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A SOLUTION TO AN OPEN PROBLEM

FOR WILKER–TYPE INEQUALITIES

CHEN-SHIPING ∗ AND GE-XINYU

(Communicated by J. Pečarić)

Abstract. This paper is to solve the open problem for Wilker-Type inequality: what are the best
possible for the constants c1 and c2 such that the double inequality c1x3a tanx < ( sinx

x )2a +
( tanx

x )a −2 < c2x3a tanx holds?

1. Introduction

J. B. Wilker proposed two open problems in [1], using the following statements:
(a) If x ∈ (0, π

2 ) , then (sinx
x

)2
+

tanx
x

> 2. (1)

(b) There exists a largest constant c for x ∈ (0, π
2 ) such that

( sinx
x

)2
+

tanx
x

> 2+ cx3 tanx. (2)

J. S. Summer et al affirmed the truth of the inequalities above and obtained an
extended result as follow in [2].

THEOREM 1. For 0 < x < π
2 ,

c1x
3 tanx <

( sinx
x

)2
+

tanx
x

−2 < c2x
3 tanx (3)

holds, and the values 16
π4 and 8

45 are the best possible for constants c1 and c2 respec-
tively.

In [3], Zhu proved an exponential generalization of a Wilker-type inequality as
follow.
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THEOREM 2. Let 0 < x < π
2 ,

f (a) =
( sinx

x

)2a
+

( tanx
x

)a−2 (4)

then the inequality f (a) > 0 holds for a � 1 .

These inequalities are of great practical importance and were extended in different
forms in the recent past, and they are used for research of trigonometric and hyperbolic
functions [4, 5, 6].

Based on Zhu’s works, an open problem was raised in [7] : for x ∈ (0, π
2 ) , what

are the best possible for constants c1 and c2 such that the double inequality

c1x
3a tanx <

(sinx
x

)2a
+

( tanx
x

)a−2 < c2x
3a tanx (5)

holds?
In this paper, we conclude that for 0 < a � 1, the best possible for c1 and c2 such

that inequality (5) holds are 0 and 8
45 respectively; for a > 1, the best possible for c1

is 16
π4 and the constant c2 such that inequality (5) holds doesn’t exist.

2. The main results

In order to derive the main results, some lemmas are given.

LEMMA 1. For x ∈ (0, π
2 ) , sin2 x tanx

x3 > 1 holds.

Proof. Let k(x) = sin3 x
cosx − x3 for x ∈ (0, π

2 ) , its third derivative

k′′′(x) =
14sin4 x
cos2 x

+
6sin6 x
cos4 x

> 0,

which reveals the second derivative k′′(x)=−6x+6sinxcosx+ 4sin3 x
cosx + 2sin5 x

cos3 x
is strictly

increasing on (0, π
2 ) . Therefore, k′′(x) > k′′(0) = 0 for x∈ (0, π

2 ) . In the same manner,
the first derivative of k(x) is strictly increasing on (0, π

2 ) , and

k′(x) = −3x2 +3sin2 x+
sin4 x
cos2 x

> k′(0) = 0.

Then k(x) is strictly increasing on (0, π
2 ) , so k(x) = sin3 x

cosx −x3 > k(0) = 0, thus sin2 x tan x
x3

> 1 holds on (0, π
2 ) . �

LEMMA 2. For x ∈ (0, π
2 ) , tanx

x > 1 holds.

Proof. Let w(x) = tanx− x for x ∈ (0, π
2 ) , the differentiation yields that w′(x) =

(secx)2 − 1 > 0 on (0, π
2 ) . So w(x) is increasing on (0, π

2 ) , then w(x) > w(0) = 0,

thus tanx
x > 1 holds on (0, π

2 ) . �
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LEMMA 3. For x ∈ (0, π
2 ) , there exists one and only one real root for the trigono-

metric equation
sin4 x
x4 − x6 = 0.

Proof. As ( sinx
x )′ = xcosx−sinx

x2 , by Lemma 2, xcosx−sinx < 0 holds on (0, π
2 ) ,

so sinx
x is strictly decreasing on (0, π

2 ) . It is clear that sin4 x
x4 and sin4 x

x4 − x6 are also
strictly decreasing on (0, π

2 ) .
Let f (x) = sin4 x

x4 − x6 , then limx→0+ f (x) = 1 > 0 and f (π
2 ) = ( 2

π )4 − (π
2 )6 < 0.

we conclude that f (x) has one and only one real root on (0, π
2 ) . �

LEMMA 4. For x ∈ (0, π
2 ) , tanx

x − x3 > 0 holds.

Proof. As the Taylor expansion of tanx at 0

tanx = x+
1
3
x3 +

2
15

x5 +
17
315

x7 +
62

2835
x9 +

1382
155925

x11 + · · · ,

then for x ∈ (0, π
2 ) ,

tanx− x4 > x+
1
3
x3 +

2
15

x5 +
17
315

x7 +
62

2835
x9 +

1382
155925

x11− x4.

Let

g(x) =
x+ 1

3x3 + 2
15x5 + 17

315x7 + 62
2835x9 + 1382

155925x11− x4

x4

=
1
x3 +

1
3x

+
2
15

x+
17
315

x3 +
62

2835
x5 +

1382
155925

x7 −1.

To complete the proof of the lemma, we need only to show that g(x) > 0 holds on
(0, π

2 ) . Obviously, g(x) > 0 holds on (0,1] , so it remains to prove that g(x) > 0 holds
on (1, π

2 ) .
Let

g1(x) =
1
x3 +

1
3x

,

g2(x) =
2
15

x+
17
315

x3 +
62

2835
x5 +

1382
155925

x7.

Then g(x) = g1(x)+g2(x)−1. For 0 < x1 < x2 , let V (x1,x2) = g1(x2)+g2(x1)−
1, then g(x) > V (x1,x2) on [x1,x2] .

The elementary calculation of rational numbers proposes

V
(
1,

19
16

)
=

102572248
1069489575

> 0,

V
(19

16
,
21
16

)
=

26781048047921
1025467062681600

> 0,
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V
(21

16
,
23
16

)
=

13744536928453
1347247354675200

> 0,

V
(23

16
,
13
8

)
=

1692477562044649
45978594626764800

> 0.

That is to say, g(x) > 0 holds on [1, 19
16 ] ,[19

16 ,
21
16 ] ,[

21
16 , 23

16 ] and [23
16 ,

13
8 ] .

Therefore, g(x) > 0 holds on [1, 13
8 ] ⊃ [1, π

2 ) . �

THEOREM 3. For each fixed x ∈ (0, π
2 ) ,

f (a,x) =
( sinx

x )2a +( tanx
x )a −2

x3a tanx
(6)

is increasing by a on [0,+∞).

Proof. The differentiation yields

f1(a,x) =
d f (a,x)

da
=

2( sinx
x )2a ln sinx

x +( tanx
x )a ln tanx

x −3(( sinx
x )2a +( tanx

x )a −2) lnx

x3a tanx
.

The denominator is demonstrably positive, so we focus on its numerator and let

f11(a,x) = 2
(sinx

x

)2a
ln

sinx
x

+
( tanx

x

)a
ln

tanx
x

−3
(( sinx

x

)2a
+

( tanx
x

)a−2
)

lnx.

Then the inequality

f11(0,x) = 2ln
sinx
x

+ ln
tanx

x
= ln

sin2 x tanx
x3 > 0 (7)

can be verified easily due to Lemma 1.
Differentiation again yields

f2(a,x) =
d f11(a,x)

da
= 4

(sinx
x

)2a(
ln

sinx
x

)2
+

( tanx
x

)a(
ln

tanx
x

)2

−6lnx
( sinx

x

)2a
ln

sinx
x

−3lnx
( tanx

x

)a
ln

tanx
x

.

For simplicity, let f21(a,x) = f2(a,x)
( tanx

x )a , then

f21(a,x) = 4
(sinxcosx

x

)a(
ln

sinx
x

)2
+

(
ln

tanx
x

)2

−6lnx
( sinxcosx

x

)a
ln

sinx
x

−3lnx ln
tanx

x
.

(8)

Combining similar terms, we have

f21(a,x) =
( sinxcosx

x

)a
ln

sinx
x

(
4ln

sinx
x

−6lnx
)

+ ln
tanx

x

(
ln

tanx
x

−3lnx
)
.
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By Lemma 3, there exists one and only one real root for sin4 x
x4 − x6 = 0 on (0, π

2 ) ,

denote the root as x0 . It is obvious that sin4 x
x4 −x6 > 0 holds on (0,x0) and sin4 x

x4 −x6 < 0

holds on
(
x0,

π
2

)
. Furthermore, (x0)10 = sin4 x0 < 1, so x0 < 1.

For x ∈ (x0,
π
2 ) , sin4 x

x4 − x6 < 0, so 4 ln sinx
x −6lnx < 0, thus

ln
sinx
x

(
4ln

sinx
x

−6lnx
)

> 0.

ln tanx
x − 3lnx > 0 on (x0,

π
2 ) due to Lemma 4, ln tanx

x > 0 on (x0,
π
2 ) due to

Lemma 2, we conclude that ln tanx
x (ln tanx

x − 3lnx) > 0, and then f21(a,x) > 0 holds
for a ∈ [0,+∞) and x ∈ (

x0,
π
2

)
.

Now we discuss the situation that x ∈ (0,x0) . Differentiation of f21(a,x) yields

f3(a,x) =
d f21(a,x)

da
= 4

(sinxcosx
x

)a(
ln

sinx
x

)2
ln

sinxcosx
x

−6
(sinxcosx

x

)a
lnx ln

sinxcosx
x

ln
sinx
x

.

Let f31(a,x) = f3(a,x)
( sinxcosx

x )a ln sinx
x ln sinxcosx

x
, then f31(a,x) = 4ln sinx

x −6lnx .

Let f32(a,x) = ( sinx
x )4 − x6 . It is obvious that sgn( f3(a,x)) = sgn( f31(a,x)) =

sgn( f32(a,x)) on (0,x0) .
As (sinx)4

x4 − x6 > 0 holds for x ∈ (0,x0) , so f3(a,x) > 0 holds on (0,x0) , hence,
f21(a,x) is increasing by a for x ∈ (0,x0) . That is to say, for a � 0 and x ∈ (0,x0) ,
f21(a,x) > f21(0,x) .

For x ∈ (0,x0) , let p1(x) = f21(0,x) , then

p1(x) = 4
(

ln
sinx
x

)2
+

(
ln

tanx
x

)2−6lnx ln
sinx
x

−3lnx ln
tanx

x
. (9)

Let

p11(x) = −6lnx ln
sinx
x

−3lnx ln
tanx

x

= −3lnx
(
2ln

sinx
x

+ ln
tanx

x

)
= −3lnxp12(x),

where

p12(x) = 2ln
sinx
x

+ ln
tanx

x
= ln

sin2 x tanx
x3 .

As x ∈ (0,x0) and x0 < 1, so lnx < 0, then sgn(p11(x)) = sgn(p12(x)) .

By Lemma 1, sin2 x tanx
x3 > 1 on

(
0, π

2

)
, so p12(x) > 0, thus p11(x) > 0. Then

p1(x) = f21(0,x) > 0, which implies that for a ∈ [0,+∞) , f21(a,x) > f21(0,x) > 0 on
(0,x0) .

Hence, f21(a,x) > 0 holds for all x ∈ (
0, π

2

)
and a ∈ [0,+∞) , so f11(a,x) is

increasing by a on [0,+∞) for x ∈ (
0, π

2

)
, which reveals that f11(a,x) > f11(0,x) . By

(7), f11(0,x) > 0, so we obtain that f11(a,x) > 0, which implies that f1(a,x) > 0 holds
due to the fact that sgn( f1(a,x)) = sgn( f11(a,x)) .

So f (a,x) is increasing by a on [0,+∞) for x ∈ (
0, π

2

)
. �
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THEOREM 4. If x ∈ (0, π
2 ) , for 0 < a � 1 , the best possible values for constants

c1 and c2 such that inequality (5) holds are 0 and 8
45 respectively; for a > 1 , the best

possible value for constant c1 is 16
π4 and the constant c2 such that inequality (5) holds

doesn’t exist.

Proof. We differentiate two cases if a ∈ (0,1] or a ∈ (1,+∞) .
(1) a ∈ (0,1] . By Theorem 3,

f (0,x) � f (a,x) =
( sinx

x )2a +( tanx
x )a −2

x3a tanx
� f (1,x)

holds for x ∈ (
0, π

2

)
. Thanks to Theorem 1, we have

f (1,x) =
( sinx

x )2 + tanx
x −2

x3 tanx
<

8
45

.

Let us notice that f (0,x) = 0, thus 0 = f (0,x) < f (a,x) � f (1,x) < 8
45 . We get the

boundaries for f (a,x) .
As lima→0+ f (a,x) = f (0,x) = 0 for each x ∈ (0, π

2 ) , so the best possible for c1

is 0.
As lima→1− f (a,x)= f (1,x) for each x∈ (0, π

2 ) and it can be obtained by L’Hospi-
tal’s Rule that

lim
x→0+

f (1,x) = lim
x→0+

sin2 xcosx+ xsinx−2x2 cosx
x5 sinx

=
8
45

,

so 8
45 is the best possible for c2 .
(2) a ∈ (1,+∞) . For each a ,

lim
x→( π

2 )−
( sinx

x )2a +( tanx
x )a−2

x3a tanx
= lim

x→( π
2 )−

( sinx
x )2a

x3a tanx
+ lim

x→( π
2 )−

( tanx
x )a

x3a tanx
− lim

x→( π
2 )−

2
x3a tanx

= lim
x→( π

2 )−
(tanx)a−1

x4a = +∞,

which implies that the upper bound of f (a,x) is infinite, so there is no constant c2 such
that the inequality ( sinx

x

)2a
+

( tanx
x

)a−2 < c2x
3a tanx

is fulfilled.
By Theorem 3 we get that

f (a,x) > f (1,x) =
( sinx

x )2 + tanx
x −2

x3 tanx
>

16
π4 .

So,c1 � 16
π4 . Furthermore, 16

π4 is the best possible for c1 , which follows from
lima→1− f (a,x) = f (1,x) and

lim
x→( π

2 )−
f (1,x) = lim

x→( π
2 )−

sin2 xcosx+ xsinx−2x2 cosx
x5 sinx

=
16
π4 . �
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3. Remarks

The best possible constants for the exponential generalization of Wilker-type in-
equality are found on two given intervals in this paper, and we expect that the method
is exemplary for the same type of problems.

It is worth noting in particular that Theorem 3 itself is also very useful, for exam-
ple, Theorem 2 is its direct inference. In fact, due to Theorem 3 it is clear that Theorem
2 still holds after “a � 1” is replaced by “a > 0”.
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