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A SOLUTION TO AN OPEN PROBLEM
FOR WILKER-TYPE INEQUALITIES

CHEN-SHIPING* AND GE-XINYU

(Communicated by J. Pecaric)

Abstract. This paper is to solve the open problem for Wilker-Type inequality: what are the best
possible for the constants ¢; and ¢, such that the double inequality ¢x*tanx < (%)2“ +
(B02)e — 2 < 0% tanx holds?

1. Introduction
J. B. Wilker proposed two open problems in [1], using the following statements:

(@)If x € (0,5), then

1 2

(%) Lanr s 1)
X X

(b) There exists a largest constant ¢ for x € (0, %) such that

S
(Smx) + B oL P tan. ?)
X X

J. S. Summer et al affirmed the truth of the inequalities above and obtained an
extended result as follow in [2].

THEOREM 1. For 0 <x < 7,

sinx\2 tanx
c1x3 tanx < (—) +—-2< czx3 tanx 3)
X X

holds, and the values jr—i and % are the best possible for constants ¢, and ¢y respec-

tively.

In [3], Zhu proved an exponential generalization of a Wilker-type inequality as
follow.
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THEOREM 2. Let 0 <x < 7,

flay= () (Yo @

X X

then the inequality f(a) >0 holds for a > 1

These inequalities are of great practical importance and were extended in different
forms in the recent past, and they are used for research of trigonometric and hyperbolic
functions [4, 5, 6].

Based on Zhu’s works, an open problem was raised in [7]: for x € (0,7 ), what
are the best possible for constants c¢; and ¢, such that the double inequality

sinx\ 2a tanx\ ¢
c1xtanx < (—) + (—) —2 < X tanx 5)
X X

holds?
In this paper, we conclude that for 0 < a < 1, the best possible for ¢; and ¢, such
that 1nequal1ty (5) holds are 0 and 45 respectlvely, for a > 1, the best possible for ¢

is F and the constant ¢, such that inequality (5) holds doesn’t exist.

2. The main results

In order to derive the main results, some lemmas are given.

-2
LEMMA 1. Forx€(0,%), Smj:% > 1 holds.

Proof. Let k(x) = SM"X — 33 for x € (0, %), its third derivative

COSXx

K (x) = 14sin*x  6sin’x

>0
cos2x costx ’

. - . in?
which reveals the second derivative ” (x) = —6x+6sinxcosx+ 802 4 ZC;‘% L i strictly

increasing on (0, ). Therefore, k”(x) > k" (0) =0 for x € (0, %) . In the same manner,
the first derivative of k(x) is strictly increasing on (0, 7 ), and

4
K (x) = —3x% 4+ 3sin’x + sm2x >
cos? x

K'(0) = 0.
Then k(x) is strictly increasing on (0, %), so k(x) = % —x3 > k(0) =0, thus 5‘“2;%
> 1 holdson (0,%). O

LEMMA 2. For x € (0,%), % > 1 holds.

Proof. Let w(x) = tanx —x for x € (0,%), the differentiation yields that w’(x)

(secx)>—1>0 on (0,%). So w(x) is increasmg on (0,7%), then w(x) > w(0) =0,
thus ta% > 1 holdson (0,%). O
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LEMMA 3. For x € (0, %), there exists one and only one real root for the trigono-

metric equation
sinfx ¢

o —x"=0.

Proof. As (Smx)l W by Lemma 2, xcosx—sinx < 0 holdson (0, %),

4 4

SO is strictly decreasing on (0,Z). It is clear that 2% and $1* — X0 are also
y g 2 A i

strictly decreasing on (0, 7).

Let f(x) = ﬂl)rjx —x%, then lim,_o+ f(x) =1 >0 and f(%)

sinx

()= (5)° <0.

O ll

we conclude that f(x) has one and only one real root on (0,7%).
LEMMA 4. For x € (0,%), ¥ — 3 > 0 holds.
Proof. As the Taylor expansion of tanx at 0
1, 2 17 5 62 o 1382
tanx = x+ x+—x + =X+ o+ X+,

3 15 315 2835 155925
then for x € (0,%),

tanx — x* >x+ lx +£x5+ 17 7+£ 9 1382 Kl A
15 315 2835 155925

Let
17.7, 62 .9, 1382 4
_x+ X+ 15x +355% + w5 +155925x —X
g(x) = =
L 12 17, 62 5 1382

e 3x * 15" ot 315 * 2835 155925
To complete the proof of the lemma, we need only to show that g(x) > 0 holds on
(0,%). Obviously, g(x) > 0 holds on (0, 1], so it remains to prove that g(x) > 0 holds
on (1,%).
Let
1 1
g1(x) = 3 + 3

(x)—i +£3+ 62 5 1382 7
820 =157 315 2835 155925

Then g(x) = g1(x) +ga(x) — 1. For 0 <xj <xz, let V(x1,x) = g1 (x2) +g2(x1) —
1, then g(x) > V(x1,x2) on [x1,x2].

The elementary calculation of rational numbers proposes

V( 19> 102572248 -
16/ 1069489575

<B 2)_ 26781048047921 -
16’16/ 1025467062681600
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21 23\ 13744536928453
<E’ R) T 1347247354675200
23 13\ 1692477562044649
(R’ ?) = 45978594626764300

. 19 19 21 21 23 23 13
That is to say, g(x) >0 holds on [1, 16] 6 16] 6 I i y]

Therefore, g(x) >0 holdson [1,2] > [1,Z). O

THEOREM 3. For each fixed x € (0, %),

SiﬂZa_i_ tanxya _ o
fla) = LG ©

x3tanx

is increasing by a on [0,+oo).

Proof. The differentiation yields

sinx \2a 14, sinx X\a X sinx\2a \a
fl(a’x):df(a,x)ZZ(%) In $i0X 4 (lanxyapy e 3 sine)2a 4 (an) ~2)inx

da x3tanx

The denominator is demonstrably positive, so we focus on its numerator and let

Fur(ax) :2(Siﬂ>2uln8iﬂ—|— (tanx> In tanx _3(<smx>2a+ (tanx>u_2> Inax.
X

X X X X X
Then the inequality
)
t
f11(0,x) 2n sinx i anx —n sin” xtanx <0 7)
X X x3

can be verified easily due to Lemma 1.
Differentiation again yields

flay) = Hlex) sy sy gtancy g oy

da X X X X

—61nx<%) TR (—tanx)aln—tanx.
X X X X

For simplicity, let f>(a,x) = {%d(rl‘i))c) then

425 () ()

_6lnx(sinxcosx> In % 3nxln tanx. ®)
X X
Combining similar terms, we have
ot (ax) = (Sinxcosx> In sinx (41 % —61nx> In tanx <1 tanx ln )
X X X X
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By Lemma 3, there exists one and only one real root for “;14 *—x0=0o0n (0,%),

4
denote the root as x. Itis obvious that 5‘;14" x% >0 holds on (0,xp) and 5‘)‘37" —x%<0

holds on (xo, %). Furthermore, (x)'”

For x € (x0, %), Si:jx —x%< 0,50 4In¥2 —6lnx < 0, thus
ln%(ﬁ ML nx) >0
X X

In® —3Inx >0 on (x0,%) due to Lemma 4, In® > 0 on (x0,%) due to
Lemma 2 we conclude that In 22X (In B2 — 31nyx) > 0, and then f21(a,x) > 0 holds
for a € [0,4c0) and x € (x0,%).

Now we discuss the situation that x € (0,x). Differentiation of f>1(a,x) yields

= sin x0<1,sox0<l.

tanx

o) = L (SR (1 T SR
da X X T
_6<w>alnxlnwln8iﬂ.
X X
Let f31(a,x) = — Llay) then f31(a,x) =4In 2% — 6lnx.

(SEOSA ) In S0 n SRAZOSL 7
Let f3(a,x) = (“%)4 —x%. It is obvious that sgn(f3(a,x)) = sgn(f31(a,x)) =
sgn(f32(a,x)) on (0,x0).
As (512%)4 —x® > 0 holds for x € (0,x), so f3(a,x) >0 holds on (0,xp), hence,
f21(a,x) is increasing by a for x € (0,x0). That is to say, for @ > 0 and x € (0,xp),

frr(a,x) > f21(0,x).
For x € (0,x0), let pi(x) = f21(0,x), then

o . 5 . .
pl(x):4<1nﬂ) +(lnﬂ) —6lnxin 22 _ 3yp0n 22E 9)
X X X X
Let
i t
piri(x) = “6InxIn 2 3pppln 22T
X X
tan
= —3lnx<21n— +1In _x) = —3Inxpa(x),
X X
where
pia(x) = 2In sinx I tanx ' sinzxgtanx.
x x

As x € (0,x9) and xp < 1, s0 lnx < 0, then sgn(p11(x)) =sgn(p(x)).

By Lemma 1, m > 1 on (0,%), so pi2(x) >0, thus py;(x) >0. Then
pi1(x) = f21(0,x) >0, Wh1ch implies that for a € [0,4), f21(a,x) > f21(0,x) >0 on
(vao)'

Hence, f>1(a,x) >0 holds for all x € (0,%) and a € [0,+<°), so fi(a,x) is
increasing by a on [0, +e<) for x € (0,%), which reveals that fi;(a,x) > fi;(0,x). By
(7), f11(0,x) >0, so we obtain that fi; (a x) > 0, which implies that f(a,x) > 0 holds
due to the fact that sgn (f1(a,x)) = sgn(f11(a,x)).

So f(a,x) is increasing by @ on [0,+ee) for x€ (0,%). O
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THEOREM 4. If x € (0,%), for 0 <a < 1, the best possible values for constants
¢y and ¢y such that lnequallty (5 ) holds are 0 and 15 respectively; for a > 1, the best

possible value for constant c; is 1 F and the constant ¢, such that inequality (5) holds
doesn’t exist.

Proof. We differentiate two cases if a € (0,1] or a € (1,+o0).
(1) a € (0,1]. By Theorem 3,

(sax2e 4 (n)e 2

f(0,x) < fa,x) = x3“tanxx < f(1,x)

holds for x € (0,%). Thanks to Theorem 1, we have
(@)2 4 tanx o 8
1 — X X
FLx) X3 tanx TS
Let us notice that f(0,x) =0, thus 0 = f(0,x) < f(a,x) < f(1,x) < %. We get the
boundaries for f(a,x).
As lim,_ o+ f(a,x) = f(0,x) = 0 for each x € (0, %), so the best possible for ¢
is 0.
As lim,_,;- f(a,x) = f(1,x) foreach x € (0, 7) and it can be obtained by L’Hospi-
tal’s Rule that

sin?xcosx + xsinx — 2x2 cosx 8

lim £(1 i _8
Jim, f(1,x) = lim 2 sinx 45

SO % is the best possible for c;.
(2) a € (1,+00). For each a,

sinx\2a tanx \a sinx\2a tanx\a
(s annye_p (s o (a .
;Hh(rg)f == x3a t(anxx : - ;Hh(rg)f )(63; ta)nx ;Hh(%ly x(3“xtar)1x _xah(l}fl) X3 tanx
2 2 2 2
tanx)® !
= lim 7( *) = oo,
s—(5) XM

which implies that the upper bound of f(a,x) is infinite, so there is no constant ¢, such
that the inequality

sinx\2¢  /tanx\4 3a

(—) + (—) —2 < crpx’“tanx
X X

is fulfilled.

By Theorem 3 we get that

X X

sinx)2 4 tanx
fla,x) > f(1,x) = CEr+77-2 16

x3 tanx il

16 16

So,c; > =%. Furthermore, = is the best possible for c¢;, which follows from
lim,_,,- f(a xg f(L,x) and

sin®xcosx+xsinx —2x2cosx 16

li 1 lim =—. O
xal(r;l) f( X) x~>l( 7 - XS sinx TC4
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3. Remarks

The best possible constants for the exponential generalization of Wilker-type in-

equality are found on two given intervals in this paper, and we expect that the method
is exemplary for the same type of problems.

ple,

It is worth noting in particular that Theorem 3 itself is also very useful, for exam-
Theorem 2 is its direct inference. In fact, due to Theorem 3 it is clear that Theorem

2 still holds after “a > 1" is replaced by “a > 0.
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