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A NEW PROOF OF PÓLYA–KNOPP’S

INEQUALITY WITH AN EXTENSION

ERN GUN KWON AND MIN JU JO

(Communicated by M. Krnić)

Abstract. We show that a continuous version of Hölder’s inequality can give a new and direct
proof of the Pólya-Knopp type inequalities. We also have a single variable generalization of
Pólya-Knopp’s inequality.

1. Introduction

Let Y = (Y,ν) be a measure space with positive measure ν . Classical Hölder’s
inequality says that

∫
Y

f1(y)p f2(y)1−pdν(y) �
(∫

Y
f1(y) dν(y)

)p(∫
Y

f2(y) dν(y)
)1−p

, (1.1)

where f1 and f2 are positive functions of L1(ν) and 0 � p � 1.
It is well-known fact that (1.1) can be extended to the case of a multiple product

of functions (see [1], [2]), and even to a continuous version ([4], [5]) as the following.

THEOREM A. Let X = (X ,μ) and Y = (Y,ν) be σ -finite measure spaces with
positive measures μ and ν . If μ(X) = 1 and f (x,y) is a positive measurable function
defined on X ×Y , then

∫
Y

exp

(∫
X

ln f (x,y) dμ(x)
)

dν(y) � exp

{∫
X

ln

(∫
Y

f (x,y) dν(y)
)

dμ(x)
}

. (1.2)

Equality holds in (1.2) as a nonzero finite value if and only if f (x,y) = g(x)h(y) almost
everywhere μ ×ν for a positive μ -measurable function g with −∞ <

∫
X lng dμ < ∞

and a positive ν -measurable h with
∫
Y hdν = 1 .

Inequality (1.2) is named in [4] as ‘the continuous form of Hölder’s inequality’
because it covers well-known forms of Hölder’s inequalities. It is simple to check that
Theorem A is a generalization of (1.1): For 0 � p � 1 if we take

X = {1,2} and μ = pδ1 +(1− p)δ2,
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δ j, j = 1,2, the unit mass concentrated at j , and f (k,y) = fk(y), k ∈ X , then (1.2)
reduces to (1.1):∫

Y
f1(y)p f2(y)1−p dν(y) =

∫
Y

exp

(∫
X

ln fk(y) dμ(k)
)

dν(y)

�exp

{∫
X

ln

(∫
Y

fk(y) dν(y)
)

dμ(k)
}

=
(∫

Y
f1(y) dν(y)

)p(∫
Y

f2(y) dν(y)
)1−p

.

Ever since its publication in [4], there have been few applications of the continuous
form of Hölder’s inequality.

The first purpose of this note is to give an application of (1.2) by giving a straight-
forward proof of Pólya-Knopp’s inequality.

THEOREM B. (Pólya-Knopp’s inequality [3])∫ ∞

0
exp

{
1
x

∫ x

0
ln f (t)dt

}
dx � e

∫ ∞

0
f (x)dx (1.3)

for any function f � 0 with
∫ ∞
0 f (x)dx < ∞ .

It is well-known that Pólya-Knopp’s inequality (1.3) is a limiting case of Hardy’s
inequality and there have been several types of proofs. Our proof of (1.3) is presented
in Section 2.

In Section 3, we show that (1.3) is in fact a simple consequence of the arithmetic-
geometric mean inequality. We check well-known facts that the inequality (1.3) is strict
(unless f ≡ 0 almost everywhere) and the bounding constant e is the best possible.

By a similar process we in Section 4 further give a simple proof of the follow-
ing, which is known as ‘Levin-Cochran-Lee’s inequality’. See [6] and the references
therein.

THEOREM C. Let −∞ < α,β < ∞ . Let f � 0 with
∫ ∞
0 f (x) xα−1dx < ∞ . If

β > 0 , then∫ ∞

0
exp

{
β
xβ

∫ x

0
tβ−1 ln f (t)dt

}
xα−1dx � eα/β

∫ ∞

0
f (x) xα−1dx. (1.4)

If β < 0 , then∫ ∞

0
exp

{−β
xβ

∫ ∞

x
tβ−1 ln f (t)dt

}
xα−1dx � eα/β

∫ ∞

0
f (x) xα−1dx.

We next pass to another direction. To establish an easy one variable generalization
of (1.3) and (1.4) is our second purpose of this note.

THEOREM 1.1. Let −∞ < δ < ∞ , δ �= 0 , and −∞ � a < b � ∞ . Let w be a
positive, increasing, and differentiable function on (a,b) with ω(a+) = 0 . Then∫ b

a
exp

{
1

w(x)

∫ x

a
ln f (t) dw(t)

}
d|wδ |(x) � eδ

∫ b

a
f (x) d|wδ |(x) (1.5)

for all f � 0 with
∫ b
a f (x) d|wδ |(x) < ∞ .
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Note that denoting d|wδ |(x) is nothing but notational convenience: d|wδ |(x) =
dwδ (x) if δ � 0 and d|wδ |(x) = −dwδ (x) if δ � 0. Note that (1.3) and (1.4) are
special cases of (1.5).

Theorem 1.1 follows directly from, and as a limiting case of, the following

THEOREM 1.2. Let 1 < p < ∞ , −∞ < δ < ∞ , δ �= 0 , p > δ , and −∞ � a <
b � ∞ . Let w be a positive, increasing, and differentiable function on (a,b) with
ω(a+) = 0 . Then

∫ b

a

(
1

w(x)

∫ x

a
f (t) dw(t)

)p

d|wδ |(x) �
(

p
p− δ

)p∫ b

a
f p(x) d|wδ |(x) (1.6)

for all f � 0 with
∫ b
a f p(x) d|wδ |(x) < ∞ .

Elementary proofs of Theorem 1.1 and Theorem 1.2 are given in Section 5.

2. Proof of Theorem B

By setting Y = (0,∞) , X = (0,1) , dμ(x) = dx , dν(y) = dy , and f (x,y) = f (xy) ,
0 < x < 1, 0 < y < ∞ , in (1.2), we obtain (1.3). Note that the right side of (1.2) then
becomes

exp

{∫ 1

0
ln

(∫ ∞

0
f (xy) dy

)
dx

}
= exp

{∫ 1

0
ln

(
1
x

∫ ∞

0
f (y) dy

)
dx

}
= e

∫ ∞

0
f (y) dy

(2.1)
while the left side of (1.2) becomes

∫ ∞

0
exp

(∫ 1

0
ln f (xy) dx

)
dy =

∫ ∞

0
exp

(
1
y

∫ y

0
ln f (x) dx

)
dy. (2.2)

3. Remarks on simplicity and best possibility

3.1.

By (2.1), the continuous form of Hölder’s inequality (1.2) in fact can be regarded
as an extension of Pólya-Knopp’s inequality (1.3).

Because of the simplicity of the proof of Pólya-Knopp’s inequality given in Sec-
tion 2, one may suspect that there might be some heavy process in the proof of (1.2).
But (1.2) is a simple consequence of the arithmetic-geometric mean inequality (or a
simple consequence of Minkowski’s inequality as in [4]). Absorbing the process we
can give another proof of Pólya-Knopp’s inequality (1.3):
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Assuming 0 <
∫ ∞
0 f (y)dy < ∞ and recalling (2.1) and (2.2),

∫ ∞
0 exp

(
1
y

∫ y
0 ln f (x) dx

)
dy

e
∫ ∞
0 f (z) dz

=

∫ ∞
0 exp

(∫ 1
0 ln f (xy) dx

)
dy

exp
{∫ 1

0 ln(
∫ ∞
0 f (xz) dz)dx

}
=
∫ ∞

0
exp

(∫ 1

0
ln

f (xy)∫ ∞
0 f (xz) dz

dx

)
dy

�
∫ ∞

0

∫ 1

0

f (xy)∫ ∞
0 f (xz) dz

dxdy = 1,

(3.1)

which gives (1.3). Note that we used the arithmetic-geometric mean inequality only.

3.2.

We can also check easily that the inequality (1.3) is strict unless f ≡ 0 (as is
well-known):

Suppose f �≡ 0. Then f > 0 on a positive measured set, so that 0 <
∫ ∞
0 f (x)dx <

∞ . Since

exp

(∫ 1

0
ln

f (xy)∫ ∞
0 f (xz) dz

dx

)
�
∫ 1

0

f (xy)∫ ∞
0 f (xz) dz

dx, (3.2)

the inequality in (3.1) becomes equality if and only if (3.2) becomes equality almost
every y ∈ (0,∞) , and since for each y fixed (3.2) becomes equality if and only if

f (xy)∫ ∞
0 f (xz) dz

= h(y), that is f (xy) =
(∫ ∞

0
f (z)dz

)
1
x
h(y) almost every x ∈ (0,1)

for some measurable h satisfying
∫ ∞
0 h(y)dy = 1, it follows that f (x) should be a

constant times 1
x almost everywhere, which contradicts

∫ ∞
0 f (x)dx < ∞ .

3.3.

For completeness, we check that the bounding constant e is the best possible: It is
sufficient to show that for arbitrary ε > 0 there is f = fε for which

∫ ∞

0
exp

{
1
x

∫ x

0
ln f (t)dt

}
dx � (1− ε)e

∫ ∞

0
f (x)dx.

Let ε > 0 be given. Take f (x) = xε−1χ(0,1)(x) , where χ{·} denotes the characteristic
function of the set {·} . Then

∫ ∞

0
exp

{
1
x

∫ x

0
ln f (t)dt

}
dx �

∫ 1

0
exp

{
1
x

∫ x

0
ln tε−1dt

}
dx

=
∫ 1

0
exp{(ε −1)(lnx−1)}dx = e1−ε

∫ 1

0
xε−1dx � (1− ε)e

∫ ∞

0
f (x)dx.
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4. Proof of Theorem C

We consider only for the case β > 0. The case β < 0 can be similarly proved.

4.1.

A special case of (1.2) reads

∫ ∞

0
exp

{∫ 1

0
βyβ−1 ln f (xy) dy

}
xα−1dx � exp

{∫ 1

0
βyβ−1 ln

(∫ ∞

0
f (xy)xα−1dx

)
dy

}
.

(4.1)
By using change of variables, the left side of (4.1) equals

∫ ∞

0
exp

{
β
xβ

∫ x

0
tβ−1 ln f (t)dt

}
xα−1dx

and the right side of (4.1) equals

exp

{∫ 1

0
βyβ−1 ln

(∫ ∞

0
f (xy)xα−1dx

)
dy

}

= exp

{∫ 1

0
βyβ−1 ln

(
1
yα

∫ ∞

0
f (s)sα−1ds

)
dy

}

= exp

{∫ 1

0
βyβ−1 ln

(∫ ∞

0
f (s)sα−1ds

)
dy−αβ

∫ 1

0
yβ−1 lny dy

}

=
(∫ ∞

0
f (s)sα−1ds

)
· exp

(
−αβ

∫ 1

0
yβ−1 lny dy

)
= eα/β

∫ ∞

0
f (s)sα−1ds,

where we used a simple integration by parts to have

−αβ
∫ 1

0
yβ−1 lny dy = α

∫ 1

0
yβ−1dy =

α
β

.

Therefore, we obtain (1.4).

4.2.

By modifying the process in 3.2, we can check that the inequality (1.4) is strict
unless f ≡ 0.

In fact, unless f ≡ 0 the inequality (4.1) becomes equality if and only if f (x) is a
constant times x−α almost everywhere, which contradicts the condition

∫ ∞
0 f (x)xα−1dx

< ∞ .

4.3.

By considering f (x) = xβ ε−α χ(0,1)(x) and modifying the process in 3.3, we can

check that the bounding constant eα/β is the best possible.



14 E. G. KWON AND M. J. JO

4.4.

Moreover, we can show the following well-known improvement [6] that for 0 <
b < ∞ ,

∫ b

0
exp

{
β
xβ

∫ x

0
tβ−1 ln f (t)dt

}
xα−1dx � e

α
β

∫ b

0

{
1−
(x

b

)β
}

f (x) xα−1dx.

All we need, except following the process in 4.1, is a change of the order of the integrals.

5. Proof of Theorem 1.1 and Theorem 1.2

5.1.

We first see that (1.5) follows from (1.6).
The case f replaced by f 1/p of (1.6) reads

1
δ

∫ b

a

(
1

w(x)

∫ x

a
f 1/p(t) dw(t)

)p

dwδ (x) � 1
δ

(
p

p− δ

)p ∫ b

a
f (x) dwδ (x). (5.1)

Note for each x ∈ (a,b) that Hölder’s inequality yields

1
w(x)

∫ x

a
f 1/p(t) dw(t) � 1

w(x)

(∫ x

a
w(1−δ )q/p(t) dw(t)

)1/q(∫ x

a
f (t)wδ−1(t) dw(t)

)1/p

=
wδ/p(x)
w(x)

(
p−1
p− δ

w(p−δ )/(p−1)(x)
)1/q( 1

δwδ (x)

∫ x

a
f (t)δwδ−1(t) dw(t)

)1/p

=
(

p−1
p− δ

)1/q( 1

δwδ (x)

∫ x

a
f (t) dwδ (t)

)1/p

< ∞,

where 1/p+1/q = 1.
Thus,

(
1

w(x)

∫ x

a
f 1/p(t) dw(t)

)p

↓ exp

(
1

w(x)

∫ x

a
ln f (t) dw(t)

)

monotonically as p → ∞ (See for example p. 74 [7]).

Therefore, noting
(

p
p−δ

)p → eδ as p → ∞ , the monotone convergence theorem

applied to (5.1) gives

1
δ

∫ b

a
exp

(
1

w(x)

∫ x

a
ln f (t) dw(t)

)
dwδ (x) � eδ

δ

∫ b

a
f (x) dwδ (x),

which gives (1.5).
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5.2.

We next pass to the proof of (1.6).

Let F(x) = 1
w(x)

∫ x
a f (t) dw(t) for x ∈ (a,b) . Then F is differentiable on (a,b)

and F ′(x) = ( f −F)(x)w′(x)/w(x) almost every x in (a,b) . (See for example p. 176
[7]).

Integration by parts gives

∫ b

a
F p(x) dwδ (x) =

[
Fp(x) wδ (x)

]b−
a+

− p
∫ b

a
F p−1(x)F ′(x) wδ (x)dx

=
[
Fp(x) wδ (x)

]b−
a+

− p
∫ b

a
F p−1(x){ f (x)−F(x)} w′(x)

w(x)
wδ (x)dx

=
[
Fp(x) wδ (x)

]b−
a+

− p
δ

∫ b

a
F p−1(x) f (x)dwδ (x)+

p
δ

∫ b

a
F p(x)dwδ (x).

(5.2)

If we denote q = p/(p−1) then

lim
x→a+

[
F p(x) wδ (x)

]
= lim

x→a+

[
wδ−p(x)

(∫ x

a
f (t)dw(t)

)p]

= lim
x→a+

[
wδ−p(x)

(∫ x

a
f (t)

dwδ (t)
δwδ−1(t)

)p]

� lim
x→a+

⎡
⎣wδ−p(x)

(
1
δ

∫ x

a
f p(t)dwδ (t)

)(
1
δ

∫ x

a

dwδ (t)
wq(δ−1)(t)

)p/q
⎤
⎦

= lim
x→a+

⎡
⎣wδ−p(x)

(
1
δ

∫ x

a
f p(t)dwδ (t)

)(
w(δ−1)(1−q)+1(x)
(δ −1)(1−q)+1

)p/q
⎤
⎦

=
(

p−1
p− δ

)p/q

lim
x→a+

(
1
δ

∫ x

a
f p(t)dwδ (t)

)
= 0

by Hölder’s inequality and the assumption 1
δ
∫ b
a f p(t)dwδ (t) < ∞ , whence

[
F p(x) wδ (x)

]b−
a+

= lim
x→b−

[
F p(x) wδ (x)

]
− lim

x→a+

[
F p(x) wδ (x)

]
= lim

x→b−

[
Fp(x) wδ (x)

]
.

(5.3)

By (5.2) and (5.3)

p− δ
δ

∫ b

a
F p(x) dwδ (x) = − lim

x→b−

[
F p(x) wδ (x)

]
+

p
δ

∫ b

a
F p−1(x) f (x)dwδ (x). (5.4)
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Applying the arithmetic geometric mean inequality to the last quantity of (5.4),

p
δ

∫ b

a
F p−1(x) f (x)dwδ (x) =

p− δ
δ

∫ b

a

p
p− δ

F p−1(x) f (x)dwδ (x)

=
p− δ

δ

∫ b

a
[F p(x)](p−1)/p

[(
p

p− δ

)p

f p(x)
]1/p

dwδ (x)

� p− δ
δ

p−1
p

∫ b

a
F p(x)dwδ (x)+

p− δ
δ

1
p

(
p

p− δ

)p ∫ b

a
f p(x)dwδ (x).

(5.5)

By (5.4) and (5.5),

p− δ
δ

1
p

∫ b

a
F p(x) dwδ (x)

� − lim
x→b−

[
Fp(x) wδ (x)

]
+

p− δ
δ

1
p

(
p

p− δ

)p∫ b

a
f p(x)dwδ (x)

provided 1
δ
∫ b
a F p(x) dwδ (x) < ∞ which we may assume. That is,

1
δ

∫ b

a
F p(x) dwδ (x) � − p

p− δ
lim

x→b−

[
F p(x) wδ (x)

]
+
(

p
p− δ

)p 1
δ

∫ b

a
f p(x)dwδ (x).

(5.6)
Since limx→b−

[
F p(x) wδ (x)

]
� 0, (1.6) follows from (5.6).
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