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Abstract. We establish the mapping properties of the fractional integral operators with homoge-
neous kernels on generalized Lorentz-Morrey spaces.

1. Introduction

This paper aims to establish the mapping properties of the fractional integral oper-
ators with homogeneous kernels on Morrey spaces built on generalized Lorentz spaces.

The fractional integral operators with homogeneous kernels were introduced in
[29]. It is a nature generalization of the fractional integral operators. The weighted
norm inequalities for the fractional integral operators with homogeneous kernels were
obtained in [12]. By applying extrapolation theory on these inequalities, we have the
mapping properties for the fractional integral operators with homogeneous kernels on
Lebesgue spaces with variable exponents [22, Theorem 4.4]. Moreover, the mapping
properties for the fractional integral operators with homogeneous kernels had been fur-
ther extended to the Morrey spaces with variable exponent in [22, Theorems 3.1 and
3.2]. In particular, the results in [22] also give the boundedness of the fractional integral
operators with homogeneous kernels on the classical Morrey spaces.

The main results of this paper are motivated by the generalized Lorentz spaces
Λp

w introduced by Lorentz in [25], the Morrey-Lorentz spaces introduced by Ragusa in
[33] and the local Morrey-Lorentz spaces introduced by Aykol, Guliyev and Serbetci in
[3, 4, 18].

The generalized Lorentz spaces include the classical Lorentz spaces Lp,q , Lorentz-
Zygmund spaces [5] and the Lorentz-Karamata spaces [13, Section 3.4.3]. Since the
introduction of the generalized Lorentz space, it becomes the main topic of the study of
function spaces [1, 2, 6, 8, 9, 11, 27, 34]. It is impossible to give a detail survey on this
huge topic, the reader is referred to [10] for the recent development on the generalized
Lorentz spaces.

The classical Morrey spaces were introduced by Morrey in [28] for the study of the
solutions of some quasi-linear elliptic partial differential equations. For more applica-
tions of Morrey spaces on partial differential equation, the reader is referred to [31, 32].
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Recently, the study of Morrey spaces had been extended to the Morrey-Lorentz spaces
[19, 33], the Orlicz-Morrey spaces [30] and the Morrey spaces with variable exponents
[16, 17, 22]. The study of these Morrey type spaces has applications on partial differ-
ential equations, for example, they are related to the viscosity solutions of some fully
nonlinear elliptic equations [35].

This paper is organized as follows. The definition of the generalized Lorentz space
and some of its fundamental properties are given in Section 2. We also present the
mapping properties of the fractional integral operators with homogeneous kernels on
Lebesgue spaces in this section. The boundedness of the fractional integral operators
with homogeneous kernels on generalized Lorentz spaces is established in 3. The main
result of this paper, the mapping properties of the fractional integral operators with
homogeneous kernels on generalized Lorentz-Morrey spaces, is given in Section 4.

2. Preliminaries and Definitions

Let M and M (0,∞) be the sets of Lebesgue measurable functions on R
n and

(0,∞) , respectively.
The fractional integral operators with homogeneous kernels are introduced by

Muckenhoupt and Wheeden in [29]. We recall the definition of fractional integral op-
erator with homogeneous kernel from [29]. Let 0 < α < n and Ω be a homogeneous
function on Rn with degree zero. That is, for any x ∈ Rn and λ > 0

Ω(λx) = Ω(x). (2.1)

The fractional integral operator with homogeneous kernel is defined by

TΩ,α f (x) =
∫

Rn

Ω(x− y)
|x− y|n−α f (y)dy.

We present the mapping properties of TΩ,α on Lebesgue spaces in the following
[26, Theorem 3.3.1].

THEOREM 2.1. Let 0 < α < n and Ω ∈ L
n

n−α (Sn−1) satisfy (2.1). Suppose that
1 < p < n

α and
1
p

=
1
q

+
α
n

.

There exists a constant C > 0 such that for any f ∈ Lp , we have

‖TΩ,α f‖Lq � C‖ f‖Lp .

We recall the definition of the generalized Lorentz spaces [2, 8, 9, 25, 34]. In order
to present the definition of the generalized Lorentz space, we first recall the definition
of the decreasing rearrangement for Lebesgue measurable functions.

For any Lebesgue measurable function f ∈ M , define

d f (λ ) = |{x ∈ R
n : | f (x)| > λ}|, λ > 0.
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The decreasing rearrangement of f is defined as

f ∗(t) = inf{λ : d f (λ ) � t}, t � 0.

We now give the definition of the generalized Lorentz spaces in the following.

DEFINITION 2.1. Let 0 < p < ∞ and w : [0,∞) → (0,∞) be a Lebesgue measur-
able function. The generalized Lorentz space Λp

w consists of all Lebesgue measurable
function f satisfying

‖ f‖Λp
w

=
(∫ ∞

0
( f ∗(t))pw(t)dt

)1/p

< ∞.

For any 0 < p < ∞ and w : [0,∞)→ [0,∞) , we have the weighted Lebesgue space

Lp
w =

{
f ∈ M (0,∞) : ‖ f‖Lp

w
< ∞

}
where

‖ f‖Lp
w

=
(∫ ∞

0
| f (y)|pw(y)dy

)1/p

.

Consequently, ‖ f‖Λp
w

= ‖ f ∗‖Lp
w
.

Furthermore, since (| f |q)∗ = ( f ∗)q , 0 < q < ∞ , [6, Chapter 2, (1.20)] we have

‖| f |q‖Λp
w

=
(∫ ∞

0
( f ∗(t))pqw(t)dt

)1/p

= ‖ f‖q
Λpq

w
. (2.2)

The generalized Lorentz space was introduced by Lorentz [25]. In addition, Lorentz
showed that when p � 1, ‖ · ‖Λp

w
is a norm if and only if w is non-increasing.

In view of [34, Theorem 4], [2] and [8, Theorem 2.3], ‖ · ‖Λp
w

is equivalent to a
norm if w satisfies

t p
∫ ∞

t
y−pw(y)dy � C

∫ y

0
w(y)dy, 0 < t, when p > 1,

1
t

∫ t

0
w(y)dy � C

s

∫ s

0
w(y)dy 0 < s � t, when p = 1

for some C > 0.
According to [9, 10], ‖·‖Λp

w
is a quasi-norm if and only if the fundamental function

W (t) =
∫ t

0
w(s)ds

satisfies the �2 condition
W (2t) � CW (t), t > 0

for some C > 1, see also [14]. For any Lebesgue measurable set E with |E| < ∞ , we
have

‖χE‖p
Λp

w
=
∫ ∞

0
(χ[0,|E|](t))pw(t)dt = W (|E|).
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Therefore, we have the following lemma. The following lemma involves the notion of
rearrangement-invariant quasi-Banach function space, for brevity, we refer the reader
to [21, Definition 2.1] for the definition.

LEMMA 2.2. Let 0 < p < ∞ and w : [0,∞) → [0,∞) . If W (t) =
∫ t
0 w(s)ds is

finite a.e.a and satisfies the �2 condition, then Λp
w is a rearrangement-invariant quasi-

Banach function space.

At the end of this section, we recall an important member of the generalized
Lorentz space, the Lorentz-Karamata space [13, Section 3.4.3].

DEFINITION 2.2. A Lebesgue measurable function b : [1,∞) → (0,∞) is called
as a slowly varying function if for any ε > 0

1. the function t → tεb(t) is equivalent to a non-decreasing function on [1,∞) , and

2. the function t → t−εb(t) is equivalent to a non-increasing function on [1,∞) .

For any slowly varying function, define

γb(t) = b(max{t,t−1}), t > 0.

When 0 < r, p < ∞ , b is a slowly varying function and w(t) = t
p
r −1(γb(t))p , the

generalized Lorentz space Λp
w is the Lorentz-Karamata space Lr,p,b .

According to [13, Proposition 3.4.33 (i) and (v)], there is a constant C > 0 such
that for any t > 0 ∫ t

0
s

p
r −1(γb(s))pds ≈ t

p
r (γb(t))p. (2.3)

Therefore, [13, Proposition 3.4.33 (iii)] guarantees that

∫ 2t

0
s

p
r −1(γb(s))pds � C(2t)

p
r (γb(2t))p

� C
∫ t

0
s

p
r −1(γb(s))pds � C(2t)

p
r (γb(t))p (2.4)

for some C > 0. The above inequalities show that the fundamental function for Lr,p,b

is finite a.e. and satisfies the �2 condition. That is, Lr,p,b is a rearrangement-invariant
quasi-Banach function space.

When 1 < r < ∞ and 1 � p < ∞ , the Lorentz-Karamata space is equivalent to a
rearrangement-invariant Banach function space [13, Theorem 3.4.41].

In addition, when 0 < r, p < ∞ , we have pLr,p,b = qLr,p,b = r [23, Proposition 6.1].
The statement and the proof of [23, Proposition 6.1] are for the case 1 < r, p < ∞ . It is
easy to see that they are also valid for 0 < r, p < ∞ .
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3. Fractional integrals with homogeneous kernels on generalized Lorentz spaces

In this section, we establish the mapping properties of TΩ,α on generalized Lorentz
spaces. We accomplish this result by interpolating the mapping properties TΩ,α on
Lebesgue spaces with the interpolation functor used in [21]. To apply this interpolation
functor, we need to the notion of Boyd’s indices. Therefore, we first recall the definition
of Boyd’s indices for Λp

w .
For any s > 0 and f ∈ M (0,∞) , define (Ds f )(t) = f (st) .

DEFINITION 3.1. Let 0 < p < ∞ and w : [0,∞) → [0,∞) . Define the lower Boyd
index of Λp

w , pΛp
w
, and the upper Boyd index of Λp

w , qΛp
w
, by

pΛp
w

= sup{p > 0 : ∃C > 0 such that ∀0 � s < 1, ‖Ds‖Lp
w→Lp

w
� Cs−1/p},

qΛp
w

= inf{q > 0 : ∃C > 0 such that ∀1 � s, ‖Ds‖Lp
w→Lp

w
� Cs−1/q},

respectively.

The above definition of Boyd’s indices follows from the definition of Boyd’s in-
dices for rearrangement-invariant quasi-Banach function spaces [21, 27]. In view of the
formula for the Boyd’s indices of Λp

w [1], we have

1
pΛp

w

= lim
s→∞

logW
1/p

(s)
logs

and
1

qΛp
w

= lim
s→0

logW
1/p

(s)
logs

(3.1)

where

W (s) = sup
t>0

W (st)
W (t)

, s > 0.

In particular, the above formulas assure that p0 < pΛp
w

� qΛp
w

< p1 whenever there
exist s0,s∞ > 0 and C0,C∞ > 0 such that

W 1/p(st) � C∞W 1/p(t)s1/p0 , ∀t > 0 and s > s∞, (3.2)

W 1/p(st) � C0W
1/p(t)s1/p1 , ∀t > 0 and 0 < s < s0. (3.3)

Furthermore, for any 0 < r < ∞ , we find that

1
pΛpr

w

= lim
s→∞

logW
1/pr

(s)
logs

= lim
s→∞

logW
1/p

(s)
r logs

=
1

rpΛp
w

(3.4)

1
qΛpr

w

= lim
s→∞

logW
1/pr

(s)
logs

= lim
s→∞

logW
1/p

(s)
r logs

=
1

rqΛp
w

. (3.5)

Since Lemma 2.2 guarantees that Λp
w is a rearrangement-invariant quasi-Banach

function space, we are allowed to use the interpolation functor introduced in [21, Defi-
nition 4,2].
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DEFINITION 3.2. Let 0 < r,θ < ∞ , 0 < p < ∞ and w : (0,∞) → (0,∞) . Let
(X0,X1) be a compatible couple of quasi-normed spaces. The space (X0,X1)θ ,r,Λp

w
con-

sists of all f in X0 +X1 such that

‖ f‖(X0,X1)θ ,r,Λp
w

=
(∫ ∞

0
(t−

1
r K( f ,t

1
θ ,X0,X1))pw(t)dt

)1/p

< ∞. (3.6)

It was shown in [21, Theorem 4.1] that (·, ·)θ ,r,Λp
w

is an interpolation functor. It
also present the corresponding result on the interpolation of linear operators.

We introduce a new function space used to study the mapping properties of TΩ,α .

DEFINITION 3.3. Let 0 � α < ∞ , 0 < p < ∞ and w : (0,∞) → (0,∞) . The set
Λp,α

w consists of all f ∈ M satisfying

‖ f‖Λp,α
w

=
(∫ ∞

0
(t−

α
n f ∗(t))pw(t)dt

)1/p

< ∞.

We see that Λp,α
w is also a generalized Lorentz space with the weight t → t−

α p
n w(t) .

In particular, when α = 0, it reduces to Λp
w .

According to [21, Proposition 3.1], whenever W (t) =
∫ t
0 w(s)ds is finite a.e. and

satisfies the �2 condition, then Λp,α
w is a rearrangement-invariant quasi-Banach func-

tion spaces. Furthermore, if w is non-increasing, Λp,α
w is a Banach space.

The following result is a special case of [21, Theorem 3.2].

LEMMA 3.1. Let 0 � α < ∞ , 0 < p < ∞ and w : (0,∞) → (0,∞) . If W is finite
a.e., satisfies the �2 condition and 0 < pΛp

w
� qΛp

w
< n

α , then

Wα(t) =
∫ t

0
y−

α p
n w(y)dy

is finite a.e. and satisfies the �2 condition.

Proof. Since W is finite a.e., satisfies the �2 condition, Λp
w is a rearrangement-

invariant quasi-Banach function space. Therefore, [21, Theorem 3.2] guarantees that
Λp,α

w is also a rearrangement-invariant quasi-Banach function space.
As for any Lebesgue measurable set E with finite measure, ‖χE‖p

Λp,α
w

= Wα(|E|) ,
Wα is finite a.e. In addition, ‖ · ‖Λp,α

w
is a quasi-norm guarantees that Wα fulfills the

�2 condition [9]. �
In view of [21, Theorem 4.2] and [24, Theorem 3.3], we have the following result

which shows that generalized Lorentz spaces can be generated by the action of the
functor (·, ·)θ ,r,Λp

w
on Lebesgue spaces.

PROPOSITION 3.2. Let 0 � α < ∞ , 0 < p0 < p1 < ∞ , 0 < p < ∞ and w :
(0,∞) → (0,∞) . Let

1
θ

=
1
p0

− 1
p1

and
1
r

=
1
p0

+
α
n

.
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Suppose that w satisfies (3.2)–(3.3) and

1
p1

+
α
n

<
1

qΛp
w

� 1
pΛp

w

<
1
p0

+
α
n

.

We have
(Lp0 ,Lp1)θ ,r,Λp

w
= Λp,α

w .

We are now ready to present the mapping properties of the fractional integrals with
homogeneous kernels on generalized Lorentz spaces.

THEOREM 3.3. Let 0 < p < ∞ , 0 < α < n and w : [0,∞)→ [0,∞) . Suppose that
Ω ∈ L

n
n−α (Sn−1) satisfies (2.1). If 1 < pΛp

w
� qΛp

w
< n

α , then there exists a constant
C > 0 such that for any f ∈ Λp

w

‖TΩ,α f‖Λp,α
w

� C‖ f‖Λp
w
.

Proof. In view of (3.1) and the assumption 1 < pΛp
w

� qΛp
w

< n
α , there exists

1 < u0 < pΛp
w

� qΛp
w

< u1 < n
α such that

W 1/p(st) � C∞W 1/p(t)s1/u0 , ∀t > 0 and s > s∞, (3.7)

W 1/p(st) � C0W
1/p(t)s1/u1 , ∀t > 0 and 0 < s < s0. (3.8)

for some C0,C∞,s0,s∞ > 0.
Define qi , i = 0,1 by

1
qi

=
1
ui

− α
n

.

Theorem 2.1 assures that TΩ,α : Lui → Lqi , i = 0,1, are bounded. Let 1
θ = 1

u0
− 1

u1
=

1
q0
− 1

q1
. We have

1
q1

+
α
n

=
1
u1

<
1

qΛp
w

� 1
pΛp

w

<
1
u0

=
1
q0

+
α
n

.

By applying the functor (·, ·)θ ,u0,Λ
p
w

on TΩ,α , we obtain

‖TΩ,α f‖Λp,α
w

= ‖TΩ,α‖(Lq0 ,Lq1 )θ ,u0,Λp
w

� C‖ f‖(Lp0 ,Lp1 )θ ,u0,Λp
w

= C‖ f‖Λp
w
. �

Let 0 < α < n and f be a locally integrable function. The fractional integral
operator is defined by

Iα f (x) =
∫

Rn

f (y)
|x− y|n−α dy.

The fractional maximal operator Mα is defined as

Mα f (x) = sup
x
B

1

|B|1− α
n

∫
B
| f (y)|dy
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where the supremum is taken over all B ∈ B containing x .
It is well known that there exists a constant C > 0 such that for any locally inte-

grable function f , we have

Mα ( f )(x) � CIα(| f |)(x), ∀x ∈ R
n. (3.9)

By using Theorem 3.3 with Ω ≡ 1, we establish the subsequent corollary.

COROLLARY 3.4. Let 0 < p < ∞ , 0 < α < n and w : [0,∞) → [0,∞) . If 1 <
pΛp

w
� qΛp

w
< n

α , then there exists a constant C > 0 such that for any f ∈ Λp
w

‖Mα f‖Λp,α
w

� C‖ f‖Λp
w
.

4. Main result

The main result of this paper is established in this section. We also apply our
main result to study the mapping properties of TΩ,α on the Lorentz-Karamata-Morrey
spaces.

We start with the definition of the generalized Lorentz-Morrey spaces.
For any r > 0 and x ∈ Rn , define B(x,r) = {y ∈ Rn : |x− y| < r} . Write B =

{B(x,r) : x ∈ Rn, r > 0} .

DEFINITION 4.1. Let 0 < p < ∞ , w : [0,∞)→ [0,∞) and u : Rn× [0,∞)→ (0,∞) .
Suppose that W (t) =

∫ t
0 w(s)ds is finite a.e. and satisfies the �2 condition. The gen-

eralized Lorentz-Morrey space M
p
w,u consists of all Lebesgue measurable function f

satisfying

‖ f‖M
p
w,u

= sup
B(x,r)∈B

1
u(x,r)

‖χB f‖Λp
w

< ∞.

Let 0 < α < n . Suppose that Wα(t) =
∫ t
0 s−

α p
n w(s)ds is finite a.e. and satisfies the

�2 condition. The generalized Lorentz-Morrey space M
p,α
w,u consists of all Lebesgue

measurable function f satisfying

‖ f‖M
p,α
w,u

= sup
B(x,r)∈B

1
u(x,r)

‖χB f‖Λp,α
w

< ∞.

The conditions, W (t) =
∫ t
0 w(s)ds is finite a.e. and satisfies the �2 condition,

guarantee that Λp
w is a quasi-Banach space, therefore, M

p
w,u is also a quasi-Banach

space.
Whenever w ≡ 1, the generalized Lorentz-Morrey space becomes the classical

Morrey space. When w(t) = t
p
q −1 and 1 < p,q < ∞ , M

p
w,u reduces to the Lorentz-

Morrey space [33].
Moreover, when Λp

w is the Lorentz-Karamata space Lr,p,b , we denote he Morrey
space built on Lr,p,b by M

r,p
u,b . We call this function space as the Lorentz-Karamata-

Morrey space.
Notice that (2.3)–(2.4) assure that M

r,p
u,b is a well defined quasi-Banach space.
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In addition, if 1 < r < n
α , we have

∫ t

0
s

p
r − α p

n −1(γb(s))pds ≈ t
p
r − α p

n (γb(t))p

and

∫ 2t

0
s

p
r − α p

n −1(γb(s))pds � C(2t)
p
r − α p

n (γb(2t))p

� C
∫ t

0
s

p
r − α p

n −1(γb(s))pds � C(2t)
p
r − α p

n (γb(t))p

for some C > 0.
Hence, M

r,p,α
u,b is a quasi-Banach function space.

LEMMA 4.1. Let 0 < p < ∞ , 0 < α < n and Ω ∈ L
n

n−α (Sn−1) satisfy (2.1). Sup-
pose that 1 < pΛp

w
� qΛp

w
< n

α . For any 1 < v < pΛp
w
, there is a constant C > 0 such

that for any g ∈ Λp
w and ball B ∈ B , we have

(∫
B
|g(y)|vdy

) 1
v

� C
1

‖χB‖Λp,α
w

‖g‖Λp
w
|B| 1

v − α
n . (4.1)

Proof. In view of the assumptions imposed on v, pΛp
w
,qΛp

w
, we have

1 <
pΛp

w

v
�

qΛp
w

v
<

n
αv

.

Therefore, (3.4) and (3.5) yields

1 < p
Λp/v

w
� q

Λp/v
w

<
n

αv
.

For any g ∈ Λp
w and B ∈ B , we find that

1

|B|1− αv
n

(∫
B
|g(y)|vdy

)
χB(x) � Mαv(|g|v)(x), ∀x ∈ B.

We are allowed to apply Corollary 3.4 on Mαv and Λp/v
w . According to (2.2), we

have

1

|B|1− αv
n

(∫
B
|g(y)|vdy

)
‖χB‖Λp/q,αv

w
� ‖χBMαv(|g|v)‖Λp/q,αv

w

� ‖Mαv(|g|v)‖Λp/q,αv
w

� C‖|g|v‖
Λp/v

w

� C‖g‖v
Λp

w
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Moreover,

‖χB‖Λp/q,αv
w

=
(∫ |B|

0
(t−

αv
n )p/vw(t)dt

)v/p

=
(∫ |B|

0
(t−

α
n )pw(t)dt

)v/p

= ‖χB‖v
Λp,α

w
.

Therefore, (4.1) follow from the above inequalities. �

We are now ready to present our main result, the mapping properties of the frac-
tional integral operators with homogeneous kernels on generalized Lorentz-Morrey
spaces.

THEOREM 4.2. Let 0 < p < ∞ , 0 < α < n, w : [0,∞) → [0,∞) and u : Rn ×
[0,∞) → (0,∞) . Suppose that 1 < pΛp

w
� qΛp

w
< n

α , W (t) is finite a.e. and satisfies the
�2 condition.

If there is a C > 0 such that for any x ∈ Rn and r > 0

∞

∑
j=0

(
Wα(B(x,r))

Wα(B(x,2 j+1r))

)1/p

u((x,2 j+1r) < Cu(x,r) (4.2)

and Ω ∈ Lθ (Sn−1) for some θ ′ < pΛp
w
, then there exists a constant C > 0 such that for

any f ∈ M
p
w,u

‖TΩ,α f‖M
p,α
w,u

� C‖ f‖M
p
w,u

.

Proof. Lemma (3.1) guarantees that Wα is finite a.e. and satisfies the �2 con-
dition, therefore, M

p,α
w,u is well defined. For any B = B(z,r) ∈ B and f ∈ M

p
w,u , write

f0 = χB(z,2r) f and f j = χB(z,2 j+1r)\B(z,2 jr) f , j ∈ N\{0} .

Since θ ′ < pΛp
w

< n
α , n

n−α = (n/α)′ < θ , we have Ω ∈ Lθ (Sn−1) ⊂ L
n

n−α (Sn−1) .
Theorem 3.3 yields

‖χBTΩ,α f0‖Λp,α
w

� C‖TΩ,α f0‖Λp,α
w

� C‖ f0‖Λp
w

= C‖χB(z,2r) f‖Λp
w

(4.3)

for some C > 0.
As Wα satisfies the �2 condition, (4.2) assures that for any z ∈ Rn and r > 0

u(z,2r) � Cu(z,r) (4.4)

for some C > 0.
Consequently, (4.3) and (4.4) yield

1
u(z,r)

‖χBTΩ,α f0‖Λp,α
w

� C
1

u(z,2r)
‖χB(z,2r) f‖Λp

w
� C‖ f‖M

p
w,u

(4.5)

for some c > 0.
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Next, there is a constant C > 0 such that for any j � 1, we have

χB(x)|TΩ,α f j(x)| � CχB(x)
∫

B(z,2 j+1r)\B(z,2 jr)

|Ω(x− y)|
|x− y|n−α | f (y)|dy

By using the Hölder inequality, we find that∫
B(z,2 j+1r)\B(z,2 jr)

|Ω(x− y)|
|x− y|n−α | f (y)|dy

� C

(∫
B(z,2 j+1r)\B(z,2 jr)

|Ω(x− y)|θ
|x− y|θ(n−α) dy

)1/θ

‖χB(z,2 j+1r) f‖Lθ ′

= C

(∫
B(x−z,2 j+1r)\B(x−z,2 jr)

|Ω(y)|θ
|y|θ(n−α) dy

)1/θ

‖χB(z,2 j+1r) f‖Lθ ′

for some C > 0.
Since x ∈ B(z,r) and y ∈ B(x− z,2 j+1r)\B(x− z,2 jr) , we obtain

|y| � |y− (x− z)|+ |x− z|� 2 j+1r+ r � 2 j+2r

|y| � |y− (x− z)|− |x− z|� 2 jr− r � 2 j−1r.

We find that B(x− z,2 j+1r)\B(x− z,2 jr) ⊂ B(0,2 j+2r)\B(0,2 j−1) .
The above result and the assumption Ω ∈ Lθ (Sn−1) indicate that∫

B(z,2 j+1r)\B(z,2 jr)

|Ω(x− y)|
|x− y|n−α | f (y)|dy

= C

(∫
B(0,2 j+2r)\B(0,2 j−1r)

|Ω(y)|θ
|y|θ(n−α) dy

)1/θ

‖χB(z,2 j+1r) f‖Lθ ′

= C

(∫ 2 j+2r

2 j−1r

∫
Sn−1

|Ω(s)|θ t−θ(n−α)+n−1dsdt

)1/θ

‖χB(z,2 j+1r) f‖Lθ ′

� C2−(n−α)( j−1)+n( j−1)/θr−(n−α)+n/θ‖χB(z,2 j+1r) f‖Lθ ′

� C
1

|B(z,2 j+1r)| 1
θ ′ −

α
n

‖χB(z,2 j+1r) f‖Lθ ′

for some C > 0.
Furthermore, since θ ′ < pΛp

w
, by applying Lemma (4.1) with v = θ ′ and g =

χB(z,2 j+1r) f , we get

χB(x)|TΩ,α f j(x)| � CχB(x)
‖χB(z,2 j+1r) f‖Λp

w

‖χB(z,2 j+1r)‖Λp,α
w

.

Therefore,

χB(x)
∞

∑
j=1

|TΩ,α f j(x)| � CχB(x)
∞

∑
j=1

‖χB(z,2 j+1r) f‖Λp
w

‖χB(z,2 j+1r)‖Λp,α
w
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Applying the quasi-norm ‖ · ‖Λp,α
w

and, then, multiplying 1
u(z,r) on both sides of

the above inequality, we have

1
u(z,r)

∥∥∥∥∥χB

∞

∑
j=1

|TΩ,α f |
∥∥∥∥∥

Λp,α
w

� C
1

u(z,r)
‖χB‖Λp,α

w

∞

∑
j=1

‖χB(z,2 j+1r) f‖Λp
w

‖χB(z,2 j+1r)‖Λp,α
w

� C
∞

∑
j=1

u(z,2 j+1r)
u(z,r)

‖χB‖Λp,α
w

‖χB(z,2 j+1r)‖Λp,α
w

1
u(z,2 j+1r)

‖χB(z,2 j+1r) f‖Λp
w

� C
∞

∑
j=1

u(z,2 j+1r)
u(z,r)

‖χB‖Λp,α
w

‖χB(z,2 j+1r)‖Λp,α
w

‖ f‖M
p
w,u

.

Notice that for any B ∈ B , ‖χB‖p
Λp,α

w
= Wα(|B|) . Therefore, (4.2) ensures that

1
u(z,r)

∥∥∥∥∥χB(z,r)

∞

∑
j=1

|TΩ,α f |
∥∥∥∥∥

Λp,α
w

� C‖ f‖M
p
w,u

(4.6)

for some C > 0.
Therefore, (4.5) and (4.6) yield

1
u(z,r)

‖χB(z,r)TΩ,α f‖Λp,α
w

� C‖ f‖M
p
w,u

.

By taking supremum over B ∈ B on both sides of the above inequality, we obtain
our desired result. �

We give an application of Theorem 4.2 on Lorentz-Karamata-Morrey spaces.

COROLLARY 4.3. Let 0 < p < ∞ , 0 < α < n and u : Rn× [0,∞) → (0,∞) . Sup-
pose that 1 < r < n

α and
1
r

=
1
q

+
α
n

. (4.7)

If there is a C > 0 such that for any x ∈ Rn and r > 0

∞

∑
j=0

‖χB(x,r)‖Lq,p,b

‖χB(x,2 j+1r)‖Lq,p,b

u((x,2 j+1r) < Cu(x,r) (4.8)

and Ω ∈ Lθ (Sn−1) for some θ ′ < r , then there exists a constant C > 0 such that for
any f ∈ M

p
w,u

‖TΩ,α f‖M
q,p
u,b

� C‖ f‖M
r,p
u,b

.

Notice that (4.7) shows that M
r,p,α
u,b is equal to M

q,p
u,b . Moreover, M

r,p
u,b and M

r,p,α
u,b

are quasi-Banach function spaces, therefore their corresponding fundamental functions
are finite a.e. and satisfy the �2 condition. Therefore, we are allowed to apply Theo-
rem 4.2 to obtain the above corollary.
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[8] M. CARRO, A. GARCÍA DEL AMO AND J. SORIA, Weak-type weights and normable Lorentz spaces,

Proc. Amer. Math. Soc. 124 (1996), 849–857.
[9] M. CARRO AND J. SORIA, Weighted Lorentz space and the Hardy operator, J. Funct. Anal. 112

(1993), 480–494.
[10] M. CARRO, J. RAPOSO AND J. SORIA, Recent Developments in the Theory of Lorentz spaces and

Weighted Inequalities, Memoirs Amer. Math. Soc. 187 (2007).
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