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DERIVATION–HOMOMORPHISM FUNCTIONAL INEQUALITIES

CHOONKIL PARK

Abstract. In this paper, we introduce and solve the following additive-additive (s,t) -functional
inequality

‖g(x+ y)−g(x)−g(y)‖+‖h(x+ y)+h(x− y)−2h(x)‖ (1)
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where s and t are fixed nonzero complex numbers with |s| < 1 and |t| < 1 . Using the direct
method and the fixed point method, we prove the Hyers-Ulam stability of derivation-homomorphisms
in complex Banach algebras, associated to the additive-additive (s,t) -functional inequality (1)
and the following functional inequality

‖g(xy)−g(x)y− xg(y)‖+‖h(xy)−h(x)h(y)‖ � ϕ(x,y). (2)
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[13] A. GILÁNYI, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707–710.
[14] D.H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27

(1941), 222–224.
[15] G. ISAC, TH. M. RASSIAS, Stability of ψ -additive mappings: Applications to nonlinear analysis,

Int. J. Math. Math. Sci. 19 (1996), 219–228.
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