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REFINED INEQUALITIES ON THE WEIGHTED LOGARITHMIC MEAN

SHIGERU FURUICHI AND NICUŞOR MINCULETE

(Communicated by J. Pečarić)

Abstract. Inspired by the recent work by R. Pal et al., we give further refined inequalities for a
convex Riemann integrable function, applying the standard Hermite-Hadamard inequality. Our
approach is different from their one in [9]. As corollaries, we give the refined inequalities on the
weighted logarithmic mean and the weighted identric mean. Some further extensions are also
given.

1. Introduction

The inequalities on means attract many mathematicians for their depelopments.
See [6] and references therein for example. Recently, in [9, Theorem 2.2], the weighted
logarithmic mean was properly introduced and the inequalities among weighted means
were shown as

a�vb � Lv(a,b) � a∇vb, (1)

where the weighted geometric mean is defined by a�vb := a1−vbv , the weighted arith-
metic mean by a∇vb := (1− v)a+ vb and the weighted logarithmic mean by [9]:

Lv(a,b) :=
1

loga− logb

(
1− v

v
(a−a1−vbv)+

v
1− v

(a1−vbv −b)
)

(2)

for a,b > 0 and v ∈ (0,1) . We easily find that L1/2(a,b) =
a−b

loga− logb
(a �= b ), with

L1/2(a,a) := a . This is the so-called logarithmic mean. We also find that lim
v→0

Lv(a,b) =

a and lim
v→1

Lv(a,b) = b . Thus the inequalities given in (1) recover the well-known

relations: √
ab � a−b

loga− logb
� a+b

2
(a,b > 0).

We use the symbols ∇ and � simply, instead of ∇1/2 and �1/2 .
R. Pal et al. obtained the inequalities given in (1) by their general result given in

[9, Theorem 2.1] which can be regarded as the generalization of the famous Hermite-
Hadamard inequality with weight v ∈ [0,1] :

f (a∇vb) � Cf ,v(a,b) � f (a)∇v f (b) (3)
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where

Cf ,v(a,b) :=
(∫ 1

0
f (a∇vtb)dt

)
∇v

(∫ 1

0
f ((1− v)(b−a)t+a∇vb)dt

)
(4)

for a convex Riemann integrable function, a,b > 0 and v ∈ [0,1] . By elementary
calculations, we find that the inequalities given in (3) recover the standard Hermite-
Hadamard inequalities:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
. (5)

In this paper, we give a refinement of the inequalities given in (3) and as its conse-
quence, we imply refined inequalities on the weighted logarithmic mean.

2. Main results

We firstly give the refined inequalities for (3) by repeating use of the standard
Hermite-Hadamard inequalities given in (5).

THEOREM 2.1. For every convex Riemann integrable function f : [a,b]→ R and
v ∈ [0,1] , we have

f (a∇vb) � R(1)
f ,v(a,b) � Cf ,v(a,b) � R(2)

f ,v(a,b) � f (a)∇v f (b), (6)

where
R(1)

f ,v(a,b) := f (a∇ v
2
b)∇v f (a∇ 1+v

2
b) (7)

and
R(2)

f ,v(a,b) := ( f (a)∇v f (b))∇( f (a∇vb)) . (8)

Proof. Applying the standard Hermite-Hadamard inequalities (5) on the two in-
tervals [a,(1− v)a+ vb] and [(1− v)a+ vb,b] , we obtain respectively

f

(
(2− v)a+ vb

2

)
� 1

v(b−a)

∫ (1−v)a+vb

a
f (t)dt � f (a)+ f ((1− v)a+ vb)

2
(9)

and

f

(
(1− v)a+(1+ v)b

2

)
� 1

(1− v)(b−a)

∫ b

(1−v)a+vb
f (t)dt � f (b)+ f ((1− v)a+ vb)

2
.

(10)
Multiplying both sides in (9) and (10) by (1−v) and v respectively and summing each
side, we obtain

R(1)
f ,v(a,b) � 1− v

v(b−a)

∫ (1−v)a+vb

a
f (t)dt +

v
(1− v)(b−a)

∫ b

(1−v)a+vb
f (t)dt � R(2)

f ,v(a,b),

(11)
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which is equivalent to

R(1)
f ,v(a,b) � Cf ,v(a,b) � R(2)

f ,v(a,b), (12)

by replacing the variables such as t := v(b− a)s + a in the first term and t := (1−
v)(b−a)u+(1− v)a+ vb in the second term of the integral parts in (11).

Finally we estimate R(1)
f ,v(a,b) and R(2)

f ,v(a,b) . Since the function f is convex, we
have

R(1)
f ,v(a,b) � f

(
((1− v)(2− v)+ v(1− v))a+(v(1− v)+ v(1+ v))b

2

)
= f (a∇vb)

and
R(2)

f ,v(a,b) � ( f (a)∇v f (b))∇( f (a)∇v f (b)) = f (a)∇v f (b).

Thus we complete the proof. �

COROLLARY 2.2. For a,b > 0 and v ∈ (0,1) , we have

a�vb �
(
a� v

2
b
)

∇v

(
a� 1+v

2
b
)

� Lv(a,b) � (a∇vb)∇(a�vb) � a∇vb. (13)

Proof. Applying the convex function f (t) := et in Theorem 2.1, we have for b �
a > 0

e(1−v)a+vb � (1− v)e
(2−v)a+vb

2 + ve
(1−v)a+(1+v)b

2

� (1− v)
∫ 1

0
ev(b−a)t+adt + v

∫ 1

0
e(1−v)(b−a)t+(1−v)a+vbdt

� (1− v)ea + veb + e(1−v)a+vb

2
� (1− v)ea + veb.

By elementary calculations, we have

(1− v)
∫ 1

0
ev(b−a)t+adt + v

∫ 1

0
e(1−v)(b−a)t+(1−v)a+vbdt

=
1− v

v(b−a)

(
e(1−v)a+vb− ea

)
+

v
(1− v)(b−a)

(
eb− e(1−v)a+vb

)
.

Replacing ea and eb with a and b respectively, we obtain the inequalities (13) for
b � a > 0 and v ∈ (0,1) . Dividing both sides of the inequalities (13) by a and putting
b
a := t � 1, we have

tv � (1−v)t
v
2 +vt

1+v
2 � Lv(1,t)� 1

2
((1− v)+ vt + tv)� (1−v)+vt, (t � 1, v∈ (0,1)).

(14)
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Putting s := 1
t � 1 and u := 1− v , and then multiplying both sides by s > 0, we have

su � (1−u)s
u
2 +us

1+u
2 � Lu(1,s) � 1

2
((1−u)+us+ su) � (1−u)+us (15)

(0 < s � 1, u ∈ (0,1))

by elementary calculations. Thus we have the inequalities:

tv � (1−v)t
v
2 +vt

1+v
2 � Lv(1,t)� 1

2
((1− v)+ vt + tv) � (1−v)+vt (t > 0, v∈ (0,1)).

(16)
Therefore we complete the proof by putting t := b

a for any a,b > 0 in (16) and then
multiplying both sides by a > 0. �

We note that the third and fourth inequalities have already been given in [9, Lemma
2.3]. However, the first and second inequalities are new results. In addition, our ap-
proaches are different from the author’s in [9].

We give the inequalities on the weighted identric mean which was defined in [9]
as

Iv(a,b) :=
1
e

(a∇vb)
(1−2v)(a∇vb)
v(1−v)(b−a)

(
b

vb
1−v

a
(1−v)a

v

) 1
b−a

, v ∈ (0,1). (17)

It is easy to check that I1/2(a,b) recovers the usual identric mean I(a,b) := 1
e

(
bb

aa

) 1
b−a

,

with lim
v→0

Iv(a,b) = a and lim
v→1

Iv(a,b) = b .

COROLLARY 2.3. For a,b > 0 and v ∈ (0,1) , we have

a�vb � (a�vb)�(a∇vb) � Iv(a,b) �
(
a∇ v

2
b
)

�v

(
a∇ 1+v

2
b
)

� a∇vb. (18)

Proof. Applying the convex function f (t) := − logt , (t > 0) in Theorem 2.1, we
have for b � a > 0 with elementary calculations

loga1−vbv � log
(
a

1−v
2 b

v
2 ((1− v)a+ vb)

1
2

)
� 1− v

v(b−a)
{((1− v)a+ vb)log((1− v)a+ vb)− ((1− v)a+ vb)−a loga+a}

+
v

(1− v)(b−a)
{b logb−b− ((1− v)a+ vb)log((1− v)a+ vb)+ ((1− v)a+ vb)}

� log
((

1− v
2

)
a+

v
2
b
)1−v

((
1− 1+ v

2

)
a+

1+ v
2

b

)v

� log((1− v)a+ vb).
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We calculate the following.

1− v
v(b−a)

{((1− v)a+ vb)log((1− v)a+ vb)− ((1− v)a+ vb)−a loga+a}

+
v

(1− v)(b−a)
{b logb−b− ((1− v)a+ vb)log((1− v)a+ vb)+ ((1− v)a+ vb)}

= log{(1− v)a+ vb}
(1−2v){(1−v)a+vb}

v(1−v)(b−a) b
vb

(1−v)(b−a) a
− (1−v)a

v(b−a) −1

= log
1
e
{(1− v)a+ vb}

(1−2v){(1−v)a+vb}
v(1−v)(b−a)

(
b

vb
1−v

a
(1−v)a

v

) 1
b−a

.

Thus we complete the proof for any a,b > 0 in a similar way to the proof of Corollary
2.2. �

Our Corollary 2.3 clearly refines [9, Theorem 3.1].
According to the inequalities shown in [8, Theorem 3.3] for a convex function f ,

2vmin ·Δ f ,1/2(a,b) � Δ f ,v(a,b) � 2vmax ·Δ f ,1/2(a,b) (19)

where vmin := min{1− v,v}, vmax := max{1− v,v} and v ∈ [0,1]

Δ f ,v(a,b) := f (a)∇v f (b)− f (a∇vb) � 0, (20)

we obtain the further refinements of Theorem 2.1.

PROPOSITION 2.4. Under the same assumption as in Theorem 2.1, we have

f (a∇vb) � Q(1)
f ,v(a,b) � R(1)

f ,v(a,b) �Cf ,v(a,b) � R(2)
f ,v(a,b) � Q(2)

f ,v(a,b) � f (a)∇v f (b),
(21)

where
Q(1)

f ,v(a,b) := f (a∇vb)+2vmin ·Δ f ,1/2

(
a∇ v

2
b,a∇ 1+v

2
b
)

and
Q(2)

f ,v(a,b) := f (a)∇v f (b)− vmin ·Δ f ,1/2 (a,b) .

Proof. Using the first inequality from relation (19) and replacing a and b by
a∇ v

2
b and a∇ 1+v

2
b respectively, we deduce

2vmin ·Δ f ,1/2(a∇ v
2
b,a∇ 1+v

2
b) � Δ f ,v(a∇ v

2
b,a∇ 1+v

2
b)

= R(1)
f ,v(a,b)− f

(
(a∇ v

2
b)∇ v

2
(a∇ 1+v

2
b)
)

= R(1)
f ,v(a,b)− f (a∇vb) .

Using the first inequality in (19) again, we have

R(2)
f ,v(a,b) = ( f (a)∇v f (b))∇( f (a∇vb)) =

1
2
{ f (a)∇v f (b)+ f (a∇vb)}

� f (a)∇v f (b)− vmin ·Δ f ,1/2 (a,b) = Q(2)
f ,v(a,b) � f (a)∇v f (b). �
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REMARK 2.5. (i) From the inequality Q(2)
f ,v(a,b) � Q(1)

f ,v(a,b) in (21), we find
that

Δ f ,v(a,b) � vmin

(
Δ f ,1/2(a,b)+2Δ f ,1/2

(
a∇ v

2
b,a∇ 1+v

2
b
))

� 0,

which gives a refinement of (20).

(ii) From the second inequality of (19), we also find that

R(1)
f ,v(a,b) � P(1)

f ,v (a,b), P(2)
f ,v (a,b) � R(2)

f ,v(a,b)

where
P(1)

f ,v (a,b) := f (a∇vb)+2vmax ·Δ f ,1/2

(
a∇ v

2
b,a∇ 1+v

2
b
)

and
P(2)

f ,v (a,b) := f (a)∇v f (b)− vmax ·Δ f ,1/2 (a,b) .

However, there is no ordering between P(1)
f ,v (a,b) and P(2)

f ,v (a,b) , since we have
the following numerical examples.

P(1)
exp,1/4(4,1)−P(2)

exp,1/4(4,1)� 4.35403, P(1)
exp,1/4(8,1)−P(2)

exp,1/4(8,1)�−30.7996.

3. Reverses and refinements by differentiable functions

We extend the above results for differentiable functions. From [1], if f : I → R is
a differentiable function on Io (interior of I ) and if f ′ ∈ L[a,b](the space of Riemann
integrable function on [a,b]), where a,b ∈ I with a < b , then the following equality
holds for each x ∈ [a,b] :

f (x)− 1
b−a

∫ b

a
f (t)dt =

(x−a)2

b−a

∫ 1

0
v f ′((1− v)a+ vx)dv

− (b− x)2

b−a

∫ 1

0
v f ′((1− v)b+ vx)dv. (22)

If we choose x =
a+b

2
in (22), then we have

f

(
a+b

2

)
− 1

b−a

∫ b

a
f (t)dt

=
b−a

4

{∫ 1

0
v f ′
(

(1− v)a+ v
a+b

2

)
dv−

∫ 1

0
v f ′
(

(1− v)b+ v
a+b

2

)
dv

}
. (23)

In [2] we found the relation

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt =

b−a
2

∫ 1

0
(1−2v) f ′(va+(1− v)b)dv. (24)
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Here, we have the equality:∫ 1

0
(1−2v) f ′(va+(1− v)b)dv =

∫ 1

0
(2v−1) f ′((1− v)a+ vb)dv

=
2

(b−a)2

∫ b

a

(
t− a+b

2

)
f ′(t)dt.

Thus we have the following equality from (24) with the equality

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt =

1
b−a

∫ b

a

(
t− a+b

2

)
f ′(t)dt. (25)

THEOREM 3.1. For every convex differentiable function f : [a,b] → R with f ′ ∈
L[a,b] and | f ′(x)| � K , we have

Cf ,v(a,b)−R(1)
f ,v(a,b) � v(1− v)K(b−a)

2
(26)

and

R(2)
f ,v(a,b)−Cf ,v(a,b) � v(1− v)K(b−a)

2
. (27)

Proof. If | f ′(x)| � K , then from (23) we deduce

1
b−a

∫ b

a
f (t)dt− f

(
a+b

2

)
� K(b−a)

4
(28)

and from (25) we obtain

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt � K

b−a

∫ b

a

∣∣∣∣t− a+b
2

∣∣∣∣dt =
K(b−a)

4
. (29)

We obtain (26) by applying the inequalities (28) on the two intervals [a,(1− v)a+ vb]
and [(1−v)a+vb,b] , and then multiplying them by (1−v) and v and summing them.
In the same way with (29), we obtain (27). �

COROLLARY 3.2. For b � a > 0 and v ∈ (0,1) , we have

Lv(a,b) �
(
a� v

2
b
)

∇v

(
a� 1+v

2
b
)

+
v(1− v)b

2
log

b
a

(30)

and

(a∇vb)∇(a�vb) � Lv(a,b)+
v(1− v)b

2
log

b
a
. (31)

Proof. Applying the convex function f (t) := et in Theorem 3.1, we have the re-
lations of the statement, since we have

Cexp,v(a,b) = Lv(ea,eb),

R(1)
exp,v(a,b) =

(
ea� v

2
eb
)

∇v

(
ea� 1+v

2
eb
)

,

R(2)
exp,v(a,b) =

(
ea∇ve

b
)

∇
(
ea�ve

b
)
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and we can take K = eb for t ∈ [a,b] . Finally we replace ea and eb by a and b ,
respectively. �

The inequalities (30) and (31) give (difference type) reverses for the 2nd and 3rd
inequalities in (13), respectively.

COROLLARY 3.3. For b � a > 0 and v ∈ (0,1) , we have(
a∇ v

2
b
)

�v

(
a∇ 1+v

2
b
)

� e
v(1−v)(b−a)

2a Iv(a,b) (32)

and
Iv(a,b) � e

v(1−v)(b−a)
2a (a�vb)�(a∇vb) . (33)

Proof. Applying the convex function f (t) := − logt, (t > 0) in Theorem 3.1, we
have the relations of the statement, since we have

C− log,v(a,b) = − log Iv(a,b),

R(1)
− log,v(a,b) = − log

(
a∇ v

2
b
)

�v

(
a∇ 1+v

2
b
)

,

R(2)
− log,v(a,b) = − log(a�vb)�(a∇vb)

and we can take K = 1
a for t ∈ [a,b] . �

The inequalities (32) and (33) give (ratio type) reverses for the 3rd and 2nd in-
equalities in (18), respectively.

We extend the above results for the twice differentiable functions. From [3], [4]
and [5], assume that f : I → R is a continuous on I , twice differentiable on Io and
there exist m = inf

x∈Io
f ”(x) and M = sup

x∈Io
f ”(x) , a,b ∈ I with a < b , then the following

inequalities hold:

m
3

(
b−a

2

)2

� f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt � M

3

(
b−a

2

)2

(34)

and
m
6

(
b−a

2

)2

� 1
b−a

∫ b

a
f (t)dt− f

(
a+b

2

)
� M

6

(
b−a

2

)2

. (35)

THEOREM 3.4. Assume that f : I → R is a continuous on I , twice differentiable
on Io and there exist m = inf

x∈Io
f ”(x) and M = sup

x∈Io
f ”(x) , a,b ∈ I with a < b, we have

v(1− v)m
6

(
b−a

2

)2

� Cf ,v(a,b)−R(1)
f ,v(a,b) � v(1− v)M

6

(
b−a

2

)2

(36)

and

v(1− v)m
3

(
b−a

2

)2

� R(2)
f ,v(a,b)−Cf ,v(a,b) � v(1− v)M

3

(
b−a

2

)2

. (37)
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Proof. Applying the inequality (34) on the two intervals [a,(1− v)a + vb] and
[(1− v)a+ vb,b] , we obtain

m
6

(
v(b−a)

2

)2

� 1
v(b−a)

∫ b

a
f (t)dt − f

(
a∇ v

2
b
)

� M
6

(
v(b−a)

2

)2

(38)

and

m
6

(
(1− v)(b−a)

2

)2

� 1
(1− v)(b−a)

∫ b

a
f (t)dt− f

(
a∇ 1+v

2
b
)

� M
6

(
(1− v)(b−a)

2

)2

.

(39)
Multiplying both sides in (38) and (39) by (1− v) and v respectively and summing
each side, we obtain the relations of the statement. Similarly, applying the inequality
(35), we deduce the inequality (39). �

COROLLARY 3.5. For b � a > 0 and v ∈ (0,1) , we have

v(1− v)a
24

log2 b
a

� Lv(a,b)−
(
a� v

2
b
)

∇v

(
a� 1+v

2
b
)

� v(1− v)b
24

log2 b
a

(40)

and
v(1− v)a

12
log2 b

a
� (a∇vb)∇(a�vb)−Lv(a,b) � v(1− v)b

12
log2 b

a
. (41)

Proof. Applying the convex function f (t) := et in Theorem 3.4, we have the re-
lations of the statement, since m = ea and M = eb . Finally we replace ea and eb by a
and b , respectively. �

The inequalities (40) and (41) give a better (difference type) refinement for the 2nd
and 3rd inequality in (13), respectively.

COROLLARY 3.6. For b � a > 0 and v ∈ (0,1) , we have

e
−v(1−v)(b−a)2

24a2
(
a∇ v

2
b
)

�v

(
a∇ 1+v

2
b
)

� Iv(a,b) � e
−v(1−v)(b−a)2

24b2
(
a∇ v

2
b
)

�v

(
a∇ 1+v

2
b
)
(42)

and

e
v(1−v)(b−a)2

12b2 (a�vb)�(a∇vb) � Iv(a,b) � e
v(1−v)(b−a)2

12a2 (a�vb)�(a∇vb) . (43)

Proof. Applying the convex function f (t) := − logt, (t > 0) in Theorem 3.4, we
have the relations of the statement, since m = 1

b2 and M = 1
a2 . �

The inequalities (42) and (43) give a better (ratio type) refinement for the 3rd and
2nd inequality in (18), respectively.
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4. Concluding remarks

Our obtained results in this paper can be extended to the operator inequalities.
We give operator inequalities corresponding to Corollary 2.2. We omit the other cases.
For strictly positive operators A and B , the weighted geometric operator mean and
arithmetic operator mean are defined as

A�vB := A1/2
(
A−1/2BA−1/2

)v
A1/2, A∇vB := (1− v)A+ vB.

It is known that an operator mean M(A,B) is associated with the representing function
f (t) = m(1, t) with a mean m(a,b) for positive numbers a,b , in the following

M(A,B) = A1/2 f
(
A−1/2BA−1/2

)
A1/2

in the general operator mean theory by Kubo-Ando [7]. Thus it is understood that the
weighted logarithmic operator mean A�vB is defined through the representing function
Lv(1, t) for v ∈ (0,1) .

From Corollary 2.2 and Kubo-Ando theory (or standard functional calculus), we
can obtain the following operator inequalities. However, we state an alternative proof
for the scalar inequalities on the representing functions.

THEOREM 4.1. For any v ∈ (0,1) and strictly positive operators A and B, we
have

A�vB � (1− v)A� v
2
B+ vA� 1+v

2
B � A�vB � 1

2
(A�vB+A∇vB) � A∇vB.

Proof. It is sufficient to prove the following scalar inequalities:

tv � (1− v)tv/2 + vt(1+v)/2 � Lv(1,t) � 1
2

(tv +(1− v)+ vt)� (1− v)+ vt (44)

where

Lv(1, t) :=
1

logt

(
1− v

v
(tv −1)+

v
1− v

(t − tv)
)

(t > 0, v ∈ (0,1)).

The fourth inequality in (44) is trivial and third one in (44) was proven in [9, Lemma
2.3]. The first inequality in (44) can be proven by the fact that the arithmetic mean is
greater than or equal to the geometric mean as (1−v)tv/2+vt(1+v)/2 � tv(1−v)/2tv(1+v)/2 =
tv . The second inequality in (44) can be proven by the use of the following first inequal-
ity:

x2 −1
logx2 � x > 0. (45)

Putting x := tv/2 and x := t(v−1)/2 in (45), we have respectively

tv/2 � tv −1
v log t

and t(v−1)/2 � tv−1−1
(v−1) logt

⇔ t(1+v)/2 � t − tv

(1− v) logt
.
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Multiplying the first and second inequality in the above by (1−v) and v and then sum-
ming them, we obtain the second inequality in (44). Finally, replacing t by A−1/2BA−1/2

in the inequalities (44) and then multiplying both sides by A1/2 , we complete the
proof. �

The upper bound of A�vB has already given in [9, Theorem 2.4]. But the lower
bound of A�vB is a new result in Theorem 4.1.
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