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INEQUALITIES FOR GAUSSIAN HYPERGEOMETRIC FUNCTIONS

XIAO-YAN MA ∗ AND TI-REN HUANG

(Communicated by J. Peǎrić)

Abstract. In this paper, the authors present several hypergeometric transformation inequalities
for the Gaussian hypergeometric function F(a,b;c;x) , which are the extensions of the known
hypergeometric transformation identities such as Ramanujan’s cubic transformation identities,
by showing the monotonicity properties of certain quotients of F(a,b;c;x) and its special cases.
By these results, some related known results are considerably improved.

1. Introduction

Throughout this paper, we let N = {1,2,3 · · ·} and N0 = N∪{0} . For a,b,c ∈ R

with c �= 0,−1,−2, · · · , the Gaussian hypergeometric function is defined by

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
for |x| < 1, (1)

where (a,n) denotes the shifted factorial function

(a,n) = a(a+1)(a+2)(a+3) · · ·(a+n−1) (2)

for n∈N , and (a,0)= 1 for a �= 0. F(a,b;c;x) is said to be zero-balanced if c = a+b .
It is well known that F(a,b;c;x) has many important applications in various fields

of the mathematical and natural sciences, and many other special functions in mathe-
matical physics are particular cases of this function (cf. [10, 11, 12, 16]).

One of the important special cases of F(a,b;c;x) is as follows

Fs(x) = F

(
1
2
− s,

1
2

+ s;1;x

)
=

∞

∑
n=0

(1/2− s,n)(1/2+ s,n)
(n!)2 xn, (3)

for s ∈ (−1/2,1/2) and x ∈ (0,1) . It is interesting that some properties of the function
Fs can be directly applied to obtain properties of the compound means, and the elliptic
series for 1/π (see [6]).

Mathematics subject classification (2010): 33C05, 39B62.
Keywords and phrases: Gaussian hypergeometric function, Ramanujan’s transformation, infinite prod-

uct.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-15-01

1

http://dx.doi.org/10.7153/jmi-2021-15-01


2 X.-Y. MA AND T.-R. HUANG

There have been many studies of the properties of Fs for the special cases when
s = 0,1/6,1/4. The main results of these studies are as follows: In [4], Baricz pre-
sented some Landen inequalities (namely, in the case s = 0) for the Gaussian hyper-
geometric function; In [15] ([13, 14]), Wang, Chu and Jiang extended some quadratic
transformation identities in the case when s = 1/4 (cubic transformation identities for
F(1/3,2/3;1;x) in the case when s = 1/6, respectively) to hypergeometric transforma-
tion inequalities for zero-balanced Gaussian hypergeometric function. However, there
are few similar studies for the case when s = 1/3. Naturally, it would be more signif-
icant for us to extend a general hypergeometric identity satisfied by F(1/2− s,1/2+
s;1;x) to hypergeometric transformations inequalities for the Gaussian hypergeometric
function.

On the other hand, many other beautiful hypergeometric transformation identi-
ties have been known to us, among which are the followings: In [7, (2.31)], Gavrvan
presented the following transformation identity

F

(
a,a+

1
2
;
4
3
a+

2
3
;
8r(1+ r)
(1+3r)2

)
= (1+3r)2aF

(
a,a+

1
2
;
2
3
a+

5
6
;r2
)

, (4)

and in [5], Berndt, Bhavgave and Garvan proved the following identity

F

(
a,a+

1
3
;
a
2

+
5
6
;

(
1− r
1+2r

)3
)

=
(

1+2r
3

)3a

F

(
a,a+

1
3
;
3
2
a+

1
2
;1− r3

)
. (5)

Taking a = 1/4 in (4) and a= 1/3 in (5), we obtain the following well-known quadratic
transformation identity

F

(
1
4
,
3
4
;1;

8r(1+ r)
(1+3r)2

)
=
√

1+3rF

(
1
4
,
3
4
;1;r2

)
(6)

and the Ramanujan’s cubic transformation identity

F

(
1
3
,
2
3
;1;

(
1− r
1+2r

)3
)

=
1+2r

3
F

(
1
3
,
2
3
;1;1− r3

)
, (7)

respectively, which were stated by Ramanujan in his unpublish notebooks.
Changing r to (1− r)/(1+3r) in (4) and r to (1− r)/(1+2r) in (5), we obtain

the following identities

F

(
a,a+

1
2
;
2
3
a+

5
6
;

(
1− r
1+3r

)2
)

=
(

1+3r
4

)2a

F

(
a,a+

1
2
;
4
3
a+

2
3
;r ′2
)

, (8)

F

(
a,a+

1
3
;
3
2
a+

1
2
;
9r(1+ r+ r2)

(1+2r)3

)
= (1+2r)3aF

(
a,a+

1
3
;
a
2

+
5
6
;r3
)

, (9)

where r ′ =
√

1− r2 .
The main purpose of this paper is to extend the hypergeometric transformation

identities satisfied by F(1/2− s,1/2+ s;1;x) for s ∈ (−1/2,1/2) to the hypergeomet-
ric transformation inequalities for F(a,b;c;x) by showing the monotonicity properties
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of the ratio of F(a,b;c;x) and F(1/2−s,1/2+s;1;x) , and to extend the identities (4)–
(9) with certain conditions fulfilled by the parameter a to transformation inequalities
for the Gaussian hypergeometric functions, the Kummer hypergeometric function and
the Bessel function. Some of these results improve the related known results.

At the end of this section, we recall the following lemma needed in the proofs of
our main results.

LEMMA 1. (See [9, Lemma 2.1]). Suppose that the power series f (x)= ∑∞
n=0 anxn

and g(x) = ∑∞
n=0 bnxn with bn > 0 for all n ∈ N0 have the common radius of conver-

gence r > 0 . If the non-constant sequence {an/bn}∞
n=0 is increasing (decreasing), then

the function h(x) = f (x)/g(x) is strictly increasing (decreasing, respectively) on (0,r) .

2. Main results

THEOREM 1. Let a,b > 0, and c ∈ R such that c is not a negative integer or
zero. Then we have the following conclusions:

(1) If b � max{c−a/3−1/6,3c/4} and a � 1/4 , then for r ∈ (0,1) ,

F

(
a,b;c;

8r(1+ r)
(1+3r)2

)
� (1+3r)2aF

(
a,b;c;r2) , (10)

F

(
a,b;c;

(
1− r
1+3r

)2
)

�
(

1+3r
4

)2a

F
(
a,b;c;1− r2) . (11)

Moreover, if b � min{c−a/3−1/6,3c/4} and a � 1/4 , then the inequalities (10) and
(11) are both reversed.

(2) If b � max{c−a/2−1/6,2c/3} and a � 1/3 , then for r ∈ (0,1) ,

F

(
a,b;c;

9r(1+ r+ r2)
(1+2r)3

)
� (1+2r)3aF

(
a,b;c;r3) , (12)

F

(
a,b;c;

(
1− r
1+2r

)3
)

�
(

1+2r
3

)3a

F
(
a,b;c;1− r3) . (13)

Moreover, if b � min{c−a/2−1/6,2c/3} and a � 1/3 , then the inequalities (12) and
(13) are both reversed.

Proof. (1) Let T1 : (0,1) → (0,∞) be the function defined by

T1(x) =
F(a,b;c;x)

F(a,a+1/2;4a/3+2/3;x)
=

∑∞
n=0

(a,n)(b,n)
(c,n)

xn

n!

∑∞
n=0

(a,n)(a+1/2,n)
(4a/3+2/3,n)

xn

n!

,

and for n ∈ N0 , let

An =
(b,n)(4a/3+2/3,n)

(c,n)(a+1/2,n)
and αn =

(
b+

a
3

+
1
6
− c

)
n+
(

4
3
b− c

)(
a+

1
2

)
.
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Then the sequence {An} is increasing (decreasing) if and only for all n ∈ N0 ,

An+1

An
=

(b+n)( 4
3a+ 2

3 +n)

(c+n)(a+ 1
2 +n)

� (�)1 ⇔ αn � 0 (αn � 0, respectively).

Obviously, if b � max{c− a/3− 1/6,3c/4} (b � min{c− a/3− 1/6,3c/4}) , then
αn � 0 (αn � 0) for all n ∈ N0 , that is, the sequence {An} is increasing (decreasing),
and consequently by Lemma 1, the function T1 is increasing (decreasing, respectively)
on (0,1) .

Suppose that b � max{c−a/3−1/6,3c/4} and a � 1/4. Put x = x(r) = r2 and
y = y(r) = 8r(1+ r)/(1+3r)2 for r ∈ (0,1) . Then 0 < x < y < 1,

F(a,b;c;x)
F(a,a+1/2;4a/3+2/3;x)

� F(a,b;c;y)
F(a,a+1/2;4a/3+2/3;y)

,

so that by the formula (4),

F(a,b;c;x) � F(a,b;c;y)
F(a,a+1/2;4a/3+2/3;x)
F(a,a+1/2;4a/3+2/3;y)

= F(a,b;c;y)
F(a,a+1/2;4a/3+2/3;x)

(1+3r)2aF(a,a+1/2;2a/3+5/6;x)
. (14)

Since a � 1/4 implies that 4a/3+2/3� 2a/3+5/6, one can easily see that

F(a,a+1/2;4a/3+2/3;x)� F(a,a+1/2;2a/3+5/6;x).

Hence the inequality (10) follows from (14).
Similarly, if b � max{c−a/3−1/6,3c/4} and a � 1/4, and if we let u = u(r) =

[(1− r)/(1+3r)]2 and v = v(r) = 1− r2 , then 0 < u < v < 1, and we have

F(a,b;c;u)
F(a,a+1/2;4a/3+2/3;u)

� F(a,b;c;v)
F(a,a+1/2;4a/3+2/3;v)

,

so that by the formula (8),

F(a,b;c;u) �
(

1+3r
4

)2a

F(a,b;c;v)
F(a,a+1/2;4a/3+2/3;u)
F(a,a+1/2;2a/3+5/6;u)

�
(

1+3r
4

)2a

F(a,b;c;v)

which yields the inequality (11).
The proof of the second conclusion in part (1) is similar, and we omit the details.
(2) For n ∈ N0 , let an = (a,n)(b,n)/[(c,n)n!] , bn = (a,n)(a+ 1/3,n)/[(3a/2+

1/2,n)n!] and Bn = an/bn = (b,n)(3a/2+1/2,n)/[(c,n)(a+1/3,n)] . Then

T2(x) ≡ F(a,b;c;x)
F(a,a+1/3;3a/2+1/2;x)

= ∑∞
n=0 anxn

∑∞
n=0 bnxn .
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With the same method as that used in the proof of part (1), it is easy to verify that
the sequence {Bn} is increasing (decreasing), which implies that T2 is increasing (de-
creasing) on (0,1) by Lemma 1, provided that b � max{c− a/2− 1/6,2c/3} (b �
min{c−a/2−1/6,2c/3} , respectively).

First, we consider the case when b � max{c−a/2−1/6,2c/3} and a � 1/3, and
let s = r3 and t = 9r(1+ r+ r2)/(1+2r)3 for r ∈ (0,1) . Then 0 < s < t < 1 and

F(a,b;c;s)
F(a,a+1/3;3a/2+1/2;s)

� F(a,b;c; t)
F(a,a+1/3;3a/2+1/2;t)

,

and hence by (9),

F(a,b;c;s) � F(a,b;c;t)
F(a,a+1/3;3a/2+1/2;s)
F(a,a+1/3;3a/2+1/2; t)

= F(a,b;c;t)
F(a,a+1/3;3a/2+1/2;s)

(1+2r)3aF(a,a+1/3;a/2+5/6;s)
. (15)

Observe that F(a,a+1/3;3a/2+1/2;s)� F(a,a+1/3;a/2+5/6;s) , since a � 1/3.
Hence the inequality (12) follows from (15).

Second, substituting r in the inequality (12) by (1− r)/(1 + 2r) , we obtain the
inequality (13). �

REMARK 1. (1) It is easy to see that the equalities (10) and (11) hold for a =
1/4,b = 3/4 and c = 1, in which case if we take r = k2 in (10) and r = k ′2 in (11),
respectively, then we obtain [12, Proposition 2.4 (i) & (ii)]. The inequalities (10) and
(11) considerably improve the related known results such as [15, Theorem 2.1 ].

(2) It is clear that the inequalities (12) and (13) become equalities for a = 1/3,b =
2/3 and c = 1, in which case if we take r = k in (12) and r = k ′ in (13), respectively,
then we obtain [11, Proposition 3.2 (i) & (ii)]. The inequalities (12) and (13) are the
generalizations of [13, Theorem 2.3].

In the sequel, for |s| < 1/2, we let

D1 =
{
(a,b)|a,b > 0,ab � 1/4− s2,ab− (1/4− s2)(a+b) � 0

}
,

D2 =
{
(a,b)|a,b > 0,ab � 1/4− s2,ab− (1/4− s2)(a+b) � 0

}
.

THEOREM 2. For a,b,c ∈ R , c is not a negative integer or zero, and for |s| <
1/2 , define the function Q on (0,1) by

Q(x) = F(a,b;c;x)/F(1/2− s,1/2+ s;1;x).

If a+b � c (a+b � c), and if 4ab/(1−4s2)� max{1,c} (4ab/(1−4s2)� min{1,c} ),
then Q is increasing (decreasing, respectively) on (0,1) . In particular, if (a,b) ∈ D1

((a,b) ∈ D2 ) with c = a+b, then Q is decreasing (increasing, respectively) on (0,1) .
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Proof. For n∈N0 , let ãn = (a,n)(b,n)/[(c,n)n!] , b̃n = (1/2−s,n)(1/2+s,n)/(n!)2,

Cn =
ãn

b̃n
=

(a,n)(b,n)
(c,n)

· n!
(1/2− s,n)(1/2+ s,n)

and βn = (a+b−c)n2+
(
ab+a+b− c−1/4+ s2

)
n+
[
ab− (1/4− s2)c

]
. Then Q(x)

is of the following expression

Q(x) =

(
∞

∑
n=0

ãnx
n

)(
∞

∑
n=0

b̃nx
n

)−1

,

and the sequence {Cn} is increasing, which implies that Q is increasing on (0,1) by
Lemma 1, if and only if

Cn+1

Cn
=

(a+n)(b+n)(n+1)
(c+n)(1/2− s+n)(1/2+ s+n)

� 1 ⇔ βn � 0.

Clearly, if a+b � c and 4ab/(1−4s2) � max{1,c} , then βn � 0 for all n ∈ N0 , and
the sequence Cn is increasing, and hence Q is increasing on (0,1) .

The proof of the remaining conclusions are similar, and we omit the details. �

REMARK 2. Theorem 2 extends [4, Theorem 1], [13, Theorem 2.3], [14, Theo-
rem 2.1] and [8, Lemma 2.4] to the hypergeometric transformation inequalities for the
Gaussian hypergeometric functions. The details are as follows:

(1) Set s = 0,x = r2,y = 4r/(1+r2) for r ∈ (0,1) , then 0 < x < y < 1 and Q(x) �
Q(y) or Q(x) � Q(y) by the monotonicity property of Q , and hence [4, Theorem 1]
follows from Theorem 2 and [1, (13)].

(2) Set s = 1/6,x = r3,y = 9r(1+ r+ r2)/(1+ 2r)3 for r ∈ (0,1) , then 0 < x <
y < 1 and Q(x) � Q(y) or Q(x) � Q(y) by the monotonicity property of Q , and hence
we obtain [13, Theorem 2.3] by Theorem 2 and [5, Corollary 2.4]. In particular, if
c = a+b , then we obtain [14, Theorem 2.1].

(3) Set s = 1/4,x = r2,y = 8r(1+ r)/(1+3r)2 for r ∈ (0,1) , then 0 < x < y < 1
and Q(x) � Q(y) or Q(x) � Q(y) by the monotonicity property of Q , and hence we
obtain [8, Lemma 2.4] by Theorem 2 and [5, Theorem 9.4].

In the sequel, we let

ωn,s =
(n!)2

(1/2− s,n)(1/2+ s,n)
(16)

for n ∈ N0 and |s| < 1/2. It is easy to verify that the sequence {ωn,s} is increasing.
Using this sequence, one can easily extend Theorem 2 to the following theorem, whose
proof is similar to that of Theorem 2 so that we omit the details.

THEOREM 3. Suppose that the power series f (x) = ∑∞
n=0 anxn is convergent for

all x ∈ (0,1) ,and the sequence {anωn,s} is increasing, where an ∈ R for n ∈ N0 .
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Let λ f (x) = f (x2) . Then the function S(x) ≡ f (x)/Fs(x) is increasing on (0,1) . In
particular, for all r ∈ (0,1) and s = 1/4 ,

λ f

(√
8r(1+ r)
1+3r

)
�
√

1+3rλ f (r). (17)

Moreover, if the sequence {anωn,s} is decreasing, then the function S is decreasing on
(0,1) and (17) is reversed.

At the end of this paper, we shall extend Theorem 3 to the generalized Bessel
function [2] uv and the Kummer hypergeometric function [3] Φ(p,q; ·) , which are
defined by

uv(x) =
∞

∑
n=0

(−c/4)n

(κ ,n)
· xn

n!
, Φ(p,q;x) =

∞

∑
n=0

(p,n)
(q,n)

· xn

n!
, (18)

respectively, where v,b,c, p,q ∈ R,κ = v + (b + 1)/2 and q /∈ N0 . For n ∈ N0 and
|s| < 1/2, it is easy to show that the sequences

{ωn,s(−c/4)n/[(κ ,n)n!]} and {ωn,s(p,n)/[(q,n)n!]}
are decreasing provided that κ � max{−1,s2 − c/4− 1/4,−c/(1− 4s2)} and q �
max{0,s2 + p+3/4,4p/(1−4s2)} . Putting λuv(r) = uv(r2) and λΦ(r) = Φ(p,q;r2) ,
then by Theorem 3, one can immediately obtain the following corollary.

COROLLARY 1. Let v,b,c, p,q ∈ R and |s| < 1/2 such that κ � max{−1,s2 −
c/4−1/4,−c/(1−4s2)} and q � max{0,s2 + p+3/4,4p/(1−4s2)} . Then F1(x) ≡
uv(x)/Fs(x) and F2(x) ≡ Φ(p,q;x)/Fs(x) are decreasing on (0,1), and in particular,
for all r ∈ (0,1) and s = 1/4 ,

λuv

(√
8r(1+ r)
1+3r

)
�
√

1+3rλuv(r), (19)

λΦ

(√
8r(1+ r)
1+3r

)
�
√

1+3rλΦ(r). (20)

REMARK 3. If we take s = 0, x = r2 and y = 4r/(1+ r2) (s = 1/6, x = r3 and
y = 9r(1+r+r2)/(1+2r)3 ) in Theorem 3 and in Corollary 1, then it is not difficult for
us to verify that 0 < x < y < 1, S(x) � S(y) , F1(x) � F1(y) and F2(x) � F2(y) by the
monotonicity properties of S , F1 and F2 , thus resulting in [4, Theorems 2 & 3] ([13,
Theorem 2.4 & Corollary 2.5], respectively).

QUESTION. As indicated in Section 1, there have been many studies of Fs in the
case when s = 0,1/4,1/6, and however, there are few similar study of the correspond-
ing properties of Fs for s = 1/3. The following question is natural: What are the
analogues of the known results, such as Theorem 1, (17) and (19)–(20), for Fs in the
case when s = 1/3?
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