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Abstract. Throughout this paper, we study a new modified version of fractional boundary value
problem (BVP) of the form

(Ca Dα y)(t)+ p(t)y′(t)+q(t)y(t) = 0, a < t < b, 2 < α � 3,

with y(a) = y′(a) = y(b) = 0 , where p ∈C1([a,b]) and q ∈C([a,b]) . Using the vector Green
function we obtain a Lyapunov-type inequality for the BVP subject to Dirichlet-type boundary
conditions. Moreover, we utilize the new inequality to infer a criteria for the nonexistence of real
zeros of some certain Mittag-Leffler functions using the generalized Wright functions.

1. Introduction

In a celebrated paper of Russian mathematician Lyapunov [5] the following re-
markable result has been proved.

THEOREM 1. If y(t) is a nontrivial solution of the second order differential equa-
tion

y′′(t)+q(t)y(t) = 0, y(a) = y(b) = 0 (1)

where a,b∈ R with a < b be consecutive zeros, q(t) is a real-valued continuous func-
tion and y(t) �= 0 for t ∈ (a,b) , then the so-called Lyapunov inequality holds:

∫ b

a
|q(s)|ds >

4
b−a

. (2)

As we know that Theorem 1 has applications in the study of various properties
of solutions in many directions such as oscillation theory, disconjugacy and eigenvalue
problems of (1), several proofs and generalizations or improvements have appeared in
the literature. Several authors including Reid ([7]–[8]), Hartman [9], Hochstadt [10],
Eliason [11], Singh [12], Kwong [13] and Cheng [14] have contributed the above result.
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Since the theory of fractional differential equations has been extensively investi-
gated in various results (see for example [1]–[2]) the second order differential equa-
tion mentioned in Theorem 1 has been recently considered as the following fractional
boundary value problem

(Ca Dαy)(t)+q(t)y(t) = 0, a < t < b, 1 < α � 2, y(a) = y(b) = 0 (3)

by substituting the classical derivative y′′ in (1) with the Caputo fractional operator
C
a Dαy . Recently, Ferreira ([3], [4]) proved that for any nontrivial continuous solution
of Eq. (3) the following inequality holds:

∫ b

a
|q(s)|ds >

Γ(α)αα

[(α −1)(b−a)]α−1 . (4)

In both papers [3, 4], the author has presented nice applications to obtain intervals
where certain Mittag-Leffler functions have no real zeros.

Very recently, Jleli and Samet [20] established some Lyapunov-type inequalities
for fractional boundary value problem (3) under Sturm-Liouville boundary conditions
pu(a)− ru′(a) = u(b) = 0 where p > 0,r > 0 and considered two cases to study.
Throughout this paper, we initially deal with a fractional boundary value problem in-
cluding the usual derivative as follows

(Ca Dαy)(t)+ p(t)y′(t)+q(t)y(t) = 0, a < t < b, 2 < α � 3, (5)

with y(a) = y′(a) = y(b) = 0, where p ∈C1([a,b]) and q ∈C([a,b]) .
To the best of the authors knowledge, there is no result available in the literature

concerning with the problem of existence of nontrivial solutions for the boundary value
problem (5). In 1999, Parhi and Panigrahi [19] have derived a series of novel results for
Liapunov-type inequality of the special case of the BVP (5) given by

y′′′ + p(t)y = 0,

where p is a real-valued continuous function on [0,∞). As is well-known, the goal
of finding nontrivial solutions is of great significance in various fields of science and
engineering.

For the completeness, in this section, we gather some definitions and fundamental
facts of Caputo’s derivatives of fractional order which can also be found in ([15], [16],
[17]).

DEFINITION 1. Let α � 0 and f be a real function defined on [a,b] . The Riemann-
Liouville fractional integral of order α is defined by (aI0 f )(t) = f (t) and

(aI
α f )(t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, α > 0, t ∈ [a,b].

DEFINITION 2. The Caputo fractional derivative of order α � 0 is given by

(Ca D0 f )(t) = f (t) and (Ca Dα f )(t) = (aIm−αDm f )(t), for α > 0,
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where m is the smallest integer greater or equal to α . That is,

(Ca Dα f )(t) =
1

Γ(m−α)

∫ t

a

f m(s)
(t− s)α+1−m ds, m = [α]+1, t ∈ [a,b].

In the next section, analogy with boundary value problem for differential equations of
fractional order, we derive the corresponding Green function named by a vector Green
function. Consequently, a sufficient condition for the existence of nontrivial solution of
problem (5) is obtained. Finally, in Section 3, we give a criteria for the nonexistence of
real zeros of some certain Mittag-Leffler functions.

2. Main result

The Green function for the BVP (5) can be considered as form of a vector by using
a simple but crucial lemma obtained by Zhang [6] as follows:

LEMMA 1. Let α > 0 , then the differential equation

Dα
0+u(t) = 0

has solutions u(t) = c0 + c1t + c2t2 + · · ·+ cntn−1 , ci ∈ R , i = 0,1, · · · ,n, n = [α]+1
where here, Dα

0+ is the Caputo’s fractional derivative.

Moreover, it has been proved that Iα
0+Dα

0+u(t) = u(t) + c0 + c1t + c2t2 + · · ·+
cntn−1 for some ci ∈ R , i = 0,1, · · · ,n, n = [α] + 1 (see Lemma 2.3 in [6]). Here,
the notations Iα

0+ and Dα
0+ are obtained by putting a = 0 in C

a Dα and aIα , respectively
(See Definitions 1,2).

Before presenting our next result we need to clarify about the hypotheses of the
following lemma. We remark that all the components Gi(s,t) are defined as piecewise
functions by two sub-functions gi1(s,t),gi2(s,t) as follows:

Gi(s,t) =

{
gi1(s,t), a � s � t � b

gi2(s,t), a � t � s � b

for i = 1,2,3 where⎡
⎣
{
g11(s, t), g12(s,t)

}{
g21(s, t), g22(s,t)

}{
g31(s, t), g32(s,t)

}
⎤
⎦ (6)

a � s � t � b a � t � s � b

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

{
(α −1)

(
(t−a)2

(b−a)2 (b− s)α−2− (t− s)α−2

)
,

(α −1)(t−a)2

(b−a)2 (b− s)α−2

}
{

(t −a)2

(b−a)2 (b− s)α−1− (t− s)α−1,
(t−a)2

(b−a)2 (b− s)α−1

}
{−(t−a)2

(b−a)2 (b− s)α−1 +(t− s)α−1, − (t−a)2

(b−a)2 (b− s)α−1

}

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Besides,
|gi1(s,t)| � |gi2(s,t)|

for all i = 1,2,3. Now, we present the following lemma as discussed above.

LEMMA 2. y ∈ C1([a,b]) is a solution of the boundary value problem (5) if and
only if y satisfies the integral equation

y(t) =
∫ b

a
G(s,t)H(s)y(s)ds

where

G = [G1,G2,G3], H =

⎡
⎣ p

q
p′

⎤
⎦

and

G(s, t) =

⎡
⎣G1(s,t)

G2(s,t)
G3(s,t)

⎤
⎦ =

1
Γ(α)

⎡
⎣
{
g11(s,t), g12(s,t)

}{
g21(s,t), g22(s,t)

}{
g31(s,t), g32(s,t)

}
⎤
⎦ (7)

in which the sub-functions gi1(s,t) and gi2(s,t) are given by (6) for i = 1,2,3.

Proof. From the property of Caputo’s derivative adopted by Lemma 1 and the fact
mentioned right after that together with the Riemann-Liouville fractional integral aIα

we can reduce the equation of problem (5) to an equivalent integral equation

y(t) = c0 + c1(t−a)+ c2(t −a)2− 1
Γ(α)

∫ t

a
(t − s)α−1

(
p(s)y′(s)+q(s)y(s)

)
ds

= c0 + c1(t−a)+ c2(t −a)2

+
1

Γ(α)

∫ t

a
(t− s)α−1

(
p′(s)− α −1

t− s
p(s)−q(s)

)
y(s)ds. (8)

To give more details about the recent equality, we note that applying the integrating
by part yields that
∫ t

a
(t− s)α−1p(s)y′(s)ds

= (t− s)α−1p(s)y(s)
∣∣∣∣
t

a
−

∫ t

a

[
(t− s)α−1p′(s)− (α −1)(t− s)α−2p(s)

]
y(s)ds.

Following the boundary conditions we easily infer that c0 = 0. Also, since y′(a) = 0,
so differentiating from both sides of (8) implies that c1 = 0. Thus,

c2 =
−1

(b−a)2Γ(α)

∫ b

a

(
(b− s)α−1(p′(s)−q(s))− (α −1)(b− s)α−2p(s)

)
y(s)ds.
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Consequently,

y(t) = − (t −a)2

(b−a)2Γ(α)

∫ b

a

(
(b− s)α−1(p′(s)−q(s))− (α −1)(b− s)α−2p(s)

)
y(s)ds

+
1

Γ(α)

∫ t

a
(t− s)α−1

(
p′(s)− α −1

t − s
p(s)−q(s)

)
y(s)ds.

(9)

Considering the coefficients matrix H = (p,q, p′)T in integral equation y(t) =∫ b
a G(s, t)H(s)y(s)ds and comparing with (9) we easily find out G(s,t) is as form of (7)

and the consequence follows. �

LEMMA 3. All the functions Gi for i = 1,2,3 given in Lemma 2 satisfy the below
inequalities:

|G1(s,t)| � 1
Γ(α)

(α −1)(b−a)α−2max{g(α),h(α)}

where

max{g(α),h(α)} =

{
g(α), 2 < α � α0

h(α), α0 � α � 3
, (g−h)(α0) = 0, α0

∼= 2.427

and

|G2(s, t)| = |G3(s,t)| � 1
Γ(α)

(b−a)α−1max{g(α +1),h(α +1),A(α +1)} (10)

where

g(α) =
1
4
(4−α)2,

h(α) =
(

α −2
2

) (α−2)(3−α)
4−α

−
(

α −2
2

) 2−(α−2)2
4−α

,

A(α) = 4α−α(α −2)α−2.

Proof. First, by differentiating of g12(s,s) on the interval (a,b) and some simple
calculation we obtain

g′12(s,s) = (α −1)
(b− s)α−3

(b−a)2

(
2(s−a)(b− s)− (α−2)(s−a)2

)

which has the zero as follows

g′12(s,s) = 0 ⇐⇒ s = s∗ =
2b+a(α −2)

α
.
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Evidently, we have ⎧⎨
⎩

g′12(s,s) > 0, s ∈ (a,s∗)

g′12(s,s) < 0, s ∈ (s∗,b)

which implies max s∈[a,b]g12(s,s) = g12(s∗,s∗) . On the other hand, we see that

0 � g12(s,t) � g12(s,s) � g12(s∗,s∗)

=
(α −1)
(b−a)2

(2b+a(α −2)
α

−a
)2(

b− 2b+a(α −2)
α

)α−2

=
4(α −1)

(
(α −2)(b−a)

)α−2

αα .

(11)

From now on, since we are not interested to consider the classic form (i.e., α = 2)
suppose that 2 < α < 3. Now, drawing our attention to the function g11(s, t) and
considering its differentiation related to t we infer

∂
∂ t

g11(s, t) = (α −1)
(

2(t−a)(b− s)α−2

(b−a)2 − (α −2)(t− s)α−3
)

, s < t,

∂ 2

∂ t2
g11(s, t) = (α −1)

(
2(b− s)α−2

(b−a)2 +(α −2)(3−α)(t− s)α−3
)

> 0, s < t.

Since g11(s,s) =
(s−a)2

(b−a)2 (b− s)α−2 > 0 and g11(s,b) = 0, based on the sign of

∂
∂ t

g11(s,b) =
[

2
b−a

(b− s)− (α −2)
]
(b− s)α−3,

it would be two possible cases as follows:

Case 1. Suppose that
∂
∂ t

g11(s,b) < 0, then

∂
∂ t

g11(s,b) < 0 ⇐⇒ 2(b− s)− (α −2)(b−a) < 0 ⇐⇒ s >
2b− (α −2)(b−a)

2
.

Obviously, in this case g11(s,t) is nonnegative and decreasing with respect to
t ∈ [s,b] . Furthermore,

max
t∈[s,b]

g11(s, t) = g11(s,s) =
(α −1)(s−a)2

(b−a)2 (b−s)α−2, s∈
(2b− (α −2)(b−a)

2
,b

)
.

From the discussion before the lemma, since the inequality |g11(s,t)| � |g12(s, t)|
holds for a � s � t � b , so by (11) we have

|g11(s,t)| � g12(s,t) � g12(s∗,s∗)

=
4(α −1)

(
(α −2)(b−a)

)α−2

αα

:= (α −1)(b−a)α−2A(α)

(12)
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where 2b−(α−2)(b−a)
2 < s � t � b . We remark that s∗ >

2b−(α−2)(b−a)
2 since we observe

that

s∗ =
2b+a(α −2)

α
>

2b− (α −2)(b−a)
2

⇐⇒ (b−a)(α −2)2 > 0.

Figure 1: Graph of sub-function g11(s,t) with respect to t on [s,b]

Case 2. Now, let us consider
∂
∂ t

g11(s,b)> 0, then following the fact that ∂ 2

∂ t2
g11(s,t)

> 0 for any t ∈ (s,b) we easily see that there is a local minimum for sub-function

g11(s, t) , say it t = t∗ . By Figure 1, since s < c := 2b−(α−2)(b−a)
2 for a � s � t � b we

get

max
t∈[s,b]

|g11(s, t)| � max
t∈[s,b]

max
s∈[a,c)

{|g11(s,s)|, |g11(s,t∗)|} = max
s∈[a,c)

{|g11(s,s)|, |g11(s,t∗)|}.

Since

|g11(s,s)| = (α −1)
(

(s−a)2

(b−a)2 (b− s)α−2
)

� (α −1)
(

( 2b−(α−2)(b−a)
2 −a)2

(b−a)2 (b−a)α−2
)

=
1
4
(α −1)(4−α)2(b−a)α−2

:= (α −1)(b−a)α−2g(α),

(13)

|g11(s, t∗)| = (α −1)
∣∣∣∣(t∗ −a)2

(b−a)2 (b− s)α−2− (t∗− s)α−2

∣∣∣∣.
On the other hand, since 0 < t∗−s

b−a � t∗−a
b−a < 1 and 0 < α −2 < 1 we get(

t∗ −a
b−a

)2( b− s
b−a

)α−2

�
(

t∗ −a
b−a

)2

�
(

t∗ − s
b−a

)α−2

.
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This shows that

|g11(s, t∗)| = (α −1)(b−a)α−2
[(

t∗ − s
b−a

)α−2

−
(

t∗ −a
b−a

)2( b− s
b−a

)α−2]

� (α −1)(b−a)α−2
[(

t∗ −a
b−a

)α−2

−
(

t∗ −a
b−a

)2(b− 2b−(α−2)(b−a)
2

b−a

)α−2]

� (α −1)(b−a)α−2
[(

t∗ −a
b−a

)α−2

−
(

t∗ −a
b−a

)2(α −2
2

)α−2]
.

Now, considering the function f (x) = xα−2 − (α−2
2 )α−2x2 we see that f attains the

maximum at x = (α−2
2 )

3−α
4−α . This implies that

|g11(s, t∗)| � (α −1)(b−a)α−2
[(

α −2
2

) (α−2)(3−α)
4−α

−
(

α −2
2

) 2−(α−2)2
4−α

]
:= (α −1)(b−a)α−2h(α).

(14)

From the calculus, comparing the functions f ,g in (13) and (14) we infer that there
exists an α0 ∈ (2, 5

2 ) such that (g−h)(α0) = 0 and h(α) < g(α) for α ∈ (2,α0) and
g(α) < h(α) for α ∈ (α0,3) . Also, it is worth mentioning that following the numerical
methods we find that α0

∼= 2.427 (see also Figure 2).

Figure 2: Graph of function (h−g)(x)

Moreover, a comparison of both functions g(α),h(α) with A(α) shows that A(α)<
g(α) and A(α) < h(α) for α ∈ (2,3) (see also Figure 3).

Now, considering the arguments as above and (12), (13) and (14) we conclude that

|G1(s,t)| � 1
Γ(α)

(α −1)(b−a)α−2max{g(α),h(α)}
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Figure 3: Graphs of functions (g−A)(x) (with green line) and (h−A)(x) (with blue line)

where

max{g(α),h(α)} =

⎧⎨
⎩

g(α), 2 < α � α0

h(α), α0 � α � 3
.

We note that one can follow the process of proof for the upper bound of |G1(s, t)|
and obtain the upper bound for G2,G3 . Indeed, since the definition of G1 is sort of
similar to the structures of G2,G3 and only the order α is replaced by (α −1) and the
existing coefficient (α − 1) given in G1 is disappeared in G2,G3 we easily conclude
that

|G2(s, t)| = |G3(s,t)| � 1
Γ(α)

(b−a)α−1max{g(α +1),h(α +1),A(α +1)}.

To give more details concerning with the term A(α + 1) in recent relation we want
the reader to focus on Figure 3 and the fact that 3 < α + 1 < 4. This completes the
proof. �

THEOREM 2. If a nontrivial continuously differentiable solution of the following
fractional boundary value problem (FBVP) exists

(Ca Dαy)(t)+ p(t)y′(t)+q(t)y(t) = 0, a < t < b, 2 < α � 3,

y(a) = y′(a) = y(b) = 0 where p ∈C1([a,b]) and q ∈C([a,b]) , then∫ b

a

(
|p(s)|+ |q(s)|+ |p′(s)|

)
ds � Γ(α)(b−a)1−α

max{g(α),h(α),A(α +1)}
if α � b−a+1 and∫ b

a

(
|p(s)|+ |q(s)|+ |p′(s)|

)
ds � Γ(α)(b−a)2−α

(α −1)max{g(α),h(α),A(α +1)}
if α � b−a+1 and g,h and A are as given in Lemma 3.
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Proof. From the discussion mentioned as before, a non-zero solution y to the
FBVP satisfies the integral equation

y(t) =
∫ b

a
G(s,t)H(s)y(s)ds, t ∈ [a,b].

Obviously, we have

|y(t)| �
∫ b

a
|G(s,t)H(s)| |y(s)|ds, t ∈ [a,b].

By considering supremum norm for y(t) on [a,b] together with the preceding
lemma we have

‖y‖

�
∫ b

a

(
max

s,t∈[a,b]
|G1(s,t)| |p(s)|+ max

s,t∈[a,b]
|G2(s,t)| |q(s)|+ max

s,t∈[a,b]
|G3(s, t)| |p′(s)|

)
ds‖y‖

� (b−a)α−2

Γ(α)
S(α)

∫ b

a

(
|p(s)|+ |q(s)|+ |p′(s)|

)
ds‖y‖

where

S(α) = max

{
(α −1)max{g(α),h(α)},(b−a)max{g(α +1),h(α +1),A(α +1)}

}
.

This shows that

Γ(α)
S(α)(b−a)α−2 �

∫ b

a

(
|p(s)|+ |q(s)|+ |p′(s)|

)
ds.

Now, since g(α),h(α) are strictly decreasing on (2,3) , if α � b−a+1, then

Γ(α)(b−a)1−α

max{g(α),h(α),A(α +1)} �
∫ b

a

(
|p(s)|+ |q(s)|+ |p′(s)|

)
ds.

Otherwise, we get

Γ(α)(b−a)2−α

(α −1)max{g(α),h(α),A(α +1)} �
∫ b

a

(
|p(s)|+ |q(s)|+ |p′(s)|

)
ds. �

Here, we give an immediate consequence as follows.

3. Real zeros of some Mittag-Leffler functions

Before we present the last result and discuss on the solution of fractional differ-
ential equation (5), we need to recall two classes of functions (one of which may be
considered to be a special case of the other) and study the solutions by the terms of
these functions. These functions will turn out to be of fundamental importance in the
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further context and applicable in so many areas in the literature. Suppose that n > 0.
The function En defined by

En(z) :=
∞

∑
j=0

z j

Γ( jn+1)

whenever the series converges is called the Mittag-Leffler function of order n . We
immediately find that E1(z) is just the well known exponential function exp(z) . The
more general class of functions for n1,n2 > 0 is given as follows.

En1,n2(z) :=
∞

∑
j=0

z j

Γ( jn1 +n2)
. (15)

The function En1,n2(z) whenever the series converges is called the two-parameterMittag-
Leffler function with parameters n1 and n2 .

Based on the Mittag-Leffler function and generalized Wright function pΨq we can
apply the last result to conclude an interval in which (15) with certain coefficients n1,n2

has no real zeros. For simplicity let now a = 0 and b = 1 and consider the following
fractional eigenvalue problem:

(C0 Dαy)(t)+ λy′(t)+ μy(t) = 0, 0 < t < 1 (16)

where y(0) = y(1) = 0 and λ ,μ ∈ R . From the theory of fractional differential equa-
tions we know that (16) has the solutions as follows (see [15], Theorem 5.13):

y0(t) =
∞

∑
k=0

(−μ)k

k!
tαk

1Ψ1

[
(k+1,1)

(αk+1,α −1)

∣∣∣∣−λ tα−1
]

+λ
∞

∑
k=0

(−μ)k

k!
tα(k+1)−1

1Ψ1

[
(k+1,1)

(α(k+1),α −1)

∣∣∣∣−λ tα−1
]
,

y j(t) =
∞

∑
k=0

(−μ)k

k!
tαk+ j

1Ψ1

[
(k+1,1)

(αk+ j +1,α −1)

∣∣∣∣−λ tα−1
]
, j = 1,2.

Bring into the mind that the function pΨq was introduced by Wright [18] and is called
the generalized Wright function which is defined for z ∈ C , ai,b j ∈ C and αi,β j ∈
R(αi,β j �= 0; i = 1,2, . . . , p; j = 1,2, . . . ,q) by the series

pΨq(z) ≡ pΨq

[
(ai,αi)1,p

(b j,β j)1,q

∣∣∣∣z
]

=
∞

∑
k=0

∏p
i=1 Γ(ai + αik)

∏q
j=1 Γ(b j + β jk)

zk

k!
.

In particular, provided by the recent series the solutions of the problem

(C0 Dαy)(t)+ λy′(t) = 0, 0 < t < 1 (17)

with boundary conditions y(0) = y(1) = 0 are given by

y0(t) = Eα−1,1(−λ tα−1)+ λ tα−1Eα−1,α(−λ tα−1),

y j(t) = t jEα−1, j+1(−λ tα−1), j = 1,2.
(18)
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THEOREM 3. Let 2 < α � 3. Then, the Mittag-Leffler function Eα−1, j+1(x)( j =
0,1) has no real zeros for

x ∈
( −Γ(α)

(α −1)max{g(α),h(α),A(α +1)} ,0

)
,

where g,h,A are given in Lemma 3. Moreover, we have the following relation

Eα−1,1(x) = xEα−1,α(x). (19)

Proof. Using the boundary condition we see that the eigenvalues λ ∈ R of the
problem (17) are the solutions of Eα−1, j+1(−λ ) = 0 for j = 0,1. This together with
the fact that the series in (15) must be convergent implies that λ ∈ R

+ . Following
Theorem 2, since α −1 � b−a+1 = 2 we see that

λ = |λ | � Γ(α)
(α −1)max{g(α),h(α),A(α +1)} .

Therefore, the solution of Eα−1, j+1(−λ ) = 0 should hold in

x = −λ � −Γ(α)
(α −1)max{g(α),h(α),A(α +1)} .

This completes the first part of the claim. Following the relations in (18), the equality
(19) is also obvious and the consequence follows. �
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