+ r)� 0, from which follows w � 2+
q− p

r
;

〈c〉 (w(q− p−r) + r)r + r(w(p−q)− p+q+r) � 0, from which follows w � 2 +
q− p

r
. �
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STATEMENT 3. Let B(p,0)∈ [Π12] . If the inequality (10) holds for B(p,0) , then
the following conclusions hold for the weight coefficient w :

〈a〉0<r� p<q ∨ 〈b〉0� p<r�q =⇒ w � 1+
q2 + pr
r(q− p)

; (18)

〈c〉0� p<q<r =⇒ w � 1+
p+ r
q− p

. (19)

Proof. By Table 1:

〈a〉 ((p−q)wr+ pq)p+ pq(−p+q+ r)� 0, from which follows w � 1+
q2 + pr
r(q− p)

;

〈b〉 r(w(r−q)+q)p+qr(w(p−r)−p+q+r)�0, from which follows w�1+
q2+pr
r(q−p)

;

〈c〉 rp+ r(w(p−q)− p+q+ r)� 0, from which follows w � 1+
p+ r
q− p

. �

STATEMENT 4. Let B(p,0)∈ [Π21] . If the inequality (10) holds for B(p,0) , then
the following conclusions hold for the weight coefficient w :

〈a〉0<r�−p�q ∨ 〈b〉0<−p�r�q =⇒ w � q
r

(
1+

r− p
q− p

)
; (20)

〈c〉0<−p�q<r =⇒ w � 1+
r− p
q− p

. (21)

Proof. By Table 2:

〈a〉 (pq−(p+q)wr)p+pq(2rw+p−q−r) � 0, from which follows w � q
r

(
1+

r−p
q−p

)
;

〈b〉 r(w(r−q)−q)p+qr(w(p−r)−p+q+r)� 0, from which follows w� q
r

(
1+

r−p
q−p

)
;

〈c〉 −rp+ r(w(p−q)− p+q+ r)� 0, from which follows w � 1+
r− p
q− p

. �

STATEMENT 5. Let C(q,0)∈ [Π12] . If the inequality (10) holds for C(q,0) , then
the following conclusions hold for the weight coefficient w :

〈a〉0<r� p<q =⇒ w � p
r

(
1+

q+ r
q− p

)
; (22)

〈b〉0� p<r�q ∨ 〈c〉0� p<q<r =⇒ w � 1+
q+ r
q− p

. (23)

Proof. By Table 1:

〈a〉 ((p−q)wr+ pq)q+ pq(−p+q+r)� 0, from which follows w� p
r

(
1+

q+ r
q− p

)
;
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〈b〉 r(w(r−q)+q)q+qr(w(p−r)−p+q+r)�0, from which follows w�1+
q+r
q−p

;

〈c〉 rq+ r(w(p−q)− p+q+ r)� 0, from which follows w � 1+
q+ r
q− p

. �

STATEMENT 6. Let C(q,0)∈ [Π22] . If the inequality (10) holds for C(q,0) , then
the following conclusions hold for the weight coefficient w :

〈a〉0<r�−p�q =⇒ w � −p
r

(
1+

q+ r
q− p

)
; (24)

〈b〉0<−p�r�q ∨ 〈c〉0<−p�q<r =⇒ w � 1+
q+ r
q− p

. (25)

Proof. By Table 2:

〈a〉 (−pq−(p+q)wr)q+pq(2rw+p−q−r)�0, from which follows w�−p
r

(
1+

q+r
q−p

)
;

〈b〉 r(w(r−q)+q)q+qr(w(p−r)−p+q+r)�0, from which follows w�1+
q+r
q−p

;

〈c〉 rq+ r(w(p−q)− p+q+ r)� 0, from which follows w � 1+
q+ r
q− p

. �

STATEMENT 7. Let D(p, r
q (q − p)) ∈ [Π12] . If the inequality (10) holds for

D(p, r
q (q− p)) , then the following conclusions hold for the weight coefficient w :

〈a〉0<r� p<q =⇒ w � 1+
q2 + pr

2r(q− p)
; (26)

〈b〉0� p<r�q ∨ 〈c〉0� p<q<r =⇒ w � 1+
q− p
r+ p

+
q

q− p
. (27)

Proof. By Table 1:

〈a〉 ((p−q)wr+ pq)p− pq(w−1)
r
q
(q− p)+ pq(−p+q+ r)� 0,

from which follows w � 1+
q2 + pr

2r(q− p)
;

〈b〉 r(w(r−q)+q)p+q(r− pw)
r
q
(q− p)+qr(w(p− r)− p+q+ r)� 0,

from which follows w � 1+
q− p
r+ p

+
q

q− p
;

〈c〉 rp+(w(q− p− r)+ r)
r
q
(q− p)+ r(w(p−q)− p+q+ r)� 0,

from which follows w � 1+
q− p
r+ p

+
q

q− p
. �
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STATEMENT 8. Let O(0,0)∈ [Π22] . If the inequality (10) holds for O(0,0) , then
the following conclusions hold for the weight coefficient w :

〈a〉0<r�−p�q =⇒ w � 1
2

+
q− p
2r

; (28)

〈b〉0<−p�r�q =⇒ w � 1+
q

r− p
; (29)

〈c〉0<−p�q<r =⇒ w � 1+
r

q− p
. (30)

Proof. By Table 2:

〈a〉 pq(2rw+ p−q− r)� 0, from which follows w � 1
2

+
q− p
2r

;

〈b〉 qr(w(p− r)− p+q+ r)� 0, from which follows w � 1+
q

r− p
;

〈c〉 r(w(p−q)− p+q+ r)� 0, from which follows w � 1+
r

q− p
. �

Let the positions of points B and C be given. Then, let us consider the positions of
point A(0,r) in the concrete cases 〈a〉 , 〈b〉 , 〈c〉 which were considered in Statements
1–8. Through the aforementioned Statements the functions of upper bounds ω for the
weight coefficient w were obtained:

w � ω(p,q,r).

Our goal is to, for the functions ω(p,q,r) , dependent on concrete subcases 〈θ 〉 , where
θ ∈ {a,b,c} , find the values:

M = inf{ω(p,q,r) | 〈θ 〉}. (31)

In this way, the Erdös-Mordell inequality (9) holds for w = M for all interior points of
�ABC . If M is a minimum in this area, then an equality is also possible in (9).

2.1 Determining value of M by areas

In this section of the paper, the values of M by areas of �ABC are determined in
dependence on cases 〈θ 〉 , where θ ∈ {a,b,c} .

The following three propositions are obtained on the basis of Statement 1.

PROPOSITION 1. Let A(0,r) ∈ [Π11] . If the inequality (10) holds for A(0,r) ,
then the following conclusion holds for the weight coefficient w :

〈a〉 0<r� p<q =⇒ w � ω(p,q,r) = 2+
p+q

r
(32)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 4. (33)
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Proof. Let us consider 〈a〉 0<r� p<q . Then, we notice the following expression
holds:

ω(p,q,r) = 2+
p+q

r
� 2+

p+q
p

= 3+
q
p

> 4 =⇒ M = 4.

The above conclusion is correct because the real number
q
p

fulfills
q
p

> 1 and it is

possible to choose a number
q
p

such that it is arbitrarily close to 1. �

PROPOSITION 2. Let A(0,r) ∈ [Π11] . If the inequality (10) holds for A(0,r) ,
then the following conclusion holds for the weight coefficient w :

〈b〉 0� p<r�q =⇒ w � ω(p,q,r) = 2+
p+q

r
(34)

and in that case
ω(p,q,r) ∈ [M,∞) and M = 3. (35)

Proof. Let us consider 〈b〉 0� p<r�q . Then, we notice the following expression
holds:

ω(p,q,r) = 2+
p+q

r
� 2+

p+q
q

= 3+
p
q

� 3 =⇒ M = 3. �

PROPOSITION 3. Let A(0,r) ∈ [Π11] . If the inequality (10) holds for A(0,r) ,
then the following conclusion holds for the weight coefficient w :

〈c〉 0� p<q<r =⇒ w � ω(p,q,r) = 2+
p+q

r
(36)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (37)

Proof. Let us consider 〈c〉 0� p<q<r . Then, we notice the following expression
holds:

ω(p,q,r) = 2+
p+q

r
> 2 =⇒ M = 2. �

The following three propositions are obtained on the basis of Statement 2.

PROPOSITION 4. Let A(0,r) ∈ [Π22] . If the inequality (10) holds for A(0,r) ,
then the following conclusion holds for the weight coefficient w :

〈a〉 0<r�−p�q =⇒ w � ω(p,q,r) = 2+
q− p

r
(38)

and in that case
ω(p,q,r) ∈ [M,∞) and M = 4. (39)
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Proof. Let us consider 〈a〉 0< r�−p�q . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 2+
q− p

r
� 2+

q− p
−p

= 3+
q
−p

� 4 =⇒ M = 4. �

PROPOSITION 5. Let A(0,r) ∈ [Π22] . If the inequality (10) holds for A(0,r) ,
then the following conclusion holds for the weight coefficient w :

〈b〉 0<−p�r�q =⇒ w � ω(p,q,r) = 2+
q− p

r
(40)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 3. (41)

Proof. Let us consider 〈b〉 0<−p� r�q . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 2+
q− p

r
� 2+

q− p
q

= 3+
−p
q

> 3 =⇒ M = 3. �

PROPOSITION 6. Let A(0,r) ∈ [Π22] . If the inequality (10) holds for A(0,r) ,
then the following conclusion holds for the weight coefficient w :

〈c〉 0<−p�q<r =⇒ w � ω(p,q,r) = 2+
q− p

r
(42)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (43)

Proof. Let us consider 〈c〉 0<−p�q< r . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 2+
q− p

r
> 2 =⇒ M = 2. �

Similar to previous propositions, the following three propositions are obtained
from Statement 3.

PROPOSITION 7. Let B(p,0) ∈ [Π12] . If the inequality (10) holds for B(p,0) ,
then the following conclusion holds for the weight coefficient w :

〈a〉 0<r� p<q =⇒ w � ω(p,q,r) = 1+
q2

r(q− p)
+

p
q− p

(44)

and in that case
ω(p,q,r) ∈ [M,∞) and M = 3+2

√
2. (45)
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Proof. Let us consider 〈a〉 0<r� p<q . Then, we notice the following expression
holds:

ω(p,q,r)=1+
q2

r(q− p)
+

p
q− p

�1+
q2

p(q− p)
+

p
q− p

=3+
2p

q− p
+

q− p
p

� 3+2
√

2 =⇒ M = 3+2
√

2,

because t =
p

q− p
> 0 holds 2 t + 1

t
� 2

√
2. �

PROPOSITION 8. Let B(p,0) ∈ [Π12] . If inequality (10) holds for B(p,0) , then
the following conclusion holds for the weight coefficient w :

〈b〉 0� p<r�q =⇒ w � ω(p,q,r) = 1+
q2

r(q− p)
+

p
q− p

(46)

and in that case
ω(p,q,r) ∈ [M,∞) and M = 2. (47)

Proof. Let us consider 〈b〉 0� p<r�q . Then, we notice the following expression
holds:

ω(p,q,r)=1+
q2

r(q− p)
+

p
q− p

�1+
q2

q(q− p)
+

p
q− p

=2+
2p

q− p
� 2 =⇒ M = 2. �

PROPOSITION 9. Let B(p,0) ∈ [Π12] . If the inequality (10) holds for B(p,0) ,
then the following conclusion holds for the weight coefficient w :

〈c〉 0� p<q<r =⇒ w � ω(p,q,r) = 1+
p+ r
q− p

(48)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (49)

Proof. Let us consider 〈c〉 0� p<q<r . Then, we notice the following expression
holds:

ω(p,q,r)=1+
p+ r
q− p

>1+
p+q
q− p

=2+
2p

q− p
� 2 =⇒ M = 2. �
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The following three propositions are obtained on the basis of Statement 4.

PROPOSITION 10. Let B(p,0) ∈ [Π21] . If the inequality (10) holds for B(p,0) ,
then the following conclusion holds for the weight coefficient w :

〈a〉 0<r�−p�q =⇒ w � ω(p,q,r) =
q
r

(
1+

r− p
q− p

)
(50)

and in that case
ω(p,q,r) ∈ [M,∞) and M = 2. (51)

Proof. Let us consider 〈a〉 0< r�−p�q . Then, we notice the following expres-
sion holds:

ω(p,q,r)=
q
r

(
1+

r− p
q− p

)

� q
r

(
1+

r− p
2q

)

� q
r

(
1+

2r
2q

)
=

q
r

+1 � 2 =⇒ M = 2. �

PROPOSITION 11. Let B(p,0) ∈ [Π21] . If the inequality (10) holds for B(p,0) ,
then the following conclusion holds for the weight coefficient w :

〈b〉 0<−p � r � q =⇒ w � ω(p,q,r) =
q
r

(
1+

r− p
q− p

)
(52)

and in that case
ω(p,q,r) ∈ [M,∞) and M = 2. (53)

Proof. Let us consider 〈b〉 0<−p � r � q . Then, we notice the following expres-
sion holds:

ω(p,q,r) =
q
r

+
q
r

r− p
q− p

� 1+
q
r

r− p
q− p

� 2 =⇒ M = 2,

because q(r+(−p)) � r(q+(−p)) ⇐⇒ q � r . �

PROPOSITION 12. Let B(p,0) ∈ [Π21] . If the inequality (10) holds for B(p,0) ,
then the following conclusion holds for the weight coefficient w :

〈c〉 0<−p � q < r =⇒ w � ω(p,q,r) = 1+
r− p
q− p

(54)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (55)
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Proof. Let us consider 〈c〉 0<−p � q < r . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 1+
r− p
q− p

> 1+
q− p
q− p

= 2 =⇒ M = 2. �

The following three propositions are obtained on the basis of Statement 5.

PROPOSITION 13. Let C(q,0) ∈ [Π12] . If the inequality (10) holds for C(q,0) ,
then the following conclusion holds for the weight coefficient w :

〈a〉 0<r� p<q =⇒ w � ω(p,q,r) =
p
r

(
1+

q+ r
q− p

)
(56)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (57)

Proof. Let us consider 〈a〉 0<r� p<q . Then, we notice the following expression
holds:

ω(p,q,r)=
p
r

(
1+

q+ r
q− p

)

�1+
q+ r
q− p

=
2q−2p+ r+ p

q− p
> 2+

r+ p
q− p

> 2 =⇒ M = 2. �

PROPOSITION 14. Let C(q,0) ∈ [Π12] . If the inequality (10) holds for C(q,0) ,
then the following conclusion holds for the weight coefficient w :

〈b〉 0� p<r�q =⇒ w � ω(p,q,r) = 1+
q+ r
q− p

(58)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (59)

Proof. Let us consider 〈b〉 0� p<r�q . Then, we notice the following expression
holds:

ω(p,q,r) = 1+
q+ r
q− p

> 1+
q+ p
q− p

� 2 =⇒ M = 2. �

PROPOSITION 15. Let C(q,0) ∈ [Π12] . If the inequality (10) holds for C(q,0) ,
then the following conclusion holds for the weight coefficient w :

〈c〉 0� p<q<r =⇒ w � ω(p,q,r) = 1+
q+ r
q− p

(60)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 3. (61)
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Proof. Let us consider 〈c〉 0� p<q<r . Then, we notice the following expression
holds:

ω(p,q,r) = 1+
q+ r
q− p

= 2+
r+ p
q− p

> 2+
q+ p
q− p

� 3 =⇒ M = 3. �

Similar to previous propositions, the following three propositions are obtained
from Statement 6.

PROPOSITION 16. Let C(q,0) ∈ [Π22] . If the inequality (10) holds for C(q,0) ,
then the following conclusion holds for the weight coefficient w :

〈a〉 0<r�−p�q =⇒ w � ω(p,q,r) = − p
r

(
1+

q+ r
q− p

)
(62)

and in that case

ω(p,q,r) ∈ [M,∞) and M = 2. (63)

Proof. Let us consider 〈a〉 0< r�−p�q . Then, we notice the following expres-
sion holds:

ω(p,q,r)=
−p
r

+
−p
r

q+ r
q− p

�1+
−p
r

q+ r
q− p

=1+
−pq+(−p)r
rq+(−p)r

� 2 =⇒ M = 2,

because −pq+(−p)r � rq+(−p)r ⇐⇒ −p � r . �

PROPOSITION 17. Let C(q,0) ∈ [Π22] . If the inequality (10) holds for C(q,0) ,
then the following conclusion holds for the weight coefficient w :

〈b〉 0<−p�r�q =⇒ w � ω(p,q,r) = 1+
q+ r
q− p

(64)

and in that case

ω(p,q,r) ∈ [M,∞) and M = 2. (65)

Proof. Let us consider 〈b〉 0<−p� r�q . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 1+
q+ r
q− p

� 1+
q− p
q− p

= 2 =⇒ M = 2. �
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PROPOSITION 18. Let C(q,0) ∈ [Π22] . If the inequality (10) holds for C(q,0) ,
then the following conclusion holds for the weight coefficient w :

〈c〉 0<−p�q<r =⇒ w � ω(p,q,r) = 1+
q+ r
q− p

(66)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (67)

Proof. Let us consider 〈c〉 0<−p�q< r . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 1+
q+ r
q− p

> 1+
2q

q− p
� 2 =⇒ M = 2,

because 2q � q− p ⇐⇒ q � −p . �
The following three propositions are obtained on the basis of Statement 7.

PROPOSITION 19. Let D
(
p, r

q (q− p)
) ∈ [Π12] . If the inequality (10) holds for

D
(
p, r

q(q− p)
) ∈ [Π12] , then the following conclusion holds for the weight coefficient

w :

〈a〉 0<r� p<q =⇒ w � ω(p,q,r) = 1+
q2 + pr

2r(q− p)
(68)

and in that case
ω(p,q,r) ∈ [M,∞) and M = 2+

√
2. (69)

Proof. Let us consider 〈a〉 0<r� p<q . Then, we notice the following expression
holds:

ω(p,q,r)=1+
q2

2r(q− p)
+

p
2(q− p)

�1+
q2

2p(q− p)
+

p
2(q− p)

=2+
q− p
2p

+
p

q− p
� 2+

√
2 =⇒ M = 2+

√
2,

because t =
p

q− p
> 0 for

1
2t

+ t �
√

2. �

PROPOSITION 20. Let D
(
p, r

q (q− p)
) ∈ [Π12] . If the inequality (10) holds for

D
(
p, r

q(q− p)
) ∈ [Π12] , then the following conclusion holds for the weight coefficient

w :
〈b〉 0� p<r�q =⇒ w � ω(p,q,r) = 1+

q− p
r+ p

+
q

q− p
(70)

and in that case

ω(p,q,r) ∈ [M,∞) and M =
3
2

+
√

2. (71)
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Proof. Let us consider 〈b〉 0� p<r�q . Then, we notice the following expression
holds:

2ω(p,q,r)=2+2
q− p
r+ p

+
2q

q− p

=3+2
q− p
r+ p

+
q+ p
q− p

�3+2
q− p
q+ p

+
q+ p
q− p

� 3+2
√

2 =⇒ M =
3
2

+
√

2,

because t =
q− p
q+ p

> 0 holds 2 t +
1
t

� 2
√

2. �

PROPOSITION 21. Let D
(
p, r

q (q− p)
) ∈ [Π12] . If the inequality (10) holds for

D
(
p, r

q(q− p)
) ∈ [Π12] , then the following conclusion holds for the weight coefficient

w :

〈c〉 0� p<q<r =⇒ w � ω(p,q,r) = 1+
q− p
r+ p

+
q

q− p
(72)

and in that case
ω(p,q,r) ∈ (M,∞) and M = 2. (73)

Proof. Let us consider 〈c〉 0� p<q<r . Then, we notice the following expression
holds:

ω(p,q,r) = 1+
q− p
r+ p

+
q

q− p
� 2+

q− p
r+ p

> 2 =⇒ M = 2,

because
q

q− p
� 1. �

Similar to previous propositions, the following three propositions are obtained
from Statement 8.

PROPOSITION 22. Let O(0,0) ∈ [Π22] . If the inequality (10) holds for O(0,0) ,
then the following conclusion holds for the weight coefficient w :

〈a〉 0<r�−p�q =⇒ w � ω(p,q,r) =
1
2

+
q− p
2r

(74)

and in that case

ω(p,q,r) ∈ [M,∞) and M =
3
2

. (75)

Proof. Let us consider 〈a〉 0< r�−p�q . Then, we notice the following expres-
sion holds:

ω(p,q,r) =
1
2

+
q
2r

+
−p
2r

� 1
2

+
q

2(−p)
+

−p
2(−p)

� 3
2

=⇒ M =
3
2
. �
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PROPOSITION 23. Let O(0,0) ∈ [Π22] . If the inequality (10) holds for O(0,0) ,
then the following conclusion holds for the weight coefficient w :

〈b〉 0<−p�r�q =⇒ w � ω(p,q,r) = 1+
q

r− p
(76)

and in that case
ω(p,q,r) ∈ [M,∞) and M =

3
2

. (77)

Proof. Let us consider 〈b〉 0<−p� r�q . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 1+
q

r− p
� 1+

q
2r

� 1+
1
2

=
3
2

=⇒ M =
3
2
. �

PROPOSITION 24. Let O(0,0) ∈ [Π22] . If the inequality (10) holds for O(0,0) ,
then the following conclusion holds for the weight coefficient w :

〈c〉 0<−p�q<r =⇒ w � ω(p,q,r) = 1+
r

q− p
(78)

and in that case
ω(p,q,r) ∈ (M,∞) and M =

3
2
. (79)

Proof. Let us consider 〈c〉 0<−p�q< r . Then, we notice the following expres-
sion holds:

ω(p,q,r) = 1+
r

q− p
> 1+

q
q− p

� 1+
q
2q

=
3
2

=⇒ M =
3
2
. �

Let us emphasize that the results of the previous three Propositions provide an
improvement over some results from paper [5].

3. Summa summarum

Based on the propositions above, a theorem follows:

THEOREM 2. In taxicab geometry for an interior point of �ABC in an appropri-
ate position, the Erdös-Mordell’s inequality holds

RA +RB +RC � 3
2

(ra + rb + rc)�

It is well known that taxicab distance depends on the rotation of the coordinate
system, but does not depend on its translation or its reflection over a coordinate axis
[20]. For an arbitrary triangle ABC we set the following open problem (illustrated by
Fig. 5).
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CONJECTURE 1. In taxicab geometry for an interior point of any triangle ABC
the Erdös-Mordell’s inequality holds

RA +RB +RC � 3
2

(ra + rb + rc)�

Figure 5. A geometric illustration of Conjecture 1
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