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A NOTE ON VARIANCE BOUNDS AND LOCATION OF EIGENVALUES

R. SHARMA, A. SHARMA AND R. SAINI

(Communicated by M. Krnić)

Abstract. We discuss some extensions and refinements of the variance bounds for both real and
complex numbers. The related bounds for the eigenvalues and spread of a matrix are also derived
here.

1. Introduction

Let z1,z2, . . . ,zn denote n complex numbers. Their arithmetic mean is the number

1
n

n

∑
i=1

zi = z̃. (1.1)

In literature, the number
1
n

n

∑
i=1

|zi − z̃|2 = S2
z (1.2)

or its equivalent expressions have been studied in several different contexts and nota-
tions and is termed as the variance of complex numbers at many places. For example,
see Audenaert [2] , Bhatia and Sharma [4,5] , Merikoski and Kumar [13] , and Park
[17] .

The number
1
n

n

∑
i=1

(zi − z̃)2 = S2 (1.3)

is also important in this context. If zi ’s are all real we denote them by xi ’s with a =
minxi and b = maxxi. The arithmetic mean by x and variance by the lower case letter
s2. In this case Sz = |S| = S = s but in general Sz rather than |S| is more consistent
with s. For instance, s = 0 (Sz = 0) if and only if all the xi ’s (zi’s) are equal . This

is not the case with |S| ; for example, for three distinct complex numbers 0, ± 1
2 + i

√
3

2
we have S = 0. It however turns out that for some purposes s2 is more consistent with

σ2
z =

∣∣S2
∣∣+S2

z

2
(1.4)
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than S2
z . Note that the analogue of the Popoviciu inequality [18]

s2 � (b−a)2

4
(1.5)

for the complex numbers says that

σ2
z � max

i, j

∣∣zi − z j
∣∣2

4
. (1.6)

But it is not always true that S2
z � max

i, j

|zi−z j|2
4 . For example, for z1 =− 1

2 + i
√

3
2 , z2 = 0

and z3 = 1
2 + i

√
3

2 , S2
z = 1

3 and max
i, j

∣∣zi − z j
∣∣= 1.

The corresponding inequality for S2
z is

S2
z � r2

z � max
i, j

∣∣zi − z j
∣∣2

3
, (1.7)

where rz is the radius of the smallest disk containing all the numbers zi ’s, see [4, 5] .
A classical theorem of Jung [9] says that the complex numbers zi ’s in a plane can

be contained in a closed disk of radius max
i, j

|zi−z j|√
3

. We thus have

max
i, j

∣∣zi − z j
∣∣

2
� rz � max

i, j

∣∣zi − z j
∣∣

√
3

.

In this context it is interesting to note a case when the given complex numbers lie on the
boundary of the smallest disk containing them. We here show that if the complex num-
bers lie on a circle with centre at their arithmetic mean then this circle is the smallest
circle enclosing these points, (see Theorem 2.1 & 3.1 below). A necessary and suffi-
cient condition is given for which the numbers σz, Sz and |S| are all equal, (Theorem
2.2). We obtain a complex analogue of the inequality, Mallows and Richter [11],

s2 � r
n− r

(αr − x)2 , (1.8)

where αr is the arithmetic mean of any subset of r numbers chosen from the real
numbers x1,x2, . . . ,xn, (Theorem 2.3).

On the other hand we find in literature that the inequality (1.5) and its complemen-
tary Nagy’s inequality [13],

s2 � (b−a)2

2n
(1.9)

also provide bounds for the spread of a complex n×n matrix A when the eigenvalues
λi (A) of A are all real. The spread of a matrix A is the maximum distance between
two eigenvalues of a matrix, Spd(A) = λmax (A)−λmin (A) . We have,

4
n
trB2 � Spd(A)2 � 2trB2, (1.10)
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where B = A− trA
n I and trA denotes the trace of A, see [6, 23].

We show that the inequalities, [3, 21],

(b−a)2

2n
+

2
n−2

(
x− a+b

2

)2

� s2 � (b− x) (x−a) , (1.11)

provide some further refinements of the inequalities (1.5) and (1.9) and consequentlywe
get better bounds for the spread of a matrix for some special cases, (Theorem 2.4, 2.5,
3.2). A refinement of the inequality (1.5) is obtained for Leptokurtic and Mesokurtic
distributions, (Theorem 2.6). It is shown that better estimates can be obtained from
the existing bounds for the eigenvalues and spread of a matrix when any one of its
eigenvalue is known in advance, (Theorem 3.3, 3.4). Likewise, the bounds for the span
of a polynomial are given, (Theorem 3.5).

2. Main results

THEOREM 2.1. If the complex numbers zi ’s in the complex plane lie on a circle
with centre z̃ and radius rz, then rz is the radius of the smallest disk containing all the
points zi ’s.

Proof. For any complex number c, we can write (1.2) in the form

S2
z =

1
n

n

∑
i=1

|zi − c+ c− z̃|2 =
1
n

n

∑
i=1

|zi − c|2 − |̃z− c|2 . (2.1)

If all the complex numbers zi ’s lie on the circle |z− c| = rz, then

1
n

n

∑
i=1

|zi − c|2 = r2
z . (2.2)

Combining (2.1) and (2.2), we get that

S2
z + |̃z− c|2 = r2

z . (2.3)

From the first inequality (1.7), rz � Sz. So the minimum value of rz is Sz. This implies
that if rz = Sz then rz is the radius of the smallest disk containing the points zi ’s. For
z̃ = c, (2.3) gives rz = Sz. This proves the theorem. �

THEOREM 2.2. Let z1,z2, . . . ,zn be the points in the finite complex plane and let
Sz, S and σz be defined as in (1.2), (1.3) and (1.4), respectively. Then, Sz = |S|= σz if
and only if all the points z1,z2, . . . ,zn lie on a straight line.

Proof. In the complex plane the convex combination of complex numbers lie in
the convex hull of these numbers. It follows that if the points zi ’s are collinear then z̃
also lies on the straight line passing through zi ’s.

From (1.2)–(1.4), we see that Sz = |S|= σz if and only if∣∣∣∣∣ n

∑
i=1

(zi − z̃)2

∣∣∣∣∣= n

∑
i=1

|zi − z̃|2 . (2.4)
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The equality occurs in triangle inequality∣∣∣∣∣ n

∑
i=1

ai

∣∣∣∣∣� n

∑
i=1

|ai|

if and only if the ratio of any two non-zero terms is positive that is ai
a j

> 0, i, j =
1,2, . . . ,n, see Ahlfors [1]. This means (2.4) holds true if and only if the ratio of any
two non zero terms in (2.4) is positive, that is(

zi − z̃
z j − z̃

)2

> 0. (2.5)

The square of a complex number z is positive if and only if z is real and therefore
(2.5) implies that zi−z̃

z j−z̃ is real. Also, zi−z̃
z j−z̃ is real if and only if zi lies on the straight

line passing through z j and z̃. If zk − z̃ = 0 for some k then zk = z̃ and so zk lies on
the straight line passing through z j and z̃. �

We need following lemma to extend the inequality (1.8) for complex numbers.

LEMMA 2.1. Let Z1 = {z1,z2, . . . ,zn1} and Z2 = {zn1+1,zn1+2, . . . ,zn1+n2} be two
sets of complex numbers. Denote by Z̃i and S2

Zi
the arithmetic mean and variance of

Zi ’s, i = 1,2, respectively. Then the combined variance S2
Z1∪Z2

of the set Z1 ∪Z2 is
given by

S2
Z1∪Z2

=
n1

n1 +n2
S2

Z1
+

n2

n1 +n2
S2

Z2
+

n1n2

(n1 +n2)
2

∣∣∣Z̃1− Z̃2

∣∣∣2 . (2.6)

Proof. The combined variance of the set Z1∪Z2 of n1 +n2 numbers can be writ-
ten as

S2
Z1∪Z2

=
1

n1 +n2

(
n1

∑
j=1

∣∣z j − ã
∣∣2 +

n1+n2

∑
j=n1+1

∣∣z j − ã
∣∣2) , (2.7)

where

ã =
1

n1 +n2

n1+n2

∑
j=1

z j.

We note that ∣∣z j − ã
∣∣2 =

∣∣∣z j − Z̃1 + Z̃1− ã
∣∣∣2

=
∣∣∣z j − Z̃1

∣∣∣2 +
∣∣∣Z̃1 − ã

∣∣∣2 +2Re
(
Z̃1− ã

)(
z j − Z̃1

)
,

n1

∑
j=1

(
z j − Z̃1

)
= 0 and

∣∣∣Z̃1 − ã
∣∣∣= n2

n1 +n2

∣∣∣Z̃1 − Z̃2

∣∣∣ .

Therefore,
n1

∑
j=1

∣∣z j − ã
∣∣2 =

n1

∑
j=1

∣∣∣z j − Z̃1

∣∣∣2 +
n1n2

2

(n1 +n2)
2

∣∣∣Z̃1 − Z̃2

∣∣∣2 . (2.8)
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On using similar arguments, we have

n1+n2

∑
j=n1+1

∣∣z j − ã
∣∣2 =

n1+n2

∑
j=n1+1

∣∣∣z j − Z̃2

∣∣∣2 +
n2

1n2

(n1 +n2)
2

∣∣∣Z̃1− Z̃2

∣∣∣2 . (2.9)

The assertions of the theorem now follow on using (2.8) and (2.9) in (2.7). �

THEOREM 2.3. Let γr be the arithmetic mean of any subset of r numbers chosen
from the set of n complex numbers z1,z2, . . . ,zn and let σ2

z be defined as in (1.4). Then
the inequality

|γr − z̃|2 � n− r
r

σ2
z (2.10)

holds true for 1 � r � n.

Proof. Let Z1 and Z2 be the disjoint sets of r and n− r numbers chosen from the
numbers z1,z2, . . . ,zn, respectively. Denote by S2

z(r) and S2
z(n−r) the variance of Z1 and

Z2, respectively. We now apply Lemma 2.1 and find that

S2
z =

r
n
S2

z(r) +
n− r

n
S2

z(n−r) +
r (n− r)

n2 |γr − γn−r|2 . (2.11)

Further,

|γr − γn−r| =
∣∣∣∣∣γr − 1

n− r

(
n

∑
i=1

zi −
r

∑zi
i=1

)∣∣∣∣∣=
∣∣∣∣ n
n− r

(γr − z̃)
∣∣∣∣

and therefore (2.11) can be written as

S2
z =

r
n
S2

z(r) +
n− r

n
S2

z(n−r) +
r

n− r
|γr − z̃|2 . (2.12)

On using similar arguments, we have

S2 =
r
n
S2

r +
n− r

n
S2

n−r +
r

n− r
(γr − z̃)2 . (2.13)

On applying triangle inequality we find from (2.13) that

∣∣S2
∣∣� r

n− r
|γr − z̃|2−

∣∣∣∣ rnS2
r +

n− r
n

S2
n−r

∣∣∣∣ . (2.14)

From (2.12) and (2.14), we get that

∣∣S2
∣∣+S2

z � 2r
n− r

|γr − z̃|2 +
r
n
S2

z(r) +
n− r

n
S2

z(n−r) −
∣∣∣∣ rnS2

r +
n− r

n
S2

n−r

∣∣∣∣ . (2.15)

Again by triangle inequality, S2
z(r) �

∣∣S2
r

∣∣ , S2
z(n−r) �

∣∣S2
n−r

∣∣ and therefore

r
n
S2

z(r) +
n− r

n
S2

z(n−r) � r
n

∣∣S2
r

∣∣+ n− r
n

∣∣S2
n−r

∣∣� ∣∣∣∣ rnS2
r +

n− r
n

S2
n−r

∣∣∣∣ . (2.16)
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The inequality (2.10) now follows from (2.15) and (2.16). �

The inequality (2.10) is an extension of Mallows and Richter inequality [11]. For
r = 1, we obtain the generalisation of the well known Samuelson’s inequality [20],

σ2
z � 1

n−1

∣∣z j − z̃
∣∣2 .

Likewise, we can prove the following extension of Nagy’s inequality [13],

σ2
z � 1

2n
max

j,k

∣∣z j − zk
∣∣2 , j,k = 1,2, . . . ,n. (2.17)

Note that for r = 1, S1 = 0 and therefore from (2.13) on using triangle inequality
we get that ∣∣S2

n−1

∣∣� n
n−1

∣∣S2
∣∣+ n

(n−1)2
∣∣z̃− z j

∣∣2 .

Similarly, from (2.12), we have

S2
z(n−1) =

n
n−1

S2
z −

n

(n−1)2
∣∣z̃− z j

∣∣2
and by addition we obtain the inequality

σ2
z(n−1) =

|Sn−1|2 +S2
z(n−1)

2
� n

n−1
σ2

z .

It then follows inductively that the inequality

σ2
z(m) � n

m
σ2

z ,

holds true for m = 1,2, . . . ,n and therefore for m = 2, we have

σ2
z � 2

n
σ2

z(2) =
1
2n

∣∣zi − z j
∣∣2 (2.18)

for all i, j = 1,2, . . . ,n, i �= j. The inequality (2.18) implies (2.17). Also, see [24].

THEOREM 2.4. For 0 � a < x � s, we have

s2 +
(

s2 − x2

2x

)2

� (b−a)2

4
(2.19)

and with n � 3

s2− 2
n−2

(
s2 − x2

2x

)2

� (b−a)2

2n
. (2.20)
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Proof. The second inequality (1.11) implies that

x2 � (a+b)x−ab− s2,

and therefore for 0 � a < x, we can write

x � a+b
2

− s2 − x2 +ab
2x

� a+b
2

− s2 − x2

2x
= α (say) . (2.21)

It is clear that α � a+b
2 and since f (x) = (x−a)(b− x) increases in the interval[

a, a+b
2

]
,a < b, we find that

(x−a)(b− x) � (α −a)(b−α) =
(b−a)2

4
−
(

s2 − x2

2x

)2

. (2.22)

Combining (2.22) and the second inequality (1.11); we immediately get (2.19).
Further, it follows from (2.21) that for 0 < x � s,(

a+b
2

− x

)2

�
(

s2 − x2

2x

)2

. (2.23)

Combining (2.23) with the first inequality (1.11); a little computation leads to (2.20). �

It may be noted here that the inequality (2.19) can equivalently be written as

m′
2

x
� b−a, (2.24)

where m′
2 = s2 + x2.

We mention an alternative proof of (2.24). From the second inequality (1.11),

m′
2

x
� (a+b)x−ab

x
, x > 0. (2.25)

Also, for 0 � a < x � s, from the inequality (1.5), we have x � s � b−a
2 � b

2 and for
x � b

2 ,
(a+b)x−ab

x
� b−a. (2.26)

The inequality (2.24) follows from (2.25) and (2.26).

THEOREM 2.5. For a < 0 and x �
√ n

2s, we have

s2 +

(
x2− n

2 s2

2x

)2

� (b−a)2

4
(2.27)

and with n � 3,

s2− 2
n−2

(
x2− n

2 s2

2x

)2

� (b−a)2

2n
. (2.28)
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Proof. We write (1.9) in the form

s2 � (b− x+ x−a)2

2n
=

(b− x)2 +(x−a)2 +2(b− x) (x−a)
2n

. (2.29)

Using arithmetic mean - geometric mean inequality,

(b− x)2 +(x−a)2 � 2(b− x)(x−a) . (2.30)

Thus, from (2.29) and (2.30),

s2 � 2
n

(b− x)(x−a) . (2.31)

It follows from (2.31) that

x2 � (a+b)x− n
2
s2 −ab

and consequently, for a < 0 and x > 0, we have

x � a+b
2

+
1
2x

(
x2− n

2
s2 −ab

)
� a+b

2
+

1
2x

(
x2 − n

2
s2
)

= β (say) . (2.32)

It is clear that β � a+b
2 for x �

√ n
2 s and since f (x) = (x−a)(b− x) decreases in the

interval
[

a+b
2 ,b

]
,a < b, we find that

(b− x)(x−a) �
(

b−a
2

)2

−
(

x2− n
2 s2

2x

)2

. (2.33)

Combining (2.33) with the second inequality (1.11); we immediately get (2.27).
From (2.33), we also have(

x− a+b
2

)2

�
(

x2 − n
2s2

2x

)2

. (2.34)

The inequality (2.28) follows from (2.34) and the first inequality (1.11). �

Sharma et al. [22] have proved that

m4 +3m2
2 � (b−a)2 (x−a)(b− x) , (2.35)

where m2 = s2 and m4 = 1
n

n
∑
i=1

(xi− x)4 .

If the distribution is Leptokurtic or Mesokurtic, we have, see [10],

m4

m2
2

� 3. (2.36)

We prove a refinement of the inequality (1.5) in the following theorem.
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THEOREM 2.6. For a Leptokurtic and Mesokurtic distribution, we have

s2 � (b−a)

√
(x−a)(b− x)

6
� (b−a)2

2
√

6
. (2.37)

Proof. Under the assumptions of the theorem the inequalities (2.35) and (2.36)
hold true. By (2.36), 3s4 � m4 and we obtain from (2.35) that

6s4 � (b−a)2 (x−a)(b− x) . (2.38)

This gives the first inequality (2.37). The second inequality (2.37) follows from (2.38)

on using arithmetic mean - geometric mean inequality, (x−a)(b− x) � (b−a)2

4 . �

We remark that the inequalities (2.37) also hold true for both discrete and contin-
uous distributions.

3. Bounds for eigenvalues

Let M(n) denote the algebra of all complex n× n matrices. We assume that the
eigenvalues λi (A) of A = (ai j) ∈ M(n) are all real, and may respectively define their
arithmetic mean and variance to be

λ (A) =
1
n

n

∑
i=1

λi (A) =
trA
n

(3.1)

and

s2
λ =

1
n

n

∑
i=1

(
λi (A)−λ (A)

)2
=

trA2

n
−
(

trA
n

)2

=
trB2

n
, (3.2)

where B = A− trA
n I.

The spread of a matrix is the greatest distance between its eigenvalues. The no-
tion of the spread was introduced by Mirsky [14, 15] and several authors have studied
bounds for the spread of a matrix, see [6, 8, 13, 24].

THEOREM 3.1. If trace of a unitary matrix U ∈ M(n) is zero then the unit circle
is the smallest circle enclosing the eigenvalues of U, and greatest lower bound on the
Spd(U) is

√
3.

Proof. The eigenvalues of a unitary matrix U all lie on the unit circle and by
assumption of the theorem trU = 0. So, the eigenvalues λi (U)’s satisfy the conditions
of the Theorem 2.1 and hence the unit circle is the smallest circle containing λi (U)’s.
It also follows from the second inequality (1.7) that Spd(U) �

√
3. �

EXAMPLE 1. The basic circulant matrix C with first row (0,1,0 . . . ,0) is a unitary
matrix and its trace is zero. By Theorem 3.1 the unit disk is the smallest disk containing
eigenvalues of C and SpdC �

√
3. Also, for n = 3 we have SpdC =

√
3.

The following theorem is a consequence of Theorem 2.4 and provides refinements
of the inequalities (1.10).
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THEOREM 3.2. Let the eigenvalues of an element A ∈ M(n) be all non negative

and let 0 < trA �
(
ntrB2

) 1
2 . Then

Spd(A) � trA2

trA
(3.3)

and with n � 3,

Spd(A) � 1
trA

(
2trB2 (trA)2−

(
ntrB2− (trA)2

)2
n(n−2)

) 1
2

. (3.4)

Proof. Under the condition trA �
(
ntrB2

) 1
2 , we have

λ (A) =
trA
n

�
(

1
n
trB2

) 1
2

=

(
trA2

n
−
(

trA
n

)2
) 1

2

= sλ . (3.5)

Further, the eigenvalues of A are all non-negative, therefore 0 < λmin (A) � λ (A) � sλ
and Spd(A) = λmax (A)−λmin (A) . So we can apply Theorem 2.4, the inequalities (3.3)
and (3.4) follow on using (3.1) and (3.2) in (2.19) and (2.20), respectively. �

EXAMPLE 2. Let

A =

⎡⎢⎢⎣
1 1 1 1
1 4 1 1
1 1 16 1
1 1 1 100

⎤⎥⎥⎦ .

From (1.10), 81.393 �Spd(A) � 115.11.The matrix A is positive definite and trA �(
ntrB2

) 1
2 . So, from our bounds (3.3) and (3.4) we have better estimate 85 �Spd(A) �

104.90.
Likewise, we can obtain another refinement of the inequality (1.10) on applying

Theorem 2.5. If λmin (A) < 0 and 0 < 2(trA)2 � n2 trB2, then

Spd(A) � 1
2ntrA

(
16ntrB2 (trA)2 +

(
2(trA)2−n2trB2

)2
) 1

2

(3.6)

and for n � 3,

Spd(A) � 1
trA

⎛⎜⎝2trB2 (trA)2−
(
2(trA)2−n2trB2

)2

4n(n−2)

⎞⎟⎠
1
2

. (3.7)

Further, Wolkowicz and Styan [23] have shown that if the eigenvalues of A∈ M(n) are
all real and λ1 (A) � λi (A) � λn (A) , i = 1,2, . . . ,n, then

trA
n

−
√

n−1
n

trB2 � λ1 (A) � trA
n

−
√

1
n(n−1)

trB2 (3.8)
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and
trA
n

+

√
1

n(n−1)
trB2 � λn (A) � trA

n
+

√
n−1

n
trB2. (3.9)

The inequalities (3.8) and (3.9) follow respectively from the inequalities, [7, 20],

x−√
n−1s � min

i
xi � x− s√

n−1
(3.10)

and
x+

s√
n−1

� max
i

xi � x+
√

n−1s. (3.11)

We now discuss extensions of these inequalities for the case when any one eigenvalue
of A is known as in case of stochastic and singular matrices.

It is clear from Lemma 2.1 that if s2
n−1 is the variance of n−1 numbers obtained

by excluding a number x j from the real numbers x1,x2, . . . ,xn, then

s2
n−1 =

n
n−1

s2 − n

(n−1)2
(x− x j)

2 . (3.12)

THEOREM 3.3. Let the eigenvalues of A ∈ M(n) be all real. Let ν (A) be an
eigenvalue of A and denote the remaining eigenvalues by νi (A) , ν1 (A) � νi (A) �
νn−1 (A) , i = 1,2, . . . ,n−1. Then, for n � 3,

trA−ν (A)
n−1

−√
n−2sν � ν1 (A) � trA−ν (A)

n−1
− sν√

n−2
(3.13)

and
trA−ν (A)

n−1
+

sν√
n−2

� νn (A) � trA−ν (A)
n−1

+
√

n−2sν . (3.14)

Proof. The arithmetic mean ν (A) of n−1 eigenvalues νi (A) can be written as

ν (A) =
1

n−1

n−1

∑
i=1

νi (A) =
trA−ν (A)

n−1
. (3.15)

By the use of (3.12) the variance of these eigenvalues is

s2
ν =

1
n−1

n−1

∑
i=1

(νi (A)−ν (A))2 =
n

n−1
s2

λ − n

(n−1)2
(

λ (A)−ν (A)
)2

=
trB2

n−1
− n

(n−1)2

(
trA
n

−ν (A)
)2

. (3.16)

On applying (3.10) to n−1 numbers ν1 (A) ,ν2 (A) , . . . ,νn−1 (A) and using (3.15) and
(3.16); we immediately get (3.13). Likewise, (3.14) follows from (3.11). �
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THEOREM 3.4. Under the conditions of Theorem 3.3., we have

max
i, j

∣∣νi (A)−ν j (A)
∣∣2 � 2

(
trB2− n

n−1

(
trA
n

−ν (A)
)2
)

(3.17)

and

max
i, j

∣∣νi (A)−ν j (A)
∣∣2 � 4

n−1

(
trB2− n

n−1

(
trA
n

−ν (A)
)2
)

. (3.18)

Proof. On using the inequalities (1.5) and (1.9), for n−1 numbers ν1 (A) ,ν2 (A) ,
. . . ,νn−1 (A) , we have

4s2
ν � max

i, j

∣∣νi (A)−ν j (A)
∣∣2 � 2(n−1)s2

ν . (3.19)

Inserting (3.16) in (3.19), we immediately get (3.17) and (3.18) on simplifications. �

EXAMPLE 3. Let

A =

⎡⎢⎢⎣
1 2 9 4
2 10 0 4
9 0 5 2
4 4 2 6

⎤⎥⎥⎦ .

From the inequalities (3.8), we have −9.0688 � λ1 (A) � .644. The largest eigenvalue
of A is 16 as all its row sums are 16 and A is a symmetric matrix. From (3.13) we have
better estimate for the smallest root, −7.521 � λ1 (A) � −2.7610. The actual value of
λ1 (A) to four decimal places is −6.5788.

We now consider polynomials with real zeros. Let f be a monic polynomial

f (x) = xn +a1x
n−1 +a2x

n−2 + . . .+an (3.20)

with only real zeros. Then the length b−a of the smallest interval [a,b] containing all
the zeros of f is called span of f , see [12, 19] . Denote by Dn the span of f then

2
n

√
(n−1)a2

1−2na2 � Dn �
√

2
n−1

n
a2

1−4a2. (3.21)

See Corollary 6.1.4 and Theorem 6.1.6 in [19].
We prove a refinement of (3.21) in the following theorem.

THEOREM 3.5. Let the zeros of the polynomial (3.20) be all non-negative and let
2na2 � (n−2)a2

1. Then

Dn � 2a2−a2
1

a1
(3.22)

and with n � 3,

Dn �

√
2
n

(
(n−1)a2

1−2na2
)− 1

n(n−2)

(
2na2− (n−2)a2

1

a1

)2

. (3.23)
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Proof. Let x1,x2, . . . ,xn be the roots of the polynomial (3.20). Then, on using
relation between roots and coefficient of polynomial, we have

x =
1
n

n

∑
i=1

xi =
−a1

n

and

s2 =
1
n

n

∑
i=1

x2
i − x2 =

1
n

(
n

∑
i=1

xi

)2

− 2
n

n

∑
i< j

xix j − x2

=
(n−1)a2

1−2na2

n2 .

The assertions of the theorem now follow on applying Theorem 2.4. �
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