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(Communicated by J. Mićić Hot)

Abstract. The main goal of this article is to present several refinements and reverses of well
known operator inequalities. These inequalities include operator means, operator monotone
functions, operator log-convex functions and positive linear maps.

Among many other results, we show that for any 0 � α ,β � 1 ,

f (A∇αB) � f
(
(A∇αB)∇β A

)
�α f

(
(A∇αB)∇β B

)
� f (A)�α f (B)

whenever f is a non-negative operator log-convex function, A,B ∈ B (H ) are positive opera-
tors, and 0 � α ,β � 1 . Further, we consider some inequalities of Ando’s type, and prove that if
Φ is a positive linear map, then

Φ(A�αB) � Φ
(
(A�αB)�β A

)
�α Φ

(
(A�αB)�β B

)
� Φ(A)�α Φ(B) .

Many other refinements and reverses are shown by invoking ideas related to the so called inter-
polational operator means.

1. Introduction and preliminaries

We denote the set of all bounded linear operators on a Hilbert space H by
B (H ) . An operator A∈B (H ) is said to be positive (denoted by A > 0) if 〈Ax,x〉>
0 for all non zero x ∈ H .

The axiomatic theory for connections and means for pairs of positive operators
has been studied by Kubo and Ando [11]. A binary operation σ defined on the cone of
positive operators is called an operator mean if for A,B > 0,

(i) Iσ I = I , where I is the identity operator;

(ii) C∗ (AσB)C � (C∗AC)σ (C∗BC) , ∀C ∈ B(H ) ;

(iii) An ↓ A and Bn ↓ B imply AnσBn ↓ AσB , where An ↓ A means that A1 � A2 . . .
and An → A as n → ∞ in the strong operator topology;

(iv)
A � B & C � D ⇒ AσC � BσD, ∀C,D > 0. (1.1)
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For a symmetric operator mean σ (in the sense that AσB = BσA), a parametrized
operator mean σα (α ∈ [0,1]) is called an interpolational path for σ (or Uhlmann’s
interpolation for σ ) if it satisfies

(c1) Aσ0B = A (here we recall the convention T 0 = I for any positive operator T ),
Aσ1B = B , and Aσ 1

2
B = AσB ;

(c2) (AσαB)σ
(
Aσβ B

)
= Aσ α+β

2
B for all α,β ∈ [0,1] ;

(c3) the map α ∈ [0,1] 
→ AσαB is norm continuous for each A and B .

It is straightforward to see that the set of all γ ∈ [0,1] satisfying

(AσαB)σγ
(
Aσβ B

)
= Aσ(1−γ)α+γβ B, (1.2)

for all α,β is a convex subset of [0,1] including 0 and 1. Therefore (1.2) is valid for
all α,β ,γ ∈ [0,1] (see [7, Lemma 1]).

An example of typical interpolational means the so-called power means

AmυB = A
1
2

(
1
2

(
I +
(
A− 1

2 BA− 1
2

)υ)) 1
υ
A

1
2 , −1 � υ � 1

and their interpolational paths are [8, Theorem 5.24],

Amυ,αB = A
1
2

(
(1−α)I + α

(
A− 1

2 BA− 1
2

)υ) 1
υ
A

1
2 , 0 � α � 1.

In particular, we have

Am1,αB = A∇αB := (1−α)A+ αB,

Am0,αB = A�αB := A
1
2

(
A− 1

2 BA− 1
2

)α
A

1
2 ,

Am−1,αB = A!αB :=
(
A−1∇αB

)−1
.

These are called the weighted arithmetic, weighted geometric, and weighted harmonic
means respectively. It is well-known that

A!αB � A�αB � A∇αB, 0 � α � 1. (1.3)

In [5], Aujla et al. introduced the notion of operator log-convex functions in the
following way: A continuous real function f : (0,∞) → (0,∞) is called operator log-
convex if

f (A∇αB) � f (A)�α f (B) , 0 � α � 1 (1.4)

for all positive operators A and B . After that, Ando and Hiai [2] gave the following
characterization of operator monotone decreasing functions.
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LEMMA 1.1. Let f be a continuous non-negative function on (0,∞) . Then the
following conditions are equivalent:

(a) f is operator monotone decreasing;

(b) f is operator log-convex;

(c) f (A∇B) � f (A)σ f (B) for all positive operators A, B and for all symmetric
operator means σ .

In Theorem 2.1 below, we provide a more precise estimate than (1.4) for operator
log-convex functions. As a by-product, we improve both inequalities in (1.3). Addi-
tionally, we present a refinement and two reverse inequalities for the triangle inequality.

Our main application of Theorem 2.1 is a subadditive behavior of operator mono-
tone decreasing functions. Recall that a concave function (not necessarily operator
concave) f : (0,∞) → [0,∞) enjoys the subadditive inequality

f (a+b) � f (a)+ f (b), a,b > 0. (1.5)

Operator concave functions do not enjoy the same subadditive behavior. However,
in [3] it was shown that an operator concave function f : (0,∞) → (0,∞) satisfies the
norm version of (1.5) as follows

||| f (A+B)|||� ||| f (A)+ f (B)|||, (1.6)

for positive matrices A,B and any unitraily invariant norm ||| ||| . Later, the authors
in [6] showed that (1.6) is still valid for concave functions f : (0,∞) → (0,∞) (not
necessarily operator concave).

We emphasize that (1.6) does not hold without the norm. We refer the interested
reader to [15], where additional assumption implies (1.6) without the norm and to [9]
for a reversed version of (1.6). In [4], it is shown that an operator monotone decreasing
function f : (0,∞) → (0,∞) satisfies the subadditive inequality

f (A+B) � f (A)∇ f (B), (1.7)

for the positive matrices A,B.
In Corollary 2.1, we present multiple refinements of (1.7).
The celebrated Ando inequality asserts that if Φ is a positive unital linear map on

B(H ) and A,B ∈ B (H ) are positive operators, then

Φ(A�αB) � Φ(A)�α Φ(B) , 0 � α � 1. (1.8)

Recall that, a linear map Φ : B(H )→B(H ) is positive if Φ(A) is positive whenever
A is positive. In Section 3, we improve and extend this result to Uhlmann’s interpolation
σαβ (0 � α,β � 1).

A reverse of (1.8) has been shown in [13, Theorem 4] as follows

Φ(A)�Φ(B) �
(

(M/m )
1
4 +(m/M )

1
4

2

)
Φ(A�B) , (1.9)
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whenever A,B ∈ B (H ) are two positive operators such that mA � B � MA for some
scalars 0 < m < M , and Φ is a unital positive linear map. In compliance with the theme
of this article, we present a refinement of (1.9) as follows

Φ(A) �Φ(B)

� 1
2

∫ 1

0

[
(Mm)−

t
4 ((Φ(A)�Φ(B))�tΦ(B))+ (Mm)

t
4 ((Φ(A)�Φ(B))�tΦ(A))

]
dt

�
(

(M/m )
1
4 +(m/M )

1
4

2

)
Φ(A�B) .

2. On the operator log-convexity

We begin our main results with a refinement of (1.4), as follows.

THEOREM 2.1. Let A,B ∈ B (H ) be positive operators and 0 � α � 1 . If f :
(0,∞) → (0,∞) is an operator monotone decreasing function, then

f (A∇αB) � f
(
(A∇αB)∇β A

)
�α f

(
(A∇αB)∇β B

)
� f (A)�α f (B) , (2.1)

for any 0 � β � 1 .

Proof. Assume f is operator monotone decreasing (equivalently, operator-log
convex by Lemma 1.1). The following useful identity is easily verified:

A∇αB =
(
(A∇αB)∇β A

)
∇α
(
(A∇αB)∇β B

)
, (2.2)

which follows from (1.2) with A = A∇0B and B = A∇1B . Then we have

f (A∇αB) = f
((

(A∇αB)∇β A
)

∇α
(
(A∇αB)∇β B

))
� f

(
(A∇αB)∇β A

)
�α f

(
(A∇αB)∇β B

)
(2.3)

�
(
f (A∇αB)�β f (A)

)
�α
(
f (A∇αB)�β f (B)

)
(2.4)

�
(
( f (A) �α f (B))�β f (A)

)
�α
(
( f (A)�α f (B))�β f (B)

)
(2.5)

=
(
( f (A) �α f (B))�β ( f (A)�0 f (B))

)
�α
(
( f (A)�α f (B))�β ( f (A)�1 f (B))

)
(2.6)

= f (A)�(1−β )α+β α f (B) (2.7)

= f (A)�α f (B) ,

where the inequalities (2.3), (2.4) and (2.5) follow directly from the log-convexity as-
sumption on f together with (1.1), the equalities (2.6) and (2.7) are obtained from the
property (c1) and (1.2), respectively. This completes the proof. �

As promised in the introduction, we present the following refinement of Aujla
inequality (1.7), as a main application of Theorem 2.1.
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COROLLARY 2.1. Let A,B∈B (H ) be positive operators. If f : (0,∞)→ (0,∞)
is an operator monotone decreasing function, then

f (A+B) � f (3A∇B)� f (A∇3B)
� f (2A)� f (2B)
� f (2A)∇ f (2B)
� f (A)∇ f (B).

Proof. In Theorem 2.1, let α = β = 1
2 and replace (A,B) by (2A,2B). This im-

plies the first and second inequalities immediately. The third inequality follows from
the second inequality in (1.3), while the last inequality follows from the properties of
operator means and the fact that f is operator monotone decreasing. �

REMARK 2.1. Let A,B ∈ B (H ) be positive operators and 0 � α � 1. If f is a
function satisfying

f (A∇αB) � f
(
(A∇αB)∇β A

)
�α f

(
(A∇αB)∇β B

)
, (2.8)

for 0 � β � 1, then f is operator monotone decreasing. This follows by taking β = 1
in (2.8) and equivalence of (a) and (b) in Lemma 1.1 above.

COROLLARY 2.2. Let A,B∈B (H ) be positive operators. If g : (0,∞)→ (0,∞)
is operator monotone increasing, then

g(A∇αB) � g
(
(A∇αB)∇β A

)
�αg
(
(A∇αB)∇β B

)
� g(A)�αg(B) ,

for any 0 � α,β � 1 .

Proof. It was shown in [2] that operator monotonicity of g is equivalent to oper-
ator log-concavity (g(A∇αB) � g(A)�αg(B) ). The proof goes in a similar way to the
proof of Theorem 2.1. �

REMARK 2.2. In [2, Remark 2.6], we have for non-negative operator monotone
decreasing function f , and any operator mean σ and A,B > 0,

f (A∇αB) � f (A)!α f (B) � f (A)σ f (B), 0 � α � 1. (2.9)

Better estimates than (2.9) may be obtained as follows, where 0 � α,β � 1,

f (A∇αB) = f
((

(A∇αB)∇β A
)

∇α
(
(A∇αB)∇β B

))
� f

(
(A∇αB)∇β A

)
!α f

(
(A∇αB)∇β B

)
�
(
f (A∇αB) !β f (A)

)
!α
(
f (A∇αB) !β f (B)

)
�
(
( f (A) !α f (B)) !β f (A)

)
!α
(
( f (A) !α f (B)) !β f (B)

)
=
(
( f (A) !α f (B)) !β ( f (A)!0 f (B))

)
!α
(
( f (A) !α f (B)) !β ( f (A)!1 f (B))

)
= f (A) !(1−β )α+β α f (B)

= f (A) !α f (B)
� f (A)σ f (B) .
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In the following we improve the well-known weighted operator arithmetic-geometric-
harmonic mean inequalities (1.3).

THEOREM 2.2. Let A,B ∈ B (H ) be positive operators. Then

A!αB �
(
(A�αB) �β A

)
!α
(
(A�αB)�β B

)
� A�αB

�
(
(A�αB) �β A

)
∇α
(
(A�αB)�β B

)
� A∇αB,

for 0 � α,β � 1 .

Proof. It follows from the proof of Theorem 2.1 that

A�αB =
(
(A�αB)�β A

)
�α
(
(A�αB)�β B

)
, 0 � α,β � 1. (2.10)

Thus, we have

A�αB =
(
(A�αB)�β A

)
�α
(
(A�αB)�β B

)
�
(
(A�αB)�β A

)
∇α
(
(A�αB)�β B

)
(2.11)

�
(
(A∇αB)∇β A

)
∇α
(
(A∇αB)∇β B

)
(2.12)

=
(
(A∇αB)∇β (A∇0B)

)
∇α
(
(A∇αB)∇β (A∇1B)

)
= A∇αB, (2.13)

where in the inequalities (2.11) and (2.12) we used the weighted operator arithmetic-
geometric mean inequality and the equality (2.13) follows from (1.2). This proves the
third and fourth inequalities.

As for the first and second inequalities, replace A and B by A−1 and B−1 , respec-
tively in

A�αB �
(
(A�αB)�β A

)
∇α
(
(A�αB)�β B

)
� A∇αB,

which we have just shown. Then take the inverse to obtain the required results (thanks
to the identity A−1�αB−1 = (A�αB)−1 ). This completes the proof. �

REMARK 2.3. We notice that similar inequalities maybe obtained for any sym-
metric mean σ , as follows. First, observe that if σ ,τ are two symmetric means such
that σ � τ , then the set T = {t : 0 � t � 1 and σt � τt} is convex. Indeed, assume
t1,t2 ∈ T . Then for the positive operators A,B , we have

Aσ t1+t2
2

B = (Aσt1B)σ(Aσt2B)

� (Aτt1B)τ(Aτt2B)
= Aτ t1+t2

2
B,

where we have used the assumptions σ � τ and t1,t2 ∈ T. This proves that T is convex,
and hence T = [0,1] since 0,1 ∈ T , trivially. Thus, we have shown that if σ � τ then
σα � τα , for all 0 � α � 1. Now noting that

AσαB =
(
(AσαB)σβ A

)
σα
(
(AσαB)σβ B

)
,
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and proceeding as in Theorem 2.1, we obtain

f (A∇αB) � f
(
(A∇αB)∇β A

)
σα f

(
(A∇αB)∇β B

)
� f (A)σα f (B) , (2.14)

for any 0 � β � 1 and the operator log-convex function f . This provides a more
precise estimate than (c) in Lemma 1.1 above.

On the other hand, proceeding as in Theorem 2.2, we obtain

AσαB �
(
(AσαB)σβ A

)
∇α
(
(AσαB)σβ B

)
� A∇αB, (2.15)

observing that σα � ∇α . This provides a refinement of the latter basic inequality.

In the next result, we aim to provide a more precise estimate than (1.9).

COROLLARY 2.3. Let A,B ∈ B (H ) be positive operators such that mA � B �
MA for some scalars 0 < m < M, and let Φ be a positive linear map. Then

Φ(A) �Φ(B)

� 1
2

∫ 1

0

[
(Mm)−

t
4 ((Φ(A)�Φ(B))�tΦ(B))+ (Mm)

t
4 ((Φ(A)�Φ(B))�tΦ(A))

]
dt

�
(

(M/m )
1
4 +(m/M )

1
4

2

)
Φ(A�B) .

Proof. It follows from the assumption
√

m �
(
A− 1

2 BA− 1
2

) 1
2 �

√
M , so

0 �
((

A− 1
2 BA− 1

2

) 1
2 −√

m

)(√
M−

(
A− 1

2 BA− 1
2

) 1
2
)

.

This implies that (√
M +

√
m
)(

A− 1
2 BA− 1

2

) 1
2 �

√
Mm+A− 1

2 BA− 1
2 .

Multiply both sides by A
1
2 so that(√

M +
√

m
)

A�B �
√

MmA+B.

Thus, (√
M +

√
m
)

Φ(A�B)

�
√

MmΦ(A)+ Φ(B)

�
(√

MmΦ(A)�Φ(B)
)

�tΦ(B)+
(√

MmΦ(A)�Φ(B)
)

�t
√

MmΦ(A)

= (Mm)
1−t
4 ((Φ(A)�Φ(B))�tΦ(B))+ (Mm)

1+t
4 ((Φ(A)�Φ(B))�tΦ(A))

� 2(Mm)
1
4 ((Φ(A)�Φ(B)))
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thanks to Theorem 2.2. Consequently,(√
M +

√
m

2(Mm)
1
4

)
Φ(A�B)

� 1
2

[
(Mm)−

t
4 ((Φ(A)�Φ(B))�tΦ(B))+ (Mm)

t
4 ((Φ(A) �Φ(B))�tΦ(A))

]
� Φ(A)�Φ(B) .

Integrating over t from 0 to 1, yields(√
M +

√
m

2(Mm)
1
4

)
Φ(A�B)

� 1
2

∫ 1

0

[
(Mm)−

t
4 ((Φ(A)�Φ(B))�tΦ(B))+ (Mm)

t
4 ((Φ(A)�Φ(B))�tΦ(A))

]
dt

� Φ(A)�Φ(B) .

The proof is then completed by noting that
√

M+
√

m

2(Mm)
1
4

= (M/m )
1
4 +(m/M )

1
4

2 . �

Taking into account (2.2), it follows that

A+B = αA+(1−α)(A∇B)+ αB+(1−α)(A∇B) .

As a consequence of this inequality, we have the following refinement of the well-
known triangle inequality

‖A+B‖� ‖A‖+‖B‖ .

COROLLARY 2.4. Let A,B ∈ B (H ) . Then, for α ∈ R ,

‖A+B‖� ‖αA+(1−α)(A∇B)‖+‖αB+(1−α)(A∇B)‖ � ‖A‖+‖B‖ .

REMARK 2.4. Using Corollary 2.4, we obtain the reverse triangle inequalities

‖A‖−‖B‖ � 1
2

(‖A�−α(2B)‖+‖A�α(2B)‖−2‖B‖) � ‖A−B‖ ,

and

‖B‖−‖A‖ � 1
2

(‖B�−α(2A)‖+‖B�α(2A)‖−2‖A‖) � ‖A−B‖ ,

where A�αB := (1−α)A+ αB for positive operators A,B ∈ B (H ) and α ∈ R.

3. A glimpse at the Ando inequality

In this section, we present some versions and improvements of the Ando inequality
(1.8).
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THEOREM 3.1. Let A,B ∈ B (H ) be positive operators and Φ be a unital posi-
tive linear map. Then for any 0 � α,β � 1 ,

Φ(A�αB) � Φ
(
(A�αB) �β A

)
�α Φ

(
(A�αB)�β B

)
� Φ(A)�α Φ(B) . (3.1)

In particular,

m

∑
j=1

Aj�αBj �
(

m

∑
j=1

(Aj�αBj)�β Aj

)
�α

(
m

∑
j=1

(Aj�αBj) �β Bj

)

�
(

m

∑
j=1

Aj

)
�α

(
m

∑
j=1

Bj

)
.

(3.2)

Proof. We omit the proof of (3.1) because it is proved in a way similar to that of
(2.1) in Theorem 2.1. Now, if in (3.1) we take Φ : Mnk (C) → Mk (C) defined by

Φ

⎛
⎜⎝
⎛
⎜⎝

X1,1
. . .

Xn,n

⎞
⎟⎠
⎞
⎟⎠= X1,1 + . . .+Xn,n,

and apply Φ to A = diag(A1, . . . ,An) and B = diag(B1, . . . ,Bn) , we get (3.2). �

In the following, we present a more general form of (3.1).

THEOREM 3.2. Let A,B ∈ B (H ) be positive operators and Φ be a unital pos-
itive linear map. Then we have the following inequalities for Uhlmann’s interpolation
σαβ and 0 � α,β � 1 ,

Φ
(
Aσαβ B

)
� Φ

(
(AσαB)σβ (Aσ0B)

)
σα Φ

(
(AσαB)σβ (Aσ1B)

)
� Φ(A)σα Φ(B) .

Proof. From (1.2), we obviously have(
(AσαB)σβ (Aσ0B)

)
σα
(
(AσαB)σβ (Aσ1B)

)
=
(
Aσα(1−β )B

)
σα
(
Aσα(1−β )+β B

)
= AσαB.

Now, the desired result follows directly from the above identities. �

REMARK 3.1. From simple calculations, we have the following inequalities for
positive operators A,B ∈ B (H ) , a unital positive linear map Φ , and 0 � α,β ,γ,δ �
1,

Φ
(
Aσα(1−β )+β ((1−α)γ+αδ )B

)
� Φ

(
(AσαB)σβ

((
AσγB

)))
σα Φ

(
(AσαB)σβ ((Aσδ B))

)
� Φ(A)σα(1−β )+β ((1−α)γ+αδ )Φ(B) .

(3.3)
Apparently, (3.3) reduces to (3.1) when γ = 0, δ = 1, σα = �α and σβ = �β .
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