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Abstract. In this paper, we give some generalized results on matrix eigenvalue majorization
inequality for positive semidefinite block matrices under a condition, which is a natural extended
result given by Lin [4].

1. Introduction

First, we recall the definition of majorization. Given a real vector x = (x1,x2, . . . ,xn)
∈ Rn , we rearrange its components as x[1] � x[2] � . . . � x[n]. For x = (x1,x2, . . . ,xn) ,
y = (y1,y2, . . . ,yn) ∈ Rn , if

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1,2 . . . ,n,

then we say that x is weakly majorized by y and denote x≺w y . If x≺w y and ∑n
i=1 xi =

∑n
i=1 yi hold, then we say that x is majorized by y and denote x ≺ y .

As usual, the set of m× n complex matrices is denoted by Mm,n . For A ∈ Mn,n ,
we use si(A) to present the singular values of A with s1(A) � . . . � sn(A). Let s(A) =
(s1(A), . . . ,sn(A)). If A ∈ Mn,n is Hermitian, then all eigenvalues of A are real and
ordered as λ1(A) � . . . � λn(A) and set λ (A) = (λ1(A), . . . ,λn(A)) . Note that si(A) =
λi(|A|) , where |A| is the modulus of A , i.e. |A| = (A∗A)

1
2 and A∗ is the conjugate

transpose of A . A � 0 means that A is positive semidefinite. In this paper, we use

A⊕B to present the block matrix

[
A 0
0 B

]
.

The study of eigenvalues is of central importance in matrix analysis. In 1923,
Schur [1] showed that the diagonal entries of a Hermitian matrix are majorized by its
eigenvalues, i.e.

diag(H) ≺ λ (H) .
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Let H =
[

A C
C∗ B

]
be a partitioned Hermitian matrix, where A,B ∈ Mn,n . Ky Fan ex-

tended Schur’s result to block Hermitian matrices, i.e.

λ (A⊕B)≺ λ (H) .

Lin and Wolkowicz [4] gave a reverse majorization result of above:

λ (H) ≺ λ ((A+B)⊕0) (1)

holds under the conditions that C is Hermitian and H is a positive semidefinite matrix.
In 2012, Turkmen, Paksoy and Zhang [7] proved (1), where C is skew-Hermitian and
H is a positive semidefinite matrix. Zhang [8] showed that

λ (H) ≺ 1
2

λ ([A+B+
√−1(zC∗ − z∗C)]⊕0)+

1
2

λ ([A+B+
√−1(z∗C− zC∗)]⊕0),

where |z| = 1. One may see [9] and its references for more results on majorization
inequalities.

Motivated by the above, we generalize (1) to following:

THEOREM 1. Let Ai j ∈ Mn,n , i, j = 1,2, . . . ,s (s � 2) , Let (i �= j) be skew-
Hermitian matrices. Let H = [Ai j] ∈ Msn,sn be positive semidefinite matrix. Then

λ (H) ≺ λ ((
s

∑
i=1

Aii)⊕0).

2. Proofs of the main results and corollaries

Before we prove the main results, we first recall some well known results on ma-
jorization:

LEMMA 2. [10] Let A,B ∈ Mn,n be Hermitian matrices. Then we have λ (A +
B) ≺ λ (A)+ λ (B).

LEMMA 3. (Lemma1.3 of [4]) Let A∈Mm,n and m � n. Then λ (AA∗)= λ ((A∗A)
⊕0).

LEMMA 4. (Theorem 2.3.3 of [3]) Suppose f (t) is a monotonically increasing
and convex function, x = (x1, . . . ,xn) , y = (y1, . . . ,yn) . Then x ≺w y implies

( f (x1), . . . , f (xn)) ≺w ( f (y1), . . . , f (yn)).

Let Span{P1,P2, . . . ,Ps} = {k1, . . . ,ks ∈ R|k1P1 + k2P2 + . . .+ ksPs} . We assume
that P∗

i Pj =−P∗
j Pi(i �= j) . Now we use mathematical induction to deduce the following

lemma.
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LEMMA 5. Let P1,P2, . . . ,Ps ∈ Mm,n (s � 2) satisfying P∗
i Pj = −P∗

j Pi(i �= j) .
Then there exist 2s−1 matrices V1, . . . ,V2s−1 ∈ Span{P1,P2, . . . ,Ps} such that

2s−1

∑
i=1

ViV
∗
i = 2s−1(

s

∑
i=1

PiP
∗
i )

and for all j = 1, . . . ,2s−1

V ∗
j Vj =

s

∑
i=1

P∗
i Pi.

Proof. When s = 2, let V1 = P1 +P2 , V2 = P1−P2 , we obtain

V1V
∗
1 +V2V

∗
2 = 2(P1P

∗
1 +P∗

2 P2)

and

V ∗
j Vj =

2

∑
i=1

P∗
i Pi

for j = 1,2. Then the inequality holds.
Suppose that the Lemma holds for s = t , that is, there exist 2t−1 matrices U1, . . . ,

U2t−1 ∈ Span{P1,P2, . . . ,Pt} satisfying

2t−1

∑
i=1

UiU
∗
i = 2t−1(

t

∑
i=1

PiP
∗
i ) (2)

and

U∗
j Uj =

t

∑
i=1

P∗
i Pi (3)

for j = 1, . . . ,2t−1 .
Then for s = t +1, set Bi = Ui +Pt+1 , Ci = Ui −Pt+1 , 1 � i � 2t−1 ,

2t−1

∑
i=1

BiB
∗
i +

2t−1

∑
i=1

CiC
∗
i = 2(

2t−1

∑
i=1

UiU
∗
i )+2tPt+1P

∗
t+1 (4)

= 2t(
t

∑
i=1

PiP
∗
i )+2tPt+1P

∗
t+1

= 2t(
t+1

∑
i=1

PiP
∗
i ).

The equality (4) follows from P∗
i Pj = −P∗

j Pi and equality (2).
Let Vi = Bi , V2t−1+i =Ci , (1 � i � 2t−1) . Then V1, . . . ,V2t ∈Span{P1,P2, . . . ,Pt ,Pt+1}

and
2t

∑
i=1

ViV
∗
i = 2t(

t+1

∑
i=1

PiP
∗
i ).
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By P∗
i Pj = −P∗

j Pi , we have

V ∗
j Vj = (Uj +Pt+1)∗(Uj +Pt+1) = U∗

j Uj +P∗
t+1Pt+1

=
t

∑
i=1

P∗
i Pi +P∗

t+1Pt+1 =
t+1

∑
i=1

P∗
i Pi

for 1 � j � 2t−1 and

V ∗
j Vj = (Uj −Pt+1)∗(Uj −Pt+1) = U∗

j Uj +P∗
t+1Pt+1

=
t

∑
i=1

P∗
i Pi +P∗

t+1Pt+1 =
t+1

∑
i=1

P∗
i Pi

for 2t−1 +1 � j � 2t .

That is, the equality

V ∗
j Vj =

t+1

∑
i=1

P∗
i Pi

holds for 1 � j � 2t . Thus we have finished the proof. �

Proof of Theorem 1. Since H is positive semidefinite, it follows that there exists
a matrix P ∈ Msn,sn such that H = P∗P . Let P = [P1,P2, . . . ,Ps] , where P1,P2, . . . ,Ps ∈
Msn,n . An easy computation shows that

Ai j = P∗
i Pj, i, j = 1,2, . . . ,s.

It follows from Ai j (i �= j) is skew-Hermitian that

P∗
i Pj +P∗

j Pi = 0, i �= j.

By Lemma 5, there exist 2s−1 matrices V1, . . . ,V2s−1 ∈ Msn,n such that

2s−1

∑
i=1

ViV
∗
i = 2s−1(

s

∑
i=1

PiP
∗
i )

and for j = 1, . . . ,2s−1

V ∗
j Vj =

s

∑
i=1

P∗
i Pi.
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Therefore, by the property of H and the Lemma 2

λ (H) = λ (P∗P) = λ (PP∗) = λ (
s

∑
j=1

PjP
∗
j )

=
1

2s−1 λ (
2s−1

∑
j=1

VjV
∗
j ) ≺ 1

2s−1

2s−1

∑
j=1

λ (VjV
∗
j ) =

1
2s−1

2s−1

∑
j=1

λ ((V ∗
j Vj)⊕0)

=
1

2s−1

2s−1

∑
j=1

λ (
s

∑
i=1

P∗
i Pi⊕0) = λ (

s

∑
i=1

P∗
i Pi⊕0)

= λ ((
s

∑
i=1

Aii)⊕0).

The proof is completed. �

When s = 2, we notice λ (
[

A11
√−1A12√−1A12 A22

]
) = λ (

[
A11 A12

−A12 A22

]
) ≺ λ ((A11 +

A22)⊕0) . Theorem 1 shows that Lin’s result (Theorem 2.1 of [4]) is a special case of
our result.

COROLLARY 6. Let A1,A2, . . . ,Ak ∈ Mn,n with A∗
i A j = −A∗

jAi , (1 � i < j � k) .
Then

λ (
k

∑
i=1

AiA
∗
i ) ≺ λ (

k

∑
i=1

A∗
i Ai).

Proof. Let P = [A1,A2, . . . ,Ak] . Then H = P∗P is a positive semidefinite matrix
and satisfy the condition of Theorem 1. Hence

λ (H) ≺ λ ((
k

∑
i=1

A∗
i Ai)⊕0).

It follows from this and Lemma 3 that

λ ((
k

∑
i=1

AiA
∗
i )⊕0) = λ (PP∗ ⊕0) = λ (P∗P) = λ (H) ≺ λ ((

k

∑
i=1

A∗
i Ai)⊕0). �

Next we show that the condition A∗
i A j is skew-Hermitian in Corollary 6 is neces-

sary.

REMARK 7. Let A1 =
[
1 0
0 0

]
, A2 =

[
1 1
0 0

]
. Then

[
1 1
0 0

]
= A∗

1A2 �= A∗
2A1 =

[
1 0
1 0

]
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and

A1A
∗
1 +A2A

∗
2 =

[
3 0
0 0

]
, A∗

1A1 +A∗
2A2 =

[
2 1
1 1

]
.

A trivial verification shows that λ (A1A∗
1 +A2A∗

2) ⊀ λ (A∗
1A1 +A∗

2A2).
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