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WEIGHTED INTEGRAL INEQUALITY AND APPLICATION IN UNIFORM
STABILITY FOR A NONLINEAR SYSTEM WITH MEMORY
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(Communicated by J. Pecaric)

Abstract. In this paper, we consider the viscoelastic system
1
uy — pAu— (A + p)V(divu) + /0 g(t —s)div[a(x)Vu(s))ds + b(x)h(u;) = f(u)

with initial conditions and boundary conditions. Under some assumptions on the relaxation
function g, and other functions h and f, without constructing any auxiliary functional, by
establishing weighted integral inequality on the energy functional, we obtain a general energy
decay formula for the solution, such that the usual exponential decay results and the polynomial
decay results are only special cases, respectively.

1. Introduction

In this paper, we investigate the asymptotic behavior of the solution to the problem
T
wy — UAu— (A + w)V(divu) —|—/O g(t —s)div[a(x)Vu(s)]ds+ b(x)h(u;)

=f(u)inQ x R*, (1.1)
u(x,1) =00n dQ x (0,00),
u(x,0) =up(x), wu(x,0)=u(x)inQ,
where U, A are Lamé constants, Q is a bounded domain in R” (n > 1) with smooth
boundary dQ, g is a positive function that represents the kernel of the memory term

which satisfies some conditions to be specified below, a,b are real functions and control
functions h, f are real vector valued functions which satisfy appropriate conditions. Let

u= (u',u*--,u") be a vector function, divu = u}, +u3, +---+ul} is the divergence
92 . . . .
of u, A denotes Y ;7, Vu is the gradient of u, |Vu| is the length of Vu. We write
i=1 %%
T
n | n 2 n
n
Au = uxix,-a 2 ux,-xia Ty 2 ux,-xi )
i=1 i=1 i=1
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.\
Vu=| 1|, |Vu=<_z u;j|2> .
u;l ..u;n l7']:l

This problem has its origin in the mathematical description of memory-type elastic
materials. It is well known that memory-type elastic materials exhibit nature damping,
which is due to the special property of these materials to keep memory of their past
history. From the mathematical point of view, these damping effects are modeled by
integro-differential operators. Therefore, dynamics of memory-type elastic materials
are very important and interesting as they have wide applications in natural sciences.
From the physical point of view, the problem (1.1) describes the position u(x,#) of the
material particle x = (x,x,-,X,) at time 7z, which is controlled by memory function
g, dissipative function &, and force function f.

Cavalcanti and Oquendo [2] considered the viscoelastic wave equation
1
g — KoAut+ / g(t — 5)div [a(x)Va(s)) ds + b)) + £ () = 0 in Q x (0, +-o),
0

under some assumption conditions on the memory function g and a(x)+b(x) > 6 >0,
they obtained the exponential stability when g decays exponentially and # is linear, the
polynomial stability when g decays polynomially and /% is nonlinear. Li and Bao [10]
studied the viscoelastic problem

t
Uy — AU — (1 + A)V(divu) —|—/ gt —s)Au(s)ds =0 inQ x (0,),
0
u—=0 onlg x [0,e0),
du d du .
u 2t —/ 2t —5) 22 (s)ds + (1 + 1) (divie)v +h(w;) =0 onTy x [0,00),
av o av
u(x,0) = up,u; (x,0) = uy inQ,

under suitable assumptions on boundary memory function g and boundary control
function h, showed a uniform stability result of the solution by constructing appro-
priate auxiliary functionals and establishing differential inequalities. For more uniform
stability results of evolution equations, we refer the readers to see [12, 5, 4, 15, 9, 8, 6].

In [1], applying integral inequalities and multiplier technique, Alabau-Boussouira
et al. studied the abstract integro-differential evolution equations under the assump-
tion g'(¢) < —kgH% () with p € (2,0), k > 0 and proved that the energy of the mild
solution decays exponentially or polynomially as ¢+ — eo. In this work, we develop a
weighted integral inequality on the original energy to derive general decay result. An-
other advantage of integral approach is that instead of using Lyapunov technique for
some perturbed energy, we rather concentrate on the original energy. The key contri-
bution of our work is to show a general energy decay formula for the solution to the
initial boundary value problem (1.1). By the formula, we obtain several explicit energy
decay rates (e.g., exponential decay rate and polynomial decay rate) for the solutions
to several evolution equations. From the application’s point of view, our result may
provide some qualitative analysis and intuition for the researchers in other fields when
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they study concrete models. The methods in this paper can be applied to various partial
differential equations to obtain some more general results.

Our aim in this work is to establish the general decay result of the problem (1.1)
without constructing any auxiliary functional. The method used in this paper is different
from the methods in some literatures. The usual exponential decay results and the
polynomial decay results in many literatures are only special cases of our result given
in this paper.

The outline of this paper is as follows. In section 2, we present some notations,
assumptions and lemmas needed throughout our proofs. Section 3 is devoted to proving
the general decay result.

2. Notations and preliminaries

In this section, we present some materials needed in the proofs of our results. We
use the standard Lebesgue space L”(Q) and Sobolev space H{} () with their usual
scalar products and norms. In this paper, we denote

[lulls = llull s @)-

Now, we present some hypotheses as follows. B
(Hy) a,b:Q — R are nonnegative functions and a € C'(Q), b € C*(Q) with

alx) = o >0,b(x)=p>0.

(Hy) g:]0,0) — [0,0) is a non-increasing C' function with
8(0)>0, u=llal | g(s)as=1>0.

Furthermore, there exists a non-increasing positive differentiable function & with
Jo7 €(T)dT = +oo such that

g'(1) < —&(t)g(r), Ve >0.
(H3) f=(fi, " fu) : R" — R" satisfies

fs)-s<2) F(s) <0, Vs=(s1,,5:) €R",
i=1

where
Si
E(S):/O fi(sl,"'7Si—17Z7Si+1,"'7Sn)dZ.

(Hy) h:R" — R" satisfies h(v)-v >0, WYv € R", and there exist two positive

constants ¢; and ¢ such that
v < |h(v)| < calv], W eR™

REMARK 2.1. Inspired by the model in [2], we generalize the model in [10] by

assumption (H;). The assumption (H,) guarantees that the model is hyperbolic and

shows the decay rate of the memory function g. The assumptions (H3) and (Hy) give
the strength of the force function f and dissipative function h, respectively.
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Our results are based on the following existence and uniqueness theorem of solu-
tion to problem (1.1).

THEOREM 2.1. Let the assumptions (Hy ) — (Hy) hold. If (ug,u;) € 7 = [H*(Q)
NHY(Q)]" x [H3 (Q)]", then for all T > 0, there exists a unique solution u of (1.1) sat-

isfying
ue (L= (0,7:H*(Q)NHy(Q)))" u € (L (0,T:Hy (Q)))" .uy € (L~ (0,T:L*(Q)))".

Proof. The proof can be obtained by the Faedo-Galerkin method and calculus
theorem in an abstract space (c.f. [7, 13, 11, 16, 3]). O

To prove our main results, we give some important lemmas.

LEMMA 2.2. If u is the solution to (1.1) and g € C! [0,0), then
4 1
[ v [ el =s)avats >dsdx—2<g OVu)(0) - 58(1) [ a)|Vu(r) Pax
# 32 | [ eras [ aoivuto P o a0

where

(goVu)(t //gt—s x)|Vu(t) — Vu(s) | dsdx.

Proof. Differentiating (g o Vu)(¢) with respect to ¢ and noting

/Otg(t —s)ds = /Otg(s)ds

j(g Vu)( dt//gt—s (x)|Vu(r) — Vu(s)|*dsdx
—//g 1 — s)a(x)|Va(t) — Va(s) Pdselx
42 /Q /0 g(t — s)a(x) [Vu(t) — Vu(s)) - Vigydsdx
— (¢ oVu)(1)+2 /Q /O " ot — $)a(x)Va(t) - Vi (t)dsdx
2 /Q /0 ot — $)a(x)Vu(s) - Vi (1)dsdx
_ (g/oVu)(tH—% [/Otg(s)ds/ga(x)vu(t”?dx]
2 /Q Vi, (1) - /O " ot — $)a(x)Va(s)dsdx
—5(0) [ at[Vu() P,

we get
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which implies
Jvu | gt — $)a(x)Vu(s)dsdx :%(g/ oVu)(1) ~ (1) [ aborvu(r)ax
M [/ e(s ds/ )| Vau(t) Pdx — (g o V) (1) | .

The proof is completed. []

LEMMA 2.3. Let w,v € [H'(Q)]". We have the following formulas

/Q v V(divw)dx — /a v+ (divwvar - /Q (divw)(divw)dx,

/v~Awdx=/ 8wdr /Vv Vwix.
Q IQ

Proof. The proof can be found in [10]. [

3. Main result

In order to define the energy function E(r) of the problem (1.1), we give the
following computation. Multiplying u; on both sides of the equation of the problem
(1.1), integrating the resulting system over Q, using the Green formula and Lemmas
2.2-2.3, we have

Oz/Qu,-u,,dx—u/Qu,~Audx—(/,L+7L)/Qu,~V(divu)dx
+ /Q " /0 ot — s)div [a(x)Va(s)] ds
n /Q b(x)h () - uydx — /Q F(u)-updx
- /Q T /Q Vi, - Vudx+ (i + 1) /Q (divae ) (dlivee)dx

_ /Q Vi, /O ot — s)a(x)Vu(s)dsdx

+/Qb(x)h(ut)-uzdx—/gf(")'“tdx
_d
Tdt

35 | [ e0as [ atIVaR - (eo¥) (0] a
43600 [ a)|Vudx— 5 (¢'0 Vi) )+ [ x)ha) wax— [ flu)

1 u u+A, .
5l 5 93+
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drl ! ' +A,
:E[EHWH%"‘E Q(I-l—a(x)/og(s)ds> |Vu(t)|2dx+'uTHdlvu||%
3oV ) - [ SR
1

_E(g/oVu) (’)+%g(’)/Qa(x)|Vu|2dx+/Qb(x)h(u,)-u,dx.

The above computation inspires us to define the energy functional as the following

1 1 d u+A, .
B0 = 3wl [ (n-ato | g(s)ds) Vs A2 i
1
-|— (goVu)(r / ZF
LEMMA 3.1. The energy function E(t) satisfies E(t) > 0 and

ZE() ;(g/oVu) (t)—%g(t)/ga(x)\VuFdx—/Qb(x)h(u,)~u,dx<0.

Proof. From the assumption (H3), we have [ ¥ | Fi(u)dx < 0. Hence, E(t) >
0. Then by the above computations and the assumptions, it is easy to see that

ZE() ;(g/oVu) (t)—%g(t)/ga(x)\VuFdx—/Qb(x)h(u,)~u,dx<0.

The proof is completed. [

LEMMA 3.2. Let E : Rt — R" be a non-increasing function and v : R™ — R
be a strictly increasing C* function such that y(0) =0 and tliI-P Y () = +oo. Assume

that there exists ¢ > 0 such that
T W S)E(s)ds < cE(r), it >0,
then
E(1) < AE(0)e V),

for some constants @, A > 0.

Proof. The proof can be found in [14]. [

On the base of the above lemmas, we give our main result as follows.

THEOREM 3.3. Assume that (H;) — (Hy) hold. Let (ug,uy) € 7 := [H*(Q)N
HE(Q)]" x [HL(Q)]" be given. Then, the unique solution of problem (1.1) satisfies

E(r) < KE(0)e ™ o800 i > 0,
for some positive constants K and k.

Proof. Multiplying & (¢)u(r) on both sides of the equation of problem (1.1), inte-
grating resulting system over Q X [t1,5] (0 <#; < 1), using of the boundary condition
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and Lemma 2.3, we have

)
0:/ g(z)/ -yt
151 Q

—u tzg(z)/u-Audxdt— (L + 1) /Qg (t /u-V(divu)dxdt
+/§ / /gt 5)div [a(x) Va( )]dsdxdz+/§ /b Yu - h(uy )dxdt
/ £0) [ - flwaar
:/ Et /u-u,,dxdmu/lzé (t / \Vau2dxdr + (1 + ) /Qg (t /|divu|2dxdt
/5 /Vu/gt $)a(x)Vu(s dsdxdt+/§ /b Vot ()t
/ £0) [ - fludar
:/n E(r) /Qu~u,,dxdt+/t:2§(f)/g (,Lt—a(x)/otg(s)ds) \Vu|*dxdt

+(u+l)/tlt2§(t)/g|divu|2dxdt+/tlt2é(t)/gb(x)u-h(ut)dxdt

_ /,ltzém [ fluydrar - /,fzé(w [ vu- [ tt=s)ato vty
— Vu(t))dsdxdt. 3.1)

According to the definition of energy function E(z), we get

/Q (“ —af(x) /Otg(S)ds) \Vau|?dx

:2E(t>—||utH%—(A+u>Hdiqu%—(goVu)(t>+2/QZE-(u>dx. (3.2)
i=1
Combining (3.1) and (3.2), we deduce

1 1
oz/zg(t)/u-undxdz+(u+/1)/2§(t)/ (diva2dxd

I Q 1 Q

1
+/2§t/bxu-hut \dxdr

- /u f(u)dxdt — / E(r) /Vu /gt s)a — Vu(t)) dsdxdt
+2 / EWE@dr— [ E0) ld— o+ ) [ (o) vl 3
1 1 4

—/:é(t)(goVu)(t)dt+2/t:2€(t)/géFi(u)d
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that is

2 ["ewr@ar = [ Ewlwlar+ |7 &0 o Va0~ [*E0) [ u-uidsas

+ /tl 0 /Q Vu. /0 "ot — s)a(x) (Va(s) — Va(t)) dsdxd:

- /tl "t / b()u - h(u,)dxd
+/t12§(z)/ l ZZF ]dxdt (3.3)

Now, we estimate the terms on the right side of (3.3). In fact, using Lemma 3.1
and the assumptions (H;) and (Hy), we have

%E(t):%(g’oVu) (t)—%g(t) / a()|Vuodx — / b(h(u,) - wrdx

/b ut utdx< _CQﬁ/ ‘ut‘2dx

Kﬁwm%<7§[ammw (3.4)

Using Lemma 3.1, we get
d 1
(¢ oVu)()—Eg(t)/ga(x)|Vu|2dx—/Qb(x)h(u,)~uzdx

EE()
<= (g'oVu) (1),

which implies

l\.)l>—‘l\)lH

that is

— (g/oVu) (1) < —2E'(1),
which with (H;) implies

zé(t) (goVu)(r 2/ E'( (3.5)

For the third term on the right side of (3.3), integrating by parts, we have

—/ttz’g'(t)/gu-u,,dxdt /é u-udx +/ / ¢ - Urdxdt

——/Qé(t)u-utdx tl+/tl /Qé’(t)u-u,dxdt
+ /: /Q E (1), Pdxdr. (3.6)
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By Young inequality, Pincaré inequality and the definition of E(¢), we have

_/Qé(t)u-u;dx : <§{[€(I)< I3+ 5 “t||2)]t=t’_

2
<X KEMED)],,, <2k E(0)E(n), (3.7)

where B is the Pincaré constant, and k; := max{%, }}. Similarly,

2 B 1
< [0l (51vul+ 3w a
4l

’ ’(t)/u-utdxdt
Q

15
s / “E()E(1)dr. (3.8)
I
For the last term on the right side of (3.6), we have
2 2 1 2 l
[ e < -— ["E0E 0. (39)
1 02[3 151

For the fourth term on the right hand side of (3.3), we have

/ Vu(r)- / ot — 5)a(x) (Vau(s) — Vu(t))dsdx

2
5/ X)|Vu(r) 2dx+— (/gt—s Vu(s Vu(t))ds) dx
< 8l Va3 + 35 /g ds//gt—s ()| Vau(s) — Va(t) Pdsdx
< oo _ .
X 6](2”61“ E(t)—|—45Han(goVu)(t)

Combining with (3.5), we obtain

/ e / Vu(r) - / ot — $)a(x) (Vu(s) — Va(t)) dsdxdr

_ l 15}
< 8ka||al- / E(E(1)dr — / E'(1)dr. (3.10)
26 lla]|e
By using Poincaré inequality and (3.4), for the fifth term on the right side of (3.3), we

obtain
)
< el [ &) [ thu) ulava
1

- /, "t /Q b(x)u - h(u,)dxd
<lbll [*&0) [ couluasar < calo]- /”ém( IVl + g5 ) a
<atolbl- [ EOEQH— 555 lbl- [ E0) G.1)
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For the last term on the right hand side of (3.3), on the base of the assumption (H3),
we obtain

/:5(;)/[ 22F ]dxdt<0 (3.12)

Combining (3.3)—(3.12), we arrive at
2 [0 < Gallall-+ kalb-)8 [ 80O

() [ eoroa—u [

—<2+25aw>/ E'(t)di + 2k E(0)E (1) (3.13)

Integrating by parts using Lemma 3.1 and (H;), we have
- [FewEa = R0
5l

= —EL)E(R) +E(m)E®N) + / EWE (1)ds
<EOE®). (314
Similarly,

- [Fewrwa=-swEok+ [ &wEoa

=~ ER)E) +EEm) + [ E OB
<E(0)E(1), (3.15)

and
/IE _E(n) <E(n). (3.16)
Owing to (3.13)~(3.16), we get
2 [ 0B < (alal+ kb6 [ £0)

+ [(Qﬁ + 2%5 +3k1) E(0)+ <2+ ﬁﬂ E(t). (3.17)

Denote
01(8) = (k2||alles + k3| ]|) O,
6:(5) = <c2ﬁ + leSE +3k1) £(0)+ <2+ Zl(;alw>

Obviously, for all § >0, 6;(5) > 0 and 6,(8) > 0. In order to ensure 6, (0) < 2, we
need to take a suitable & := &.
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In particular, we choose
1
& =
kalal|es + k3|5l
then
2—61(0) > 0.

Combining with (3.17), we get
@-6i®) [ E0Ewn < CEn),
that is
[ ewrar < cem),

for some C > 0. Letting #; go to infinity, the assumptions of Lemma 3.2 are satisfied
with

1
v(0):= [ E(s)ds.
Applying Lemma 3.2, the proof of Theorem 3.3 is completed. [

REMARK 3.1. In particular, if £(z) = a, we get the exponential decay result
E(r) < ce ™™ Vi >0.
If £(r) = %ﬂ, we get the polynomial decay result

E(t) <c(l+1)% v >o0.
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