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HERMITE–HADAMARD INEQUALITIES FOR

CO–ORDINATED log−h–CONVEX FUNCTIONS

TINGJING WANG, MENGJIE FENG, JIANMIAO RUAN ∗ AND BO SHAO

(Communicated by M. Krnić)

Abstract. In this paper, we establish some Hermite-Hadamard type inequalities for co-ordinated
log−h -convex functions on rectangles from R

n , which extend some known results. Some map-
pings connected with these inequalities and related results are also obtained.

1. Introduction

The concept of h -convexity was first introduced by Varošanec [19] in 2007, and
then has been studied extensively by many mathematicians, see e.g. [4, 10, 13, 16] and
the references therein.

DEFINITION 1.1. Let h : [0,1]→ [0,∞) be a given function. We say that f : D →
R , where D is a convex subset of R

n , is h -convex if for any x,y ∈ D and α ∈ [0,1] ,

f (αx+(1−αy)) � h(α) f (x)+h(1−α) f (y). (1.1)

This notion unifies and generalizes the known classes of the usual convex func-
tions, s-convex functions (in the second sense) [5], P-functions [17] and Godunova-
Levin functions (or Q-functions) [9], which are obtained by putting in (1.1)

h(α) = α, h(α) = αs (0 < s � 1), h(α) = 1, (1.2)

and

h(α) =
{

1/α, 0 < α � 1,
0, α = 0,

(1.3)

respectively.
Convexity and its generalizations are very important both in pure mathematics and

in applications. One of the significant application involved in convex type functions is
the following well-known Hermite-Hadamard inequality.
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THEOREM A. Let f : [a,b]⊂ R → R be a convex mapping. Then

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
.

In 1995, Dragomier, Pec̆arić and Persson [8] established similar results for P-
functions and Q-functions. About four years later, Dragomir and Fitzpatrick [7] ex-
tended an analogous inequality for s-convex functions (in the second sense). In 2008,
Sarikaya, Saglam and Yildririm obtained the following inequality for h -convex func-
tions.

THEOREM B. [18] Let f : [a,b] ⊂ R → R be an h-convex function on [a,b] .
Then

1

2h
(

1
2

) f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � [ f (a)+ f (b)]

∫ 1

0
h(t)dt.

It is notable that Theorem B reduces to the results in [8] and [7] by taking h(α) =
1, h(α) = 1/α and h(α) = αs , respectively.

In 2013, Noor, Qi and Awan [15] introduced the concept of the log−h -convex
function, that is

DEFINITION 1.2. Let h : [0,1] → [0,∞) be a given function. We say that f :
D → (0,+∞) , where D is a convex subset of R

n , is log−h -convex if for any x,y∈D
and α ∈ [0,1] ,

f (αx+(1−α)y) � [ f (x)]h(α) [ f (y)]h(1−α) . (1.4)

Particularly, if letting h be as in (1.2) and (1.3), then the log−h -convex function
reduces to the log-convex function, the log−s-convex function (in the second sense),
the log−P-convex function and the log−Q-convex function, respectively. Readers
interested in learning more about these functions are referred to the papers [14, 21, 22].

As an application, the authors [15] proved the following result.

THEOREM C. Let f : [a,b] ⊂ R → (0,+∞) be a log−h-convex function. Then

f

(
a+b

2

)1/(2h(1/2))

� exp

[
1

b−a

∫ b

a
ln f (x)dx

]
� [ f (a) f (b)]

∫ 1
0 h(t)dt .

On the other hand, there is an extensive literature devoted to develop Hermite-
Hadamard’s type inequalities to higher-dimensions. In 2001, Dragomir [6] extended
Theorem A to co-ordinated convex functions on a rectangle from the plane R

2 .

THEOREM D. [6] If f : Δ = [a1,b1]× [a2,b2]⊂R
2 →R is a co-ordinated convex

on Δ , then

f

(
a1 +b1

2
,
a2 +b2

2

)
� 1

(b1−a1)(b2−a2)

∫ b2

a2

∫ b1

a1

f (x1,x2)dx1dx2

� f (a1,a2)+ f (a1,b2)+ f (b1,a2)+ f (b1,b2)
4

.
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The above inequalities are sharp. In 2008, Alomari and Darus proved similar
inequalities for co-ordinated s-convex functions (in the first sense [2], in the second
sense [1]) on a rectangle from the plane R

2 . In 2009, Latif and Alomari [12] introduced
the concept of co-ordinated h -convex functions on rectangles from the plane R

2 .

DEFINITION 1.3. Let h : [0,1] ⊂ R → R be a non-negative function. A function
f : Δ = [a1,b1]× [a2,b2]⊂R

2 →R is said to be a co-ordinated h -convex function on Δ ,
if the partial mappings f1 : [a1,b1]→ R, f1(u) = f (u,x2) and f2 : [a2,b2]→ R, f2(u) =
f (x1,u) are h -convex for all x j ∈ [a j,b j], j = 1,2.

The authors also proved the Hermite-Hadamard inequality for co-ordinated h -
convex functions as follows.

THEOREM E. [12] If f : Δ = [a1,b1]× [a2,b2] ⊂ R
2 → R is a co-ordinated h-

convex on Δ , then

1
4h2(1/2)

f

(
a1 +b1

2
,
a2 +b2

2

)
� 1

(b1 −a1)(b2−a2)

∫ b2

a2

∫ b1

a1

f (x1,x2)dx1dx2

� [ f (a1,a2)+ f (a1,b2)+ f (b1,a2)+ f (b1,b2)]
(∫ 1

0
h(t)dt

)2

.

In particular, if setting h(α) = αs , Theorem E reduces to the results in [1].
In 2001, Dragomir [6] also studied some properties of mappings connected to the

Hermite-Hadamard type inequalities of co-ordinated convex functions on rectangles
from the plane R

2 .

THEOREM F. [6] Define the mapping H : [0,1]2 ⊂ R
2 → R by

H(t1, t2) =
1

(b1−a1)(b2−a2)

∫ b2

a2

×
∫ b1

a1

f

(
t1x1 +(1− t1)

a1 +b1

2
,t2x2 +(1− t2)

a2 +b2

2

)
dx1dx2.

If f : Δ = [a1,b1]× [a2,b2] ⊆ R
2 → R is co-ordinated convex on Δ , then:

(i) The mapping H is co-ordinated convex on [0,1]2 .
(ii)

sup
(t1,t2)∈[0,1]2

H(t1, t2) = H(1,1), inf
(t1,t2)∈[0,1]2

H(t1,t2) = f

(
a1 +b1

2
,
a2 +b2

2

)
= H(0,0).

With these motivations, the main purpose in this paper is to establish analogues
of Hermite-Hadamard inequalities for co-ordinated log−h -convex functions on n -
dimensional rectangles and study some related mappings.
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2. Main results

In the sequel, unless otherwise specified, R
n denotes the Euclidean space of di-

mension n and R
1 = R . [a,b] ⊂ R

n denotes the usual Cartesian product by [a,b] =
[a1,b1]× [a2,b2]×·· ·× [an,bn] and the Lebesgue measure of it by |[a,b]| = ∏n

i=1(bi−
ai) . Denote L(E) by the set of Lebesgue integrable functions on the measurable set
E ⊂ R

n . Define the product of vectors by

t◦ x = (t1x1,t2x2, . . . ,tnxn) ,

and the linear combination of vectors by

at+bx = (at1 +bx1,at2 +bx2, . . . ,atn +bxn) ,

where t = (t1, t2, . . . ,tn) , x = (x1,x2, . . . ,xn) ∈ R
n, a,b ∈ R .

Similar to Definition 1.2, one can give the notion of co-ordinated log−h -convex
functions on rectangles from R

n (n � 2) .

DEFINITION 2.1. Let h : [0,1] ⊂ R → R be a non-negative function. A func-
tion f : [a,b] ⊂ R

n → (0,+∞) is said to be a co-ordinated log−h -convex function on
[a,b] , if for every i ∈ {1,2, . . . ,n} the partial mapping fi : [ai,bi] → (0,+∞), fi(u) =
f (x1, . . . ,xi−1,u,xi+1, . . . ,xn) is log−h -convex for all x j ∈ [a j,b j], j �= i .

In particular, if f satisfies the conditions in the proceeding definition with h de-
fined by (1.2) and (1.3), then f is said to be the co-ordinated log -convex function, the
co-ordinated log−s-convex function (in the second sense), the co-ordinated log−P-
function and the co-ordinated log−Q function, respectively.

It is not difficult to check that every log−h -convex function f : [a,b] ⊂ R
n →

(0,+∞) is co-ordinate log−h -convex on [a,b] , but the converse is not generally true
(see the details in Appendix).

Throughout the paper, we assume that the function h in the above definitions is
always Lebesgue integrable on the interval [0,1] and satisfies h(1/2) > 0.

Now we are in a position to state our results.

THEOREM 2.1. Let f : [a,b] ⊂ R
n → (0,+∞) and ln f ∈ L([a,b]) . If the partial

mapping fi is a log−hi -convex function on [ai,bi] for i = 1,2, . . . ,n respectively, then[
f

(
a+b

2

)]1/(2n ∏n
i=1 hi(1/2))

� exp

[
1

|[a,b]|
∫

[a,b]
ln f (x)dx

]

�
[

∏
ci=ai or bi

f (c1,c2, . . . ,cn)

]∏n
i=1

∫ 1
0 hi(t)dt

.

Proof. It follows from Theorem B that

1
|[a,b]|

∫
[a,b]

ln f (x)dx (2.1)

=
1

∏n
j=1 (b j −a j)

∫ bn

an

. . .

∫ b2

a2

∫ b1

a1

ln f (x1,x2, . . . ,xn)dx1dx2 . . .dxn
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� 1
2h1(1/2)∏n

j=2 (b j −a j)

∫ bn

an

. . .

∫ b2

a2

ln f

(
a1 +b1

2
,x2, . . . ,xn

)
dx2 . . .dxn

� · · · � 1
2n ∏n

i=1 hi(1/2)
ln f

(
a1 +b1

2
,
a2 +b2

2
, . . . ,

an +bn

2

)
.

On the other hand, the right part of Theorem B and Fubini’s theorem imply that

1
|[a,b]|

∫
[a,b]

ln f (x)dx

�
∫ 1
0 h1(t)dt

∏n
j=2 (b j −a j)

∫ bn

an

. . .

∫ b3

a3

∫ b2

a2

[ln f (a1,x2, . . . ,xn)+ ln f (b1,x2, . . . ,xn)]dx2 . . .dxn

�
∫ 1
0 h1(t)dt

∫ 1
0 h2(t)dt

∏n
j=3 (b j −a j)

∫ bn

an

. . .

∫ b4

a4

∫ b3

a3

[ln f (a1,a2, . . . ,xn)+ ln f (a1,b2, . . . ,xn)

+ ln f (b1,a2, . . . ,xn)+ ln f (b1,b2, . . . ,xn)]dx3dx4 . . .dxn.

Then, by induction, we have

1
|[a,b]|

∫
[a,b]

ln f (x)dx �
(

n

∏
i=1

∫ 1

0
hi(t)dt

)(
∑

ci=ai or bi

ln f (c1,c2, . . . ,cn)

)

=

(
n

∏
i=1

∫ 1

0
hi(t)dt

)
ln

(
∏

ci=ai or bi

f (c1,c2, . . . ,cn)

)
. (2.2)

Therefore we finish the proof of Theorem 2.1 by (2.1) and (2.2). �

If taking h1 = h2 = · · · = hn in Theorem 2.1, we have the following result.

COROLLARY 2.2. Let f : [a,b]⊂R
n → (0,+∞) be a co-ordinated log−h-convex

function and ln f ∈ L([a,b]) . Then[
f

(
a+b

2

)]1/(2h(1/2))n

� exp

[
1

|[a,b]|
∫

[a,b]
ln f (x)dx

]

�
[

∏
ci=ai or bi

f (c1,c2, . . . ,cn)

](∫ 1
0 h(t)dt)n

.

Especially, if h(t) = t and n = 2, then Corollary 2.2 reduces to Corollary 3.1 in
[3].

Next we introduce a key lemma as follows.

LEMMA 2.3. Let f : [a,b] ⊂ R → (0,+∞) be a log−h-convex function on the
interval [a,b] and ln f ∈ L([a,b]) . Define the mapping L : [0,1] ⊂ R → R by

L(t) = exp

[
1

b−a

∫ b

a
ln f

(
tx+(1− t)

a+b
2

)
dx

]
.

Then :
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(i) L is a log−h-convex function on [0,1] .
(ii) For t ∈ [0,1] , we have[

f

(
a+b

2

)] 1
2h(1/2)

� L(t) � L(1)h(t)+2h(1/2)h(1−t).

Especially, if f is a log -convex function on [a,b] , we have

sup
t∈[0,1]

L(t) = L(1), inf
t∈[0,1]

L(t) = L(0).

Proof. (i) Let t1, t2, α,β ∈ [0,1] and α + β = 1. For any x ∈ [a,b] , by the
definition of log−h -convexity, we have

ln f

(
(αt1 + β t2)x+[1− (αt1 + β t2)]

a+b
2

)
= ln f

[
α
(

t1x+(1− t1)
a+b

2

)
+ β

(
t2x+(1− t2)

a+b
2

)]
� h(α) ln f

(
t1x+(1− t1)

a+b
2

)
+h(β ) ln f

(
t2x+(1− t2)

a+b
2

)
.

Therefore,

lnL(αt1 + β t2)

� h(α)
b−a

∫ b

a
ln f

(
t1x+(1− t1)

a+b
2

)
dx+

h(β )
b−a

∫ b

a
ln f

(
t2x+(1− t2)

a+b
2

)
dx

= h(α) lnL(t1)+h(β ) lnL(t2) .

That is

L(αt1 + β t2) � L(t1)
h(α) L(t2)

h(β ) ,

which completes the proof of (i).

(ii) A changing of variable shows that

L(t) = exp

[
1

t(b−a)

∫ (1−t)a+(1+t)b
2

(1+t)a+(1−t)b
2

ln f (ξ )dξ

]
.

Since
(1+ t)a+(1− t)b

2
− (1− t)a+(1+ t)b

2
= t(b−a),

(1+ t)a+(1− t)b
2

+
(1− t)a+(1+ t)b

2
= a+b,

by Theorem B,

L(t) �
[

f

(
a+b

2

)] 1
2h(1/2)

(2.3)

holds for all t ∈ [0,1] .
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On the other hand,

L(t) � exp

[
h(t)
b−a

∫ b

a
ln f (x)dx+h(1− t) ln f

(
a+b

2

)]
= exp

[
h(t) lnL(1)+h(1− t) ln f

(
a+b

2

)]
= (L(1))h(t) ·

(
f

(
a+b

2

))h(1−t)

� L(1)h(t) ·L(1)2h(1/2)h(1−t)

= L(1)h(t)+2h(1/2)h(1−t),

the last inequality is obtained by (2.3). Thus we finish the proof of Lemma 2.3. �

THEOREM 2.4. Let f : [a,b] ⊂ R
n → (0,+∞) and ln f ∈ L([a,b]) . Define the

mapping L : [0,1]⊂ R
n → R by

L(t) = exp

[
1

|[a,b]|
∫

[a,b]
ln f

(
t◦ x+(1− t)◦ a+b

2

)
dx
]
. (2.4)

If the partial mapping fi is log−hi -convex on [ai,bi] for i = 1,2, . . . ,n respectively,
then:

(i) The partial mapping Li(u) = L(t1, . . . ,ti−1,u,ti+1, . . . ,tn) is a log−hi -convex
function on [0,1] for every i ∈ {1,2, . . . ,n} .

(ii) For all t ∈ [0,1]⊂ R
n , we have

f

(
a+b

2

)1/(2n ∏n
i=1 hi(1/2))

� L(t) � [L(1)]∏
n
i=1[hi(ti)+2hi(1/2)hi(1−ti)] .

Proof. (i) Without loss of generality, we just prove that L1(·) is a log−h -convex
function on [0,1] ⊂ R , the others follow the same procedure. For any ξ ,η ,α,β ∈
[0,1]⊂ R and α +β = 1, Fubini’s theorem and the similar argument as in the proof of
Lemma 2.3 (i) tell us that

lnL1(αξ + β η)

=
1

∏n
j=1(b j −a j)

∫ bn

an

. . .

∫ b1

a1

ln f
(
(αξ + β η)x1+

[
1−(αξ + β η)

] a1 +b1

2
, . . . ,

tnxn+(1− tn)
an +bn

2

)
dx1 . . .dxn

� h1(α)
∏n

j=1(b j −a j)

∫ bn

an

. . .
∫ b1

a1

ln f
(

ξ x1 +(1− ξ )
a+b

2
, . . . ,

tnxn+(1− tn)
an +bn

2

)
dx1 . . .dxn

+
h1(β )

∏n
j=1(b j−a j)

∫ bn

an

. . .

∫ b1

a1

ln f
(

ηx1+(1−η)
a+b
2

, . . .,tnxn+(1−tn)
an+bn

2

)
dx1. . .dxn
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= h1(α) lnL(ξ , t2, . . . ,tn)+h1(β ) lnL(η ,t2, . . . ,tn)
= h1(α) lnL1 (ξ )+h1(β ) lnL1 (η) ,

which yields that

L1(αξ + β η) � L1 (ξ )h1(α) L1 (η)h1(β ) .

This proves Theorem 2.4 (i).

(ii) Changes of variables tell us that

L(t) = exp

[
1

∏n
i=1 ti (bi−ai)

∫ (1+tn)an+(1−tn)bn
2

(1−tn)an+(1+tn)bn
2

. . .

∫ (1+t1)a1+(1−t1)b1
2

(1−t1)a1+(1+t1)b1
2

ln f (ξ1, . . . ,ξn)dξ1 . . .dξn

]
.

Since, for i = 1,2, . . . ,n ,

(1− ti)ai +(1+ ti)bi

2
− (1+ ti)ai +(1− ti)bi

2
= ti (bi−ai) ,

(1− ti)ai +(1+ ti)bi

2
+

(1+ ti)ai +(1− ti)bi

2
= ai +bi,

by induction, Fubini’s theorem and Lemma 2.3 show that

lnL(t) � 1
2n ∏n

i=1 hi(1/2)
ln f

(
a1 +b1

2
,
a2 +b2

2
, . . . ,

an +bn

2

)
=

1
2n ∏n

i=1 hi(1/2)
ln f

(
a+b

2

)
.

Therefore

L(t) �
[

f

(
a+b

2

)]1/(2n ∏n
i=1 hi(1/2))

.

This completes the proof of the left part of Theorem 2.4 (ii).

On the other hand, using Lemma 2.3 and Fubini’s theorem again, we derive that

lnL(t) = lnL(t1,t2, . . . ,tn)

=
1

∏n
j=1(b j −a j)

∫ bn

an

. . .

∫ b2

a2

∫ b1

a1

ln f

(
t1x1 +(1− t1)

a1 +b1

2
,

t2x2 +(1− t2)
a2 +b2

2
, . . . ,tnxn +(1− tn)

an +bn

2

)
dx1dx2 . . .dxn

� h1(t1)+2h1 (1/2)h1 (1− t1)
∏n

j=1 (b j −a j)

×
∫ bn

an

. . .

∫ b2

a2

∫ b1

a1

ln f
(
x1,t2x2 +(1− t2)

a2 +b2

2
, . . . ,

tnxn +(1− tn)
an +bn

2

)
dx1dx2 . . .dxn
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� [h1(t1)+2h1 (1/2)h1 (1− t1)] [h2(t2)+2h2 (1/2)h2 (1− t2)]
∏n

j=1 (b j −a j)

×
∫ bn

an

. . .

∫ b2

a2

∫ b1

a1

ln f
(
x1,x2,t3x3 +(1− t3)

a3 +b3

2
, . . . ,

tnxn +(1− tn)
an +bn

2

)
dx1dx2 . . .dxn

� · · ·
� ∏n

i=1

[
hi (ti)+2hi

( 1
2

)
hi(1− ti)

]
∏n

j=1 (b j −a j)

∫ bn

an

. . .

∫ b2

a2

∫ b1

a1

ln f (x1,x2, . . . ,xn)dx1dx1 . . .dxn

=
n

∏
i=1

[
hi (ti)+2hi

(
1
2

)
hi(1− ti)

]
lnL(1),

which means that

L(t) � L(1)∏n
i=1[hi(ti)+2hi( 1

2 )hi(1−ti)]

holds for all t ∈ [0,1] . Thus the proof is completed. �

As a consequence, if h1 = h2 = · · · = hn in Theorem 2.4, we derive that

COROLLARY 2.5. Let the mapping L : [0,1] ⊂ R
n → R be as in Theorem 2.4. If

f : [a,b]⊂R
n → (0,+∞) is a co-ordinated log−h-convex function and ln f ∈L([a,b]) ,

then:
(i) The mapping L is a co-ordinated log−h-convex function on [0,1] .
(ii) For all t ∈ [0,1] , we have

f

(
a+b

2

)1/[2h(1/2)]n

� L(t) � [L(1)]∏
n
i=1[h(ti)+2h(1/2)h(1−ti)] .

Especially, if f is a co-ordinated log-convex function on [a,b] , then

sup
t∈[0,1]

L(t) = L(1), inf
t∈[0,1]

L(t) = L(0).

If t1 = t2 = . . . = tn = t in the mapping (2.4), we have

COROLLARY 2.6. Let f : [a,b] ⊂ R
n → (0,+∞) and ln f ∈ L([a,b]) . Define the

mapping L̃ : [0,1]⊂ R → R by

L̃(t) = exp

[
1

|[a,b]|
∫

[a,b]
ln f

(
tx+(1− t)

a+b
2

)
dx
]
.

(i) If the partial mapping fxi is a log−hi -convex function on [ai,bi] for i =
1,2, . . . ,n respectively, then

f

(
a+b

2

)1/(2n ∏n
i=1 hi(1/2))

� L̃(t) �
[
L̃(1)

]∏n
i=1[hi(t)+2hi(1/2)hi(1−t)]

holds for all t ∈ [0,1]⊂ R .
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In particular, if h1 = h2 = . . . = hn = h and f is a co-ordinated log−h-convex
function on [a,b] , then for all t ∈ [0,1] ,

f

(
a+b

2

)1/[2h(1/2)]n

� L̃(t) � L̃(1)[h(t)+2h(1/2)h(1−t)]n.

Furthermore, if f is a co-ordinated log-convex function on [a,b] , then

sup
t∈[0,1]

L̃(t) = L̃(1), inf
t∈[0,1]

L̃(t) = L̃(0).

(ii) If f : [a,b] ⊂ R
n → (0,+∞) is a log−h-convex function on [a,b] , then L̃ is

log−h-convex on [0,1] ⊂ R .

Corollary 2.5 and Corollary 2.6 are easily obtained by Theorem 2.4, we leave the
details to readers.

LEMMA 2.7. Let f : [a,b] ⊂ R → (0,+∞) be a log−h-convex function on the
interval [a,b] and ln f ∈ L([a,b]) . Define the mapping K : [0,1] ⊂ R → R by

K(t) = exp

[
1

(b−a)2

∫ b

a

∫ b

a
ln f (tx+(1− t)y)dxdy

]
.

Then :
(i) K is symmetric about 1/2 , i.e.

K

(
1
2

+ t

)
= K

(
1
2
− t

)
, t ∈ [0,1/2],

and

K(1− t) = K(t) , t ∈ [0,1].

(ii) K is a log−h-convex function on [0,1] .

Proof. (i) For any t ∈ [0,1/2] , changes of variables and Fubini’s theorem yield
that

lnK

(
1
2

+ t

)
=

1
(b−a)2

∫ b

a

∫ b

a
ln f

((
1
2

+ t

)
x+
(

1
2
− t

)
y

)
dxdy

=
1

(b−a)2

∫ b

a

∫ b

a
ln f

((
1
2

+ t

)
y+
(

1
2
− t

)
x

)
dydx

= lnK

(
1
2
− t

)
,

which means that

K

(
1
2

+ t

)
= K

(
1
2
− t

)
holds for all t ∈ [0,1/2] . And, it follows from the same discussion that, for any t ∈
[0,1] ,

K(1− t) = K(t) .
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(ii) Let t1, t2, α,β ∈ [0,1] and α + β = 1. For any x,y ∈ [a,b] , the definition of
log−h -convexity shows that

ln f ((αt1 + β t2)x+[1− (αt1 + β t2)]y)
= ln f [α (t1x+(1− t1)y)+ β (t2x+(1− t2)y)]
� h(α) ln f (t1x+(1− t1)y)+h(β ) ln f (t2x+(1− t2)y) .

Therefore,

lnK(αt1 + β t2)

� h(α)
(b−a)2

∫ b

a

∫ b

a
ln f (t1x+(1− t1)y)dxdy+

h(β )
(b−a)2

∫ b

a

∫ b

a
ln f (t2x+(1− t2)y)dxdy

= h(α) lnK(t1)+h(β ) lnK(t2) ,

which tells us that

K(αt1 + β t2) � K(t1)
h(α) K(t2)

h(β ) .

This completes the proof of (ii). �

THEOREM 2.8. Let f : [a,b] ⊂ R
n → (0,+∞) and ln f ∈ L([a,b]) . Define the

mapping K : [0,1] ⊂ R
n → R by

K(t) = exp

[
1

|[a,b]|2
∫

[a,b]

∫
[a,b]

ln f (t◦ x+(1− t)◦y)dydx

]
. (2.5)

If the partial mapping fi is log−hi -convex on [ai,bi] for i = 1,2, . . . ,n respectively,
then:

(i) For every i ∈ {1,2, . . . ,n} , the partial mapping Ki(u) = K(t1, . . . ,ti−1,u,ti+1,
. . . ,tn) is symmetric about 1/2 , i.e.

K

(
t1, . . . ,ti−1,

1
2

+ ti,ti+1, . . . ,tn

)
= K

(
t1, . . . ,ti−1,

1
2
− ti,ti+1, . . . ,tn

)
, ti ∈ [0,1/2],

K(t1, . . . ,ti−1,1− ti,ti+1, . . . ,tn) = K(t1, . . . ,ti−1,ti,ti+1, . . . ,tn) , ti ∈ [0,1].

(ii) The partial mapping Ki(u) is a log−hi -convex function on [0,1] for every
i ∈ {1,2, . . . ,n} .

(iii) For all t ∈ [0,1]⊂ R
n ,

K

(
1
2

)1/(2n ∏n
i=1 hi(1/2))

� K(t) � K(1)∑ci=ti or 1−ti;i=1,2,...,n h1(c1)···hi(ci)···hn(cn)

= K(0)∑ci=ti or 1−ti;i=1,2,...,n h1(c1)···hi(ci)···hn(cn)

= L(1)∑ci=ti or 1−ti;i=1,2,...,n h1(c1)···hi(ci)···hn(cn).

Proof. Since the statements of (i) and (ii) are easy to achieved by a similar ar-
gument in Lemma 2.7, we will pay more attention to proving (iii). It follows from
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Definition 2.1 that
1

h1(1/2)
ln f

(
x1 + y1

2
,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn

)
� ln f (t1x1 +(1− t1)y1,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn)

+ ln f ((1− t1)x1 + t1y1,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn) ,

which tells us that

1

(b1−a1)
2

∫ b1

a1

∫ b1

a1

ln f
(
t1x1 +(1− t1)y1,t2x2 +(1− t2)y2, . . . ,tnxn

+(1− tn)yn
)
dx1dy1

� 1

2h1(1/2)(b1−a1)
2

∫ b1

a1

∫ b1

a1

ln f
(x1 + y1

2
, t2x2 +(1− t2)y2, . . . ,tnxn

+(1− tn)yn

)
dx1dy1.

By a similar argument, we infer from Fubini’s theorem and induction that

lnK(t) � 1
2n ∏n

i hi(1/2)
1

|[a,b]|2
∫

[a,b]

∫
[a,b]

ln f

(
x+y

2

)
dxdy

=
1

2n ∏n
i hi(1/2)

lnK

(
1
2

)
holds for all t ∈ [0,1] . Thus we complete the proof of the left part of (iii).

On the other hand, according to Definition 2.1 and Fubini’s theorem,

lnK(t)

� h1 (t1)
|[a,b]|2

∫
[a,b]

∫
[a,b]

ln f (x1,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn)dxdy

+
h1 (1− t1)
|[a,b]|2

∫
[a,b]

∫
[a,b]

ln f (y1,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn)dxdy

=
h1 (t1)

[∏n
i=2 (bi −ai)]

2 (b1−a1)

×
∫ bn

an

. . .

∫ b2

a2

∫
[a,b]

ln f (x1,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn)dxdy2 · · ·dyn

+
h1 (1− t1)

[∏n
i=2 (bi−ai)]2 (b1−a1)

×
∫

[a,b]

∫ bn

an

. . .

∫ b2

a2

ln f (y1,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn)dx2 · · ·dxndy.

Using Fubini’s theorem and induction again, we have

lnK(t) � ∑ci=tior1−ti;i=1,2,...,n h1(c1) · · ·hi(ci) · · ·hn(cn)
|[a,b]|

∫
[a,b]

f (x)dx
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= ∑
ci=tior1−ti;i=1,2,...,n

h1(c1) · · ·hi(ci) · · ·hn(cn) lnK(0)

= ∑
ci=tior1−ti;i=1,2,...,n

h1(c1) · · ·hi(ci) · · ·hn(cn) lnK(1).

Thus we can finish the proof of Theorem 2.8. �

It is clearly that the statement (i) in the proceeding theorem is always true only if
the function ln f is Lebesgue integrable on [a,b] .

If h1 = h2 = . . . = hn , we have the following results.

COROLLARY 2.9. Let K be as in Theorem 2.8. If f : [a,b]⊂ R
n → (0,+∞) is a

co-ordinated log−h-convex function and ln f ∈ L([a,b]) , then:

(i) K is a co-ordinated log−h-convex function on [0,1] ⊂ R
n .

(ii) For all t ∈ [0,1]⊂ R
n ,

K

(
1
2

)1/(2h(1/2))n

� K(t) � L(1)∑ci=ti or 1−ti;i=1,2,...,n h(c1)···h(ci)···h(cn).

(iii) Especially, if f is a co-ordinated log-convex function on [a,b] , then

sup
t∈[0,1]

K(t) = L(1), inf
t∈[0,1]

K(t) = K

(
1
2

)
.

Proof. Since (i) and (ii) are easily proved by Theorem 2.8, and inft∈[0,1] K(t) =
K(1/2) is directly calculated by (ii), we omit the details and turn to consider the first
case of (iii). Here we will provide two methods to prove the assertion.

Method 1. Let h(t) = t,0 � t � 1. It is not difficult to see that the value of
∑ci=ti or 1−ti;i=1,2,...,n h(c1) · · ·h(ci) · · ·h(cn) is the volume of unit cubes, that is

∑
ci=ti or 1−ti;i=1,2,...,n

h(c1) · · ·h(ci) · · ·h(cn) ≡ 1.

This proves the corollary.

Compare with the above geometric method, the second one may be more general.

Method 2. Firstly, we will show that the partial mapping lnKi is increasing on
the interval [1/2,1] for any given i ∈ {1,2, . . . ,n} . Without loss of generality, we just
consider the mapping lnK1 . In fact, by a similar discussion as in the proof of Theorem
2.8, we have

lnK1(t1)

=
1

∏n
i=1 (bi −ai)

2

∫ bn

an

. . .
∫ b1

a1

∫ bn

an

. . .
∫ b1

a1

ln f (t1x1 +(1− t1)y1,t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn)dx1 . . .dxndy1 . . .dyn
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� 1

∏n
i=1 (bi −ai)2

∫ bn

an

. . .

∫ b1

a1

∫ bn

an

. . .

∫ b1

a1

ln f

(
x1 + y1

2
, t2x2 +(1− t2)y2, . . . ,tnxn +(1− tn)yn

)
dx1 . . .dxndy1 . . .dyn

= lnK1(1/2).

Therefore, for any t11,t12 ∈ (1/2,1] and t11 < t12 , it follows from the convexity of lnK1

(see Corollary 2.9 (ii)) that

lnK1 (t12)− lnK1 (t11)
t12− t11

� lnK1 (t11)− lnK1 (1/2)
t11−1/2

� 0,

which implies that K1 is an increasing function on [1/2,1] .
Secondly, we infer from the monotonicity of Ki and Theorem 2.8 (i) that

lnK(t) � lnK(1) = lnK(0) = lnL(1),

which implies that

sup
t∈[0,1]

K(t) = L(1).

Thus we finish the proof of Corollary 2.9. �

Taking t1 = t2 = . . . = tn in the mapping (2.5), we conclude that

COROLLARY 2.10. Let f : [a,b] ⊂ R
n → (0,+∞) and ln f ∈ L([a,b]) . Define

the mapping K̃ : [0,1] ⊂ R → R by

K̃(t) = exp

[
1

|[a,b]|2
∫

[a,b]

∫
[a,b]

ln f (tx+(1− t)y)dydx

]
.

(i) If the partial mapping fxi is a log−hi -convex function on [ai,bi] for i =
1,2, . . . ,n respectively, then

K̃

(
1
2

)1/(2n ∏n
i=1 hi(1/2))

� K̃(t) � L̃(1)∑ci=t or 1−t; i=1,2,...,n h1(c1)···hi(ci)···hn(cn)

holds for all t ∈ [0,1] .
Particularly, if h1 = h2 = . . . = hn = h, that is if f is a co-ordinated log−h-convex

function on [a,b] , then for all t ∈ [0,1] ⊂ R ,

K̃

(
1
2

)1/(2h(1/2))n

� K̃(t) � L̃(1)∑ci=t or 1−t; i=1,2,...,n h(c1)···h(ci)···h(cn).

Furthermore, if f is a co-ordinated log-convex function on [a,b] , then for all
t ∈ [0,1]⊂ R ,

sup
t∈[0,1]

K̃(t) = L̃(1), inf
t∈[0,1]

K̃(t) = K̃

(
1
2

)
.
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(ii) If f : [a,b] ⊂ R
n → (0,+∞) is a log−h-convex function on [a,b] , then K̃ is

log−h-convex on [0,1] ⊂ R .

Corollary 2.10 can be proved by a similar fashion to Corollary 2.6 and Corollary
2.9, we omit the details.

3. Appendix

Suppose that f : [a,b] = [a1,b1]× . . .× [an,bn]→ (0,∞) is a log−h -convex func-
tion. Then every partial mapping fxi : [ai,bi] → (0,∞), fxi(u) = f (x1, . . . ,xi−1,u,
xi+1, . . . ,xn), i = 1,2, . . . ,n satisfies that, for any t ∈ [0,1] and v,w ∈ [ai,bi] ,

fxi(tv+(1− t)w) = f (x1, . . . ,xi−1,tv+(1− t)w,xi+1, . . . ,xn)

� f (x1, . . . ,xi−1,v,xi+1, . . . ,xn)
h(t) · f (x1, . . . ,xi−1,w,xi+1, . . . ,xn)

h(1−t)

= fxi(v)
h(t) · fxi(w)h(1−t),

which means that f : [a,b] → (0,∞) is a co-ordinated log−h -convex function.
Conversely, let f (x1,x2, . . . ,xn)= ex1x2···xn . We claim that ex1x2···xn is a co-ordinated

log-convex function on [0,1] = [0,1]n , but it is not a log-convex function on [0,1] . In
fact, let (0,u2,u3, . . . ,un),(u1,0,u3, . . . ,un) ∈ (0,1) = (0,1)n and t ∈ (0,1) . We have

f (t(0,u2,u3, . . . ,un)+ (1− t)(u1,0,u3, . . . ,un)) = et(1−t)∏n
i=1 ui > 1.

On the other hand,

f (0,u2,u3, . . . ,un)h(t) · f (u1,0,u3, . . . ,un)h(1−t) = (e0)t · (e0)1−t = 1.

Therefore,

f (t(0,u2,u3, . . . ,un)+ (1− t)(u1,0,u3, . . . ,un))

> f (0,u2,u3, . . . ,un)h(t) · f (u1,0,u3, . . . ,un)h(1−t),

which yields that f (x1,x2, . . . ,xn) = ex1x2···xn is not a log-convex function on [0,1] .
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