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MATRIX OSTROWSKI INEQUALITY

VIA THE MATRIX GEOMETRIC MEAN

RYOSUKE NAKAYAMA, YUKI SEO AND REO TOJO

(Communicated by M. Fujii)

Abstract. In this paper, we show a symmetric generalization of the Ostrowski inequality due to
Fujii, Lin and Nakamoto. Moreover, we show its two variable extenstion. Inspired by this, we
present matrix Ostrowski inequalities via the matrix geometric mean.

1. Introduction

The Cauchy-Schwarz inequality is one of the most useful and fundamental in-
equalities in functional analysis: Let a and b be two vectors in a Hilbert space H .
Then

|〈a,b〉| � ||a|| ||b|| (1.1)

and the equality holds in (1.1) if and only if a and b are linearly dependent. Many
researchers have been studied generalizations and refinements of the Cauchy-Schwarz
inequality. The following inequality due to A.M. Ostrowski is regarded as a refinement
of the Cauchy-Schwarz inequality, see [5, pp. 92–95]: Let a = (a1, . . . ,an) and b =
(b1, . . . ,bn) be two nonproportional sequences of real numbers, x = (x1, . . . ,xn) any
sequence of real numbers for which the following holds:

n

∑
i=1

aixi = 0 and
n

∑
i=1

bixi = 1.

Then
n

∑
i=1

x2
i � ∑n

i=1 a2
i(

∑n
i=1 a2

i

)(
∑n

i=1 b2
i

)− (∑n
i=1 aibi)

2 (1.2)

with equality if and only if

xk =
bk ∑n

i=1 a2
i −ak ∑n

i=1 aibi(
∑n

i=1 a2
i

)(
∑n

i=1 b2
i

)− (∑n
i=1 aibi)

2 for k = 1, . . . ,n.

In [2], Fujii, Lin and Nakamoto extended the Ostrowski inequality (1.2) to the
vector version in a Hilbert space:
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THEOREM A. (Fujii-Lin-Nakamoto) Let a and b be non-zero linearly indepen-
dent vectors in a Hilbert space H . If x ∈ H satisfies 〈a,x〉 = 0 and 〈b,x〉 = 1, then

||x||2 � ||a||2
||a||2 ||b||2−|〈a,b〉|2 (1.3)

and the equality holds in (1.3) if and only if

x =
||a||2 b−〈b,a〉a

||a||2 ||b||2 −|〈a,b〉|2 .

Though the Cauchy-Schwarz inequality (1.1) is symmetric on vectors a and b in
H , the vector version (1.3) of the Ostrowski inequality in Theorem A is not symmetric.
Thus, we consider the symmetric generalization of the Ostrowski inequality due to
Fujii, Lin and Nakamoto. Moreover, we show its two variable extenstion. Inspired by
this, we present matrix Ostrowski inequalities via the matrix geometric mean.

2. Symmetric generalization of Ostrowski inequality

First of all, we show a symmetric generalization of the Ostrowski inequality due
to Fujii, Lin and Nakamoto without the conditions on x :

THEOREM 2.1. Let a and b be non-zero linearly independent vectors in a Hilbert
space H . Then for any x ∈ H

||x||2 � ||〈b,x〉a−〈a,x〉b||2
||a||2 ||b||2−|〈a,b〉|2 (2.1)

and the equality holds in (2.1) if and only if

x =
(〈x,a〉 ||b||2−〈x,b〉〈b,a〉)a+(〈x,b〉 ||a||2 −〈x,a〉〈a,b〉)b

||a||2 ||b||2 −|〈a,b〉|2 .

To prove Theorem 2.1, we need the following Lemma:

LEMMA 2.2. Let a and b be non-zero linearly independent vectors in a Hilbert
space H . If x ∈ H is a linear combination of a and b, then

||x||2 =
||〈b,x〉a−〈a,x〉b||2
||a||2 ||b||2−|〈a,b〉|2 . (2.2)

Proof. We put x = sa+ tb for some scalars s,t ∈C , and Δ = ||a||2 ||b||2−|〈a,b〉|2 .
Since 〈x,a〉 = s ||a||2 + t〈b,a〉 and 〈x,b〉 = s〈a,b〉+ t ||b||2 , we have

s =
〈x,a〉 ||b||2−〈x,b〉〈b,a〉

Δ
and t =

〈x,b〉 ||a||2−〈x,a〉〈a,b〉
Δ

.
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Hence it follows that

||x||2 = ||sa+ tb||2 = |s|2 ||a||2 +2Re st〈a,b〉+ |t|2 ||b||2

=
||a||2
Δ2

(
|〈a,x〉|2 ||b||4−〈x,a〉〈b,x〉〈a,b〉 ||b||2

)

+
||b||2
Δ2

(
|〈b,x〉|2 ||a||4 −〈x,b〉〈a,x〉〈b,a〉 ||a||2

)
+
〈a,b〉

Δ2

(
〈x,b〉〈b,a〉2〈a,x〉− |〈a,x〉|2〈b,a〉 ||b||2

)
+
〈b,a〉

Δ2

(
〈b,x〉〈a,b〉2〈x,a〉− |〈b,x〉|2〈a,b〉 ||a||2

)
=

1
Δ

(
|〈a,x〉|2 ||b||2−〈x,a〉〈b,x〉〈a,b〉− 〈x,b〉〈a,x〉〈b,a〉+ |〈b,x〉|2 ||a||2

)

=
||〈b,x〉a−〈a,x〉b||2
||a||2 ||b||2−|〈a,b〉|2

as desired. �

Proof of Theorem 2.1. For any x ∈ H , we put x = sa+ tb+ c for some scalars
s,t ∈ C , where c is orthogonal to a and b . Put y = sa+ tb . It follows from Lemma 2.2
that

||y||2 =
||〈b,x〉a−〈a,x〉b||2
||a||2 ||b||2 −|〈a,b〉|2 .

Hence we have

||x||2 = ||y||2 + ||c||2 � ||y||2 =
||〈b,x〉a−〈a,x〉b||2
||a||2 ||b||2−|〈a,b〉|2

and the equality condition. �

REMARK 2.3. The inequality (2.1) of Theorem 2.1 is symmetric on a and b , and
a generalization of the Ostrowski inequality due to Fujii, Lin and Nakamoto: In fact, if
〈a,x〉 = 0 and 〈b,x〉 = 1 in Theorem 2.1, then we have the inequality (1.3) of Theorem
A.

3. Two variable extension of Ostrowski inequality

Next, we show a two variable extension of the Ostrowski inequality (1.3):

THEOREM 3.1. For a pair of nonzero linearly independent vectors a,b ∈ H , if
x,y ∈ H satisfy 〈a,x〉 = 〈b,y〉 = 0 and 〈b,x〉 = 〈a,y〉 = 1 , then

||x||2 ||y||2 � ||a||2 ||y||2 + ||b||2 ||x||2 −1

||a||2 ||b||2−
∣∣∣〈a,b〉+ 〈y,x〉

||x||2||y||2
∣∣∣2 (3.1)
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and the equality holds in (3.1) if and only if two vectors a− 1
||y||2 y and b− 1

||x||2 x are

linearly dependent.

Proof. It follows from the Cauchy-Schwarz inequality that

∣∣∣∣∣
〈
a− 1

||y||2 y,b− 1

||x||2 x
〉∣∣∣∣∣

2

�
〈
a− 1

||y||2 y,a− 1

||y||2 y
〉〈

b− 1

||x||2 x,b− 1

||x||2 x
〉

and the conditions 〈a,x〉 = 〈b,y〉 = 0 and 〈b,x〉 = 〈a,y〉 = 1 imply

∣∣∣∣∣〈a,b〉+ 〈y,x〉
||x||2 ||y||2

∣∣∣∣∣
2

�
(
||a||2 − 1

||y||2
)(

||b||2 − 1

||x||2
)

.

Therefore, we have the desired inequality (3.1) and the equality conditions. �

REMARK 3.2. Let θ ∈ [0,π ] be the argument between two complex numbers

〈a,b〉 and 〈y,x〉
||x||2||y||2 . If −2|〈a,b〉|cosθ � |〈y,x〉|

||x||2||y||2 , then the inequality (3.1) implies (1.3).

In fact, this condition is equivalent to the inequality |〈a,b〉|� |〈a,b〉+ 〈y,x〉
||x||2||y||2 | and we

have

||x||2 ||y||2 � ||a||2 ||y||2 + ||b||2 ||x||2 −1

||a||2 ||b||2−|〈a,b〉+ 〈y,x〉
||x||2||y||2 |2

� ||a||2 ||y||2 + ||b||2 ||x||2−1

||a||2 ||b||2−|〈a,b〉|2 .

Since 〈b,x〉 = 1, it follows that ||b|| ||x|| � 1 and so

||x||2 �
||a||2 + ||b||2||x||2−1

||y||2

||a||2 ||b||2 −|〈a,b〉|2 � ||a||2
||a||2 ||b||2−|〈a,b〉|2 .

Hence we have the Ostroiwski inequality (1.3).

Under the orthogonal condition 〈x,y〉 = 0 in Theorem 3.1, we have the following
corollary:

COROLLARY 3.3. For a pair of nonzero linearly independent vectors a,b ∈ H ,
if x,y ∈ H satisfy 〈a,x〉 = 〈b,y〉 = 0 and 〈b,x〉 = 〈a,y〉 = 1 , and 〈x,y〉 = 0 , then

||x||2 ||y||2 � ||a||2 ||y||2 + ||b||2 ||x||2 −1

||a||2 ||b||2−|〈a,b〉|2 (3.2)

and the equality holds in (3.1) if and only if two vectors a− 1
||y||2 y and b− 1

||x||2 x are

linearly dependent.
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We remark that Corollary 3.3 is a more precise result than Theorem A and the
equality holds in (1.3) and (3.2) only if a and b are orthogonal. In fact, suppose that

||x||2 = ||a||2
||a||2||b||2−|〈a,b〉|2 . Then it follows from Remark 3.2 that

||x||2 =
||a||2 + ||b||2||x||2−1

||y||2

||a||2 ||b||2−|〈a,b〉|2 =
||a||2

||a||2 ||b||2 −|〈a,b〉|2

and so ||b||2 ||x||2−1 = 0. Hence we have

0 = ||b||2 ||x||2 −1 =
||a||2 ||b||2

||a||2 ||b||2−|〈a,b〉|2 −1

and so 〈a,b〉 = 0.

4. Matrix Ostrowski inequality

Let Mk×n = Mk×n(C) be the space of k×n complex matrices and Mn = Mn×n ,
and denote the matrix absolute value of any A∈Mk×n by |A|= (A∗A)1/2 . For A∈Mn ,
we write A � 0 if A is positive semidefinite and A > 0 if A is positive definite; that
is, x∗Ax > 0 for all nonzero column vectors x ∈ Cn . For two Hermitian matrices A
and B of the same size, we write A � B if A−B � 0, and A > B if A−B > 0. For
A∈Mk×n , kerA means the null space of A , and we denote the orthogonal projection on
the range space of A by PA , that is, PA = A(A∗A)†A∗ , where X† is the Moore-Penrose
generalized inverse of X .

First of all, we recall the matrix geometric mean: Let A and B be two positive
semidefinite matrices in Mn . Then the matrix geometric mean A # B is defined by

A # B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2 (4.1)

if A is positive definite, also see [6, 4]. By monotonicity, we can uniquely extend the
definition of A # B for all positive semidefinite matrices A and B by setting

A # B = lim
ε↓0

(A+ εI) # (B+ εI).

For the sake of convenience, we cite a useful lemma which we will use frequently in
the below.

LEMMA 4.1. Let A,B,C and D be positive semidefinite matrices.

(i) Consistency with scalars: If A and B commute, then A # B = A1/2B1/2 ;

(ii) Monotonicity: A � C and B � D =⇒ A # B � C # D;

(iii) Transformer equality: T ∗AT # T ∗BT = T ∗(A # B)T for nonsingular T ;
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(iv) Symmetry: A # B = B # A;

(v) Arithmetic-geometric mean inequality:

A # B � A+B
2

.

In [3], we presented matrix Cauchy-Schwarz type inequalities that derived by the
matrix geometric mean, also see [1]:

LEMMA 4.2. (Matrix Cauchy-Schwarz inequality) Let X and Y be two k×n ma-
trices in Mk×n and U ∈ Mn a unitary matrix in a polar decomposition of Y ∗X =
U |Y ∗X | . Then

|Y ∗X | � X∗X # U∗Y ∗YU. (4.2)

Under the assumption kerX ⊂ kerYU , the equality holds in (4.2) if and only if there
exists W ∈ Mn such that YU = XW .

Note that the matrix Cauchy-Schwarz inequality (4.2) is a natural extension of the
Cauchy-Schwarz inequality (1.1). In fact, let x and y be k× 1 vectors in Ck . Since
〈x,y〉 = eiθ |〈x,y〉| for some real number θ ∈ R , it follows from Lemma 4.2 that

|〈x,y〉| � 〈x,x〉#e−iθ 〈y,y〉eiθ

= 〈x,x〉 1
2 〈y,y〉 1

2

= ||x|| ||y|| .
The following matrix inequality (4.3) corresponds to the matrix version of (2.1) in

Theorem 2.1:

THEOREM 4.3. Let A and B be two matrices in Mk×n . For any matrix X in
Mk×n

|B∗A−B∗PXA| � A∗(I−PX)A � U∗B∗(I−PX)BU (4.3)

(� A∗A � U∗B∗BU) ,

where U ∈Mn is a unitary matrix in a polar decomposition of B∗(I−PX)A =U |B∗(I−
PX)A| .

Under the assumption ker(I −PX)A ⊂ ker(I−PX)BU , the equality holds in (4.3)
if and only if there exists W ∈ Mn such that (I−PX)BU = (I−PX)AW .

In fact, we notice that Theorem 4.3 implies Theorem 2.1. Let a,b,x ∈ C
k . Then

we have

b∗a−b∗Pxa = 〈a,b〉+ 〈a,x〉〈x,b〉
||x||2

and

a∗(I−Px)a = ||a||2− |〈a,x〉|2
||x||2 and e−iθ b∗(I−Px)beiθ = ||b||2− |〈b,x〉|2

||x||2 .
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Hence it follows from (4.3) that∣∣∣∣∣〈a,b〉+ 〈a,x〉〈x,b〉
||x||2

∣∣∣∣∣
2

�
(
||a||2− |〈a,x〉|2

||x||2
)(

||b||2− |〈b,x〉|2
||x||2

)

and so we have the desired inequality (2.1) in Theorem 2.1.
Here, Theorem 4.3 is a simple application of the matrix Cauchy-Schwarz inequal-

ity in Lemma 4.2. For the readers’ convenience, we give a proof:

Proof of Theorem 4.3. By the matrix Cauchy-Schwarz inequality in Lemma 4.2,
it follows that

|B∗A−B∗PXA| = |((I−PX)B)∗(I−PX)A|
� A∗(I−PX)A � U∗B∗(I−PX)BU

and we have the desired inequality (4.3) and the equality conditions. �

Moreover, the following matrix inequality (4.4) corresponds to the matrix version
of a two variable Ostrowski inequality in Theorem 3.1:

THEOREM 4.4. Let A and B be two matrices in Mk×n , and X and Y two matri-
ces in Mk×n such that X∗A = 0 and Y ∗B = 0 , and U ∈ Mn a unitary matrix in a polar
decomposition of B∗A+B∗PXPYA = U |B∗A+B∗PXPYA| . Then

|B∗A+B∗PXPYA| � A∗(I−PY )A � U∗B∗(I−PX)BU (4.4)

(� A∗A � U∗B∗BU) .

Under the assumption ker(I−PY )A ⊂ ker(I−PX)BU , the equality holds in (4.4) if and
only if there exists W ∈ Mn such that (I−PX)BU = (I−PY )AW .

Proof. Put A1 = (I−PY )A and B1 = (I−PX)B . Since X∗A = 0 and Y ∗B = 0, we
have PXA = 0 and B∗PY = 0 and so

B∗
1A1 = B∗(I−PX)(I−PY )A = B∗A+B∗PXPYA.

By Lemma 4.2, it follows from B∗
1A1 = U |B∗

1A1| that

|B∗A+B∗PXPYA| = |B∗
1A1|

� A∗
1A1 � U∗B∗

1B1U

= A∗(I−PY )A � U∗B∗(I−PX)BU

and we have the desired inequality (4.4) and the equality conditions. �

REMARK 4.5. Theorem 4.4 implies Theorem 3.1. In fact, let a,b∈ Ck and x,y ∈
Ck such that x∗a = y∗b = 0 and x∗b = y∗a = 1. Then we have

b∗a+b∗PxPya = b∗a+
〈a,y〉
||y||2 〈y,x〉 〈x,b〉||x||2 = 〈a,b〉+ 〈y,x〉

||x||2 ||y||2
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and

a∗(1−Py)a = a∗a− 〈a,y〉
||y||2 〈y,a〉 = ||a||2− 1

||y||2 (� 0)

and similarly

e−iθ b∗(1−Px)beiθ = ||b||2− 1

||x||2 (� 0).

Therefore, it follows from (4.4) that

∣∣∣∣∣〈a,b〉+ 〈y,x〉
||x||2 ||y||2

∣∣∣∣∣�
√√√√(||a||2− 1

||y||2
)(

||b||2− 1

||x||2
)

amd by taking the square of both sides, we have the desired inequality (3.1).
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