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STABILITIES OF THE GENERALIZED MIXED

WIDTH AND DUAL MIXED RADIAL INEQUALITIES

HENGFANG QIU AND DEYAN ZHANG ∗

(Communicated by T. Burić)

Abstract. In this note, stability properties of the generalized mixed width inequality and the
generalized dual mixed radial inequality are obtained in the Hausdorff distance, L2 -metric and
the dual L2 -metric, respectively.

1. Introduction

There are many important geometric inequalities, for example, the classical isoperi-
metric inequality, the reverse isoperimetric inequality, the Aleksandrov-Fenchel in-
equality, etc.. It is well know that stabilities of these geometric inequalities have been
extensively investigated, see [2, 3, 4, 5, 6, 9]. Roughly speaking, these investigations
focus on the geometric implications if the inequalities are in a certain sense close equal-
ities. For more information of the stability problem one may consult [2, 5]. An inequal-
ity in convex geometry can be written

Φ(K) � 0, (1.1)

where Φ : C n →R is a real valued function and (1.1) is supposed to hold for all K ∈C n .
Let C n

Φ denote those elements K ∈ C n for which the equality sign in (1.1) holds, i.e.,
Φ(K) = 0 for all K ∈ C n

Φ .
We are interested in the stability problem associated with geometric inequalities of

type (1.1). That means, we ask if K must be close to a member of C n
Φ whenever Φ(K)

is close to zero. In order to give a precise formulation of this problem, it is necessary
for us to be given a measurement function g : C n ×C n → R that describes in some
sense the deviation between two convex bodies. Function g should satisfy following
conditions:

(i) g(K,L) � 0 for all K,L ∈ C n ;
(ii) g(K,L) = 0 if and only if K = L .

Mathematics subject classification (2010): 52A38,52A40.
Keywords and phrases: k -order width function, k -order radial function, Hausdorff distance, L2 -

metric, dual L2 -metric.
∗ Corresponding author
This work is supported by the Natural Science Foundation of Anhui Province (No. 1908085MA05), the University

Natural Science Research Project of Anhui Province (No. KJ2019A0590) and Excellent Young Talents Fund Program of
Higher Education Institutions of Anhui Province (No. gxyqZD2020022).

c© � � , Zagreb
Paper JMI-14-86

1333

http://dx.doi.org/10.7153/jmi-2020-14-86


1334 H. QIU AND D. ZHANG

If Φ , C n
Φ and g are given, the stability problem associated with the geometric

inequality (1.1) can now be formulated as follows:
Find positive constants c,α with property that whenever

Φ(K) � ε

(for some ε � 0), then there exists an L ∈ C n
Φ such that

g(K,L) � cεα .

Or equivalently, find positive constants c,α with property that for each K ∈ C n ,
there exists an L ∈ C n

Φ (L may depend on K ) such that

Φ(K) � cg(K,L)α .

A bounded convex subset in the Euclidean space R
n is said to be an n -dimensional

convex body if it is closed and has interior points. Let C n denote the class of all n -
dimensional convex bodies. If n = 2, a 2-dimensional convex body is usually called
a convex domain. Let K be a convex domain with area A(K) and width function
ω(K,θ ) . In 1969, Chernoff [1] proved an inequality that says

A(K) � 1
2

∫ π
2

0
ω(K,θ )ω

(
K,θ +

π
2

)
dθ ,

where the equality holds if and only if K is a disc. In 2010, Ou-Pan in [8] introduced
the k -order width function ωk(K,θ ) by

ωk(K,θ ) = H(K,θ )+H
(
K,θ +

2π
k

)
+ · · ·+H

(
K,θ +

2(k−1)π
k

)
, k � 2,

where H(K,θ ) is the support function of K . By the k -order width function ωk(K,θ ) ,
Ou-Pan got the following Chernoff-Ou-Pan inequality

A(K) � 1
k

∫ π
k

0
ωk(K,θ )ωk

(
K,θ +

π
k

)
dθ , (1.2)

and the equality holds if and only if K is a disc.
Moreover, for two convex domains K and L , Mao-Yang [7] got the generalized mixed
width inequality that states

√
A(K)A(L) � 1

2k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ , (1.3)

and the equality holds if and only if K and L are discs.
Let P be a planar star body with area A(P) and radial function ρ(P,θ ) , Zhang-

Yang in [12] introduced the k -order radial function ρk(P,θ ) by

ρk(P,θ ) = ρ(P,θ )+ ρ
(
P,θ +

2π
k

)
+ · · ·+ ρ

(
P,θ +

2(k−1)π
k

)
, k � 2.
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By the k -order radial function ρk(P,θ ) , Zhang-Yang obtained the following dual Chernoff-
Ou-Pan inequality

A(P) � 1
k

∫ π
k

0
ρk(P,θ )ρk

(
P,θ +

π
k

)
dθ , (1.4)

where the equality holds if and only if the radial function ρ(P,θ ) of P is of the form

ρ(P,θ ) =
1
2
c0 +

∞

∑
n=1

(c2nk cos2nkθ +d2nk sin2nkθ ).

Moreover, for two planar star bodies P and Q , Mao-Yang [7] got the generalized dual
mixed radial inequality that states

√
A(P)A(Q) � 1

2k2

∫ 2π

0
ρk(P,θ )ρk(Q,θ )dθ , (1.5)

and the equality holds if and only if the radial functions of P and Q have the same form

ρ(θ ) =
1
2
c0 +

∞

∑
n=1

(cnk cosnkθ +dnk sinnkθ ).

In this note we will focus our attention on stabilities of the generalized mixed width
inequality (1.3) in the Hausdorff distance, the L2 -metric and the generalized dual mixed
radial inequality (1.5) in the dual L2 -metric, respectively.

2. Preliminaries

In this section, we will first recall some basic facts about plane convex geometry
which will be used later on. Let K ∈C 2 be a convex domain and assume that the origin
O of R

2 lies in the interior of K , and let u be a unit vector in R
2 and l(u) denote the

supporting line of K that is perpendicular to u and on the same side of the origin.
The oriented distance from O to l(u) , denoted by H(K,u) , is called the Minkowski
support function of K . Since u is usually determined by the oriented angle, say θ , from
the positive x -axis to u , one also writes H(K,θ ) instead of H(K,u) . It is clear that
H(K,θ ) is a continuous 2π -periodic function. A more comprehensive introduction to
the theory of convex bodies can be found in [11].

Let p(K) denote the perimeter and A(K) the area of K , one can find (see [5]),

p(K) =
∫ 2π

0
H(K,θ )dθ , (2.1)

and if H is sufficiently smooth, then

A(K) =
1
2

∫ 2π

0

(
H2(K,θ )−H ′2(K,θ )

)
dθ , (2.2)

where ′ denotes the derivative with respect to θ .
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The Steiner disc of K , denoted by S(K) , is the disc with radius p(K)/2π and
center at the Steiner point which can be defined in terms of the Minkowski support
function

�s(K) =
1
π

∫ 2π

0
u(θ )H(K,θ )dθ . (2.3)

The Steiner disc of K will play a role in our stability statement in Section 3 below. For
more information on the Steiner point of a convex body one may consult [10].

The width of K in a direction u(θ ) = (cosθ ,sinθ ) , denoted by ω(K,θ ) , is de-
fined to be the distance between two tangents to a perpendicular to u(θ ) . It is clear
that

ω(K,θ ) = H(K,θ )+H(K,θ + π).

The convex domain K is said to be of constant width if its width in any direction is a
positive constant ω0 , i.e., ω(K,θ ) = H(K,θ )+H(K,θ +π) = ω0 for any θ ∈ [0,2π ] .
For a convex domain K , Ou-Pan [8] introduced the k -order width function ωk(K,θ )
by

ωk(K,θ ) = H(K,θ )+H
(
K,θ +

2π
k

)
+ · · ·+H

(
K,θ +

2(k−1)π
k

)
, k � 2.

We wish to express p(K),�s(K),A(K) in terms of the Fourier coefficients of H(K,θ ) .
Since the support function of a given convex domain K is always continuous, bounded
and 2π -periodic, it has a Fourier series of the form

H(K,θ ) =
1
2
a0 +

∞

∑
n=1

(an cosnθ +bn sinnθ ),

where

a0 =
1
π

∫ 2π

0
H(K,θ )dθ ,

an =
1
π

∫ 2π

0
H(K,θ )cosnθdθ , bn =

1
π

∫ 2π

0
H(K,θ )sinnθdθ , n ∈ Z

+.

Differentiation of this with respect to θ gives us

H ′(K,θ ) =
∞

∑
n=1

n(−an sinnθ +bn cosnθ ).

From (2.1) and (2.3), it follows immediately that

p(K) = πa0, (2.4)

�s(K) = (a1,b1). (2.5)

By the Parseval equality, one can get∫ 2π

0
H2(K,θ )dθ =

1
2

πa2
0 + π

∞

∑
n=1

(a2
n +b2

n),
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∫ 2π

0
H ′2(K,θ )dθ = π

∞

∑
n=1

n2(a2
n +b2

n),

which together with (2.2) gives us

A(K) =
1
4

πa2
0−

1
2

π
∞

∑
n=2

(n2−1)(a2
n +b2

n). (2.6)

Let Sn−1 be the unit sphere in R
n , a compact subset P of R

n be star-shaped with
respect to the origin, for u ∈ Sn−1 , its radial function ρ(P,u) is defined by

ρ(P,u) = max{λ > 0 : λu ∈ P}.

Since u is usually determined by the oriented angle, say θ , from the positive x -axis to
u , one also writes ρ(P,θ ) instead of ρ(P,u) . It is clear that ρ(P,θ ) is a continuous
2π -periodic function. For a planar star body P , Zhang-Yang [12] introduced the k -
order radial function ρk(P,θ ) by

ρk(P,θ ) = ρ(P,θ )+ ρ
(
P,θ +

2π
k

)
+ · · ·+ ρ

(
P,θ +

2(k−1)π
k

)
, k � 2, θ ∈ [0,2π ].

For a planar star body P , its area A(P) can be expressed by

A(P) =
1
2

∫ 2π

0
ρ2(P,θ )dθ . (2.7)

Since ρ(P,θ ) is continuous, bounded and 2π -periodic, it has a Fourier series of the
form

ρ(P,θ ) =
1
2
c0 +

∞

∑
n=1

(cn cosnθ +dn sinnθ ), (2.8)

where

c0 =
1
π

∫ 2π

0
ρ(P,θ )dθ ,

cn =
1
π

∫ 2π

0
ρ(P,θ )cosnθdθ , dn =

1
π

∫ 2π

0
ρ(P,θ )sinnθdθ , n ∈ Z

+.

We will express A(P) in terms of the Fourier coefficients of ρ(P,θ ) . By the
Parseval equality and (2.8), we get

A(P) =
1
4

πc2
0 +

1
2

π
∞

∑
n=1

(c2
n +d2

n).

For the star body P , if its radial function

ρ(P,θ ) =
1
2
c0 +

∞

∑
n=1

(cn cosnθ +dn sinnθ )
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satisfies
1
2
c0 +

∞

∑
l=1

(ckl cosklθ +dkl sinklθ ) > 0,

then we can define a star body P̃ associated with P by

ρ(P̃,θ ) =
1
2
c0 +

∞

∑
l=1

(ckl cosklθ +dkl sinklθ ). (2.9)

The star body P̃ associated with P will play a role in our stability statement in Section
4 below.

3. Stability properties of the generalized mixed width inequality

Let K and L be two convex domains with support functions H(K,θ ) and H(L,θ )
respectively, the most frequently used function to measure the deviation between K and
L is the Hausdorff distance

h(K,L) = max
θ

|H(K,θ )−H(L,θ )|.

Another such measure with respect to stability problem is the L2 -metric, which is de-
fined by

h2(K,L) =
(∫ 2π

0
|H(K,θ )−H(L,θ )|2dθ

)1/2

.

It is obvious that h(K,L) = 0 (or h2(K,L) = 0) if and only if K = L .
We consider now stabilities of the generalized mixed width inequality (1.3) with

respect to the deviation measures h2 and h .

THEOREM 3.1. Let K,L be two convex domains with areas A(K) and A(L) re-
spectively. For k ∈ Z

+ and k � 2 , then

1
2k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ −

√
A(K)A(L) � h2(K,S(K))h2(L,S(L)), (3.1)

and the equality (3.1) holds if and only if K and L are discs, where S(K) and S(L) are
the Steiner discs of K and L, respectively.

Proof. Since the support function H(K,θ ) of the convex domain K has the fol-
lowing Fourier series

H(K,θ ) =
1
2π

p(K)+
∞

∑
n=1

(aK
n cosnθ +bK

n nsinnθ ),

where

aK
n =

1
π

∫ 2π

0
H(K,θ )cosnθdθ , bK

n =
1
π

∫ 2π

0
H(K,θ )sinnθdθ , n ∈ Z

+,
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and the support function of S(K) is

H(S(K),θ ) =
1
2π

p(K)+aK
1 cosθ +bK

1 sinθ .

By using Parseval’s equality one can obtain

h2(K,S(K)) =
(∫ 2π

0
|H(K,θ )−H(S(K),θ )|2dθ

)1/2

=

√
π

∞

∑
n=2

(aK
n

2 +bK
n

2). (3.2)

Similarly, one has

h2(L,S(L)) =
(∫ 2π

0
|H(L,θ )−H(S(L),θ )|2dθ

)1/2

=

√
π

∞

∑
m=2

(aL
m

2 +bL
m

2). (3.3)

By the proof of Theorem 3.1 in [7], it follows that

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ − aL

0

aK
0

A(K)− aK
0

aL
0
A(L)

=
π
2

∞

∑
n=2

(n2−1)
[

aL
0

aK
0

(aK
n

2 +bK
n

2)+
aK

0

aL
0
(aL

n
2 +bL

n
2)
]
+ π

∞

∑
l=1

(aK
kla

L
kl +bK

klb
L
kl).

Moreover,

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ − aL

0

aK
0

A(K)− aK
0

aL
0
A(L)

� π
2

∞

∑
n=2

(n2−2)
[

aL
0

aK
0

(aK
n

2
+bK

n
2
)+

aK
0

aL
0
(aL

n
2
+bL

n
2
)
]

+
π
2

∞

∑
n=2

[(
aL

0

aK
0

aK
n

2 +
aK

0

aL
0
aL

n
2
)

+
(

aL
0

aK
0

bK
n

2 +
aK

0

aL
0
bL

n
2
)]

− π
2

∞

∑
l=1

(|2aK
kla

L
kl|+ |2bK

klb
L
kl|
)

� π
2

∞

∑
n=2

(n2−2)
[

aL
0

aK
0

(aK
n

2
+bK

n
2
)+

aK
0

aL
0
(aL

n
2
+bL

n
2
)
]
,

(3.4)

which together with (3.2) and (3.3) implies that

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ − aL

0

aK
0

A(K)− aK
0

aL
0

A(L)

� π

[
aL

0

aK
0

∞

∑
n=2

(aK
n

2 +bK
n

2)+
aK

0

aL
0

∞

∑
m=2

(aL
m

2 +bL
m

2)

]

� 2

√
π

∞

∑
n=2

(aK
n

2 +bK
n

2)

√
π

∞

∑
m=2

(aL
m

2 +bL
m

2)

= 2h2(K,S(K))h2(L,S(L)).
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Furthermore, one can get

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ � aL

0

aK
0

A(K)+
aK

0

aL
0
A(L)+2h2(K,S(K))h2(L,S(L))

� 2
√

A(K)A(L)+2h2(K,S(K))h2(L,S(L)).

Hence,

1
2k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ −

√
A(K)A(L) � h2(K,S(K))h2(L,S(L)),

and the equality holds if and only if K and L are discs. �

THEOREM 3.2. Under the same assumptions of Theorem 3.1 , one gets

1
2k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ−

√
A(K)A(L)� 2π

5−√
2π cot(

√
2π)

h(K,S(K))h(L,S(L)),

(3.5)
and the equality holds if K and L are discs.

Proof. Since it is easily see that

|an cosnθ +bn sinnθ | �
√

a2
n +b2

n,

one can get

|H(K,θ )−H(S(K),θ )|

=

∣∣∣∣∣12aK
0 +

∞

∑
n=1

(aK
n cosnθ +bK

n sinnθ )−
(1

2
aK

0 +aK
1 cosθ +bK

1 sinθ
)∣∣∣∣∣

�
∞

∑
n=2

∣∣aK
n cosnθ +bK

n sinnθ
∣∣� ∞

∑
n=2

√
aK

n
2 +bK

n
2.

Similarly,

|H(L,θ )−H(S(L),θ )| �
∞

∑
m=2

√
aL

m
2 +bL

m
2.

It follows from the Hölder inequality that

h(K,S(K)) �
∞

∑
n=2

√
aK

n
2 +bK

n
2

�
(

∞

∑
n=2

1
n2−2

)1/2[ ∞

∑
n=2

(n2−2)(aK
n

2 +bK
n

2)

]1/2 (3.6)

and

h(L,S(L)) �
(

∞

∑
m=2

1
m2−2

)1/2[ ∞

∑
m=2

(m2−2)(aL
m

2 +bL
m

2)

]1/2

. (3.7)
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Recall that if q is not an integer by Fourier series calculation,

π cotqπ =
1
q
−2q

∞

∑
n=1

1
n2−q2 .

Furthermore, one can calculate

∞

∑
n=2

1
n2−2

=
5−√

2π cot(
√

2π)
4

.

It follows from (3.4), (3.6) and (3.7) that

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ − aL

0

aK
0

A(K)− aK
0

aL
0

A(L)

� π
2

[
aL

0

aK
0

∞

∑
n=2

(n2−2)(aK
n

2 +bK
n

2)+
aK

0

aL
0

∞

∑
m=2

(m2 −2)(aL
m

2 +bL
m

2)

]

� π

√
∞

∑
n=2

(n2−2)(aK
n

2 +bK
n

2)

√
∞

∑
m=2

(m2−2)(aL
m

2 +bL
m

2)

� 4π
5−√

2π cot(
√

2π)
h(K,S(K))h(L,S(L)).

Moreover,

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ

� aL
0

aK
0

A(K)+
aK

0

aL
0

A(L)+
4π

5−√
2π cot(

√
2π)

h(K,S(K))h(L,S(L))

� 2
√

A(K)A(L)+
4π

5−√
2π cot(

√
2π)

h(K,S(K))h(L,S(L)).

Hence,

1
2k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ −

√
A(K)A(L)� 2π

5−√
2π cot(

√
2π)

h(K,S(K))h(L,S(L)),

and the equality holds if K and L are discs. �

REMARK. (i) Theorems 3.1 and 3.2 can be looked upon as strengthened forms
of the generalized mixed width inequality (1.3).

(ii) Observe that although (3.1) cannot be improved for all K,L∈C 2 , it is possible
to prove stronger inequalities for particular kinds of convex domains. For example, if
K,L are of constant width, the Fourier expression of the support functions of K and L
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have the properties that aK
2n = aL

2m = bK
2n = bL

2m = 0 for all n,m ∈ Z
+ . Checking the

proof of (3.1),

h2(K,S(K)) =

√
π

∞

∑
n=1

(aK
2n+1

2 +bK
2n+1

2),

h2(L,S(L)) =

√
π

∞

∑
m=1

(aL
2m+1

2 +bL
2m+1

2).

It follows from (3.4) that

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ − aL

0

aK
0

A(K)− aK
0

aL
0
A(L)

� 7π
2

[
aL

0

aK
0

∞

∑
n=1

(aK
2n+1

2 +bK
2n+1

2)+
aK

0

aL
0

∞

∑
m=1

(aL
2m+1

2 +bL
2m+1

2)

]

� 7

√
π

∞

∑
n=1

(aK
2n+1

2 +bK
2n+1

2)

√
π

∞

∑
m=1

(aL
2m+1

2 +bL
2m+1

2)

= 7h2(K,S(K))h2(L,S(L)).

Hence,

1
2k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ −

√
A(K)A(L) � 7

2
h2(K,S(K))h2(L,S(L)),

and the equality holds if and only if K and L are discs.
Similarly, (3.5) can also be strengthened in this case. Since

|H(K,θ )−H(S(K),θ )|
�

∞

∑
n=1

√
aK

2n+1
2 +bK

2n+1
2

�
(

∞

∑
n=1

1
(2n+1)2−2

)1/2[ ∞

∑
n=1

((2n+1)2−2)(aK
2n+1

2 +bK
2n+1

2)

]1/2

<

(
∞

∑
n=1

1

4n2 +4n−3

)1/2[ ∞

∑
n=1

((2n+1)2−2)(aK
2n+1

2 +bK
2n+1

2)

]1/2

=

√
1
3

[
∞

∑
n=1

((2n+1)2−2)(aK
2n+1

2
+bK

2n+1
2
)

]1/2

.

Similarly, we can get

|HL(θ )−HS(L)(θ )| <
√

1
3

[
∞

∑
m=1

((2m+1)2−2)(aL
2m+1

2 +bL
2m+1

2)

]1/2

.
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It follows from (3.4) that

1
k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ − aL

0

aK
0

A(K)− aK
0

aL
0

A(L)

� π
2

[
∞

∑
n=1

(
(2n+1)2−2

) aL
0

aK
0

(aK
2n+1

2+bK
2n+1

2)+
∞

∑
m=1

(
(2m+1)2−2

) aK
0

aL
0
(aL

2m+1
2+bL

2m+1
2)

]

� π

√
∞

∑
n=1

((2n+1)2−2)(aK
2n+1

2 +bK
2n+1

2)

√
∞

∑
m=1

((2m+1)2−2)(aL
2m+1

2 +bL
2m+1

2)

> 3πh(K,S(K))h(L,S(L)).

Hence,

1
2k2

∫ 2π

0
ωk(K,θ )ωk(L,θ )dθ −

√
A(K)A(L) >

3π
2

h(K,S(K))h(L,S(L)).

4. Stability property of the generalized dual mixed radial inequality

Let P and Q be two planar star bodies with radial functions ρ(P,θ ) and ρ(Q,θ )
respectively, similar to L2 -metric, the dual L2 -metric between P and Q can be defined
by

δ2(P,Q) =
(∫ 2π

0
|ρ(P,θ )−ρ(Q,θ )|2dθ

)1/2

.

It is obvious that δ2(P,Q) = 0 if and only if P = Q .
We consider now the stability of the generalized dual mixed radial inequality (1.5)

with respect to the deviation measure δ2 .

THEOREM 4.1. Let P,Q be two planar star bodies with areas A(P) and A(Q)
respectively. If P̃,Q̃ are star bodies associated with P and Q, respectively. For k ∈ Z

+

and k � 2 , then

A(P)A(Q)−
(

1
2k2

∫ 2π

0
ρk(P,θ )ρk(Q,θ )dθ

)2

� 1
4

δ2(P, P̃)2δ2(Q,Q̃)2, (4.1)

and the equality holds if and only if P and Q are discs.

Proof. We assume that ρ(P,θ ) and ρ(Q,θ ) have the following Fourier series

ρ(P,θ ) =
1
2
cP
0 +

∞

∑
n=1

(cP
n cosnθ +dP

n sinnθ ),

ρ(Q,θ ) =
1
2
cQ
0 +

∞

∑
n=1

(cQ
n cosnθ +dQ

n sinnθ ),
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then areas A(P) and A(Q) follow from (2.7) and (2.8) that

A(P) =
1
4

πcP
0

2 +
1
2

π
∞

∑
n=1

(cP
n

2 +dP
n

2), A(Q) =
1
4

πcQ
0

2
+

1
2

π
∞

∑
n=1

(cQ
n

2
+dQ

n
2
).

Similarly, by the proof of Theorem 3.1 in [7], it follows that

1
2k2

∫ 2π

0
ρk(P,θ )ρk(Q,θ )dθ =

1
4

πcP
0cQ

0 +
1
2

π
∞

∑
l=1

(cP
klc

Q
kl +dP

kld
Q
kl).

By using Parseval’s equality one can obtain

δ2(P, P̃)2 =
∫ 2π

0

∣∣∣ρ(P,θ )−ρ(P̃,θ )
∣∣∣2 dθ = π

∞

∑
n �=kl

(cP
n

2 +dP
n

2),

δ2(Q,Q̃)2 =
∫ 2π

0

∣∣∣ρ(Q,θ )−ρ(Q̃,θ )
∣∣∣2 dθ = π

∞

∑
n �=kl

(cQ
n

2
+dQ

n
2
).

Therefore,

A(P)A(Q)−
(

1
2k2

∫ 2π

0
ρk(P,θ )ρk(Q,θ )dθ

)2

=
1
8

π2cP
0

2
∞

∑
n=1

(cQ
n

2
+dQ

n
2
)+

1
8

π2cQ
0

2 ∞

∑
n=1

(cP
n

2 +dP
n

2)

+
1
4

π2
∞

∑
n=1

(cP
n

2 +dP
n

2)
∞

∑
n=1

(cQ
n

2
+dQ

n
2
)

−1
4

π2cP
0cQ

0

∞

∑
l=1

(cP
klc

Q
kl +dP

kld
Q
kl)−

1
4

π2

[
∞

∑
l=1

(cP
klc

Q
kl +dP

kld
Q
kl)

]2

.

Moreover,

A(P)A(Q)−
(

1
2k2

∫ 2π

0
ρk(P,θ )ρk(Q,θ )dθ

)2

� 1
8

π2cP
0

2
∞

∑
n �=kl

(cQ
n

2
+dQ

n
2
)+

1
8

π2cQ
0

2 ∞

∑
n �=kl

(cP
n

2 +dP
n

2)

+
1
4

π2
∞

∑
n �=kl

(cP
n

2 +dP
n

2)
∞

∑
n �=kl

(cQ
n

2
+dQ

n
2
)

� 1
4

π2
∞

∑
n �=kl

(cP
n

2 +dP
n

2)
∞

∑
n �=kl

(cQ
n

2
+dQ

n
2
)

=
1
4

δ2(P, P̃)2δ2(Q,Q̃)2.

Hence,

A(P)A(Q)−
(

1
2k2

∫ 2π

0
ρk(P,θ )ρk(Q,θ )dθ

)2

� 1
4

δ2(P, P̃)2δ2(Q,Q̃)2,
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and the equality holds if and only if P and Q are discs. �
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