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SOME SIMPSON TYPE FRACTIONAL INTEGRAL
INEQUALITIES FOR FUNCTIONS OF BOUNDED VARIATION
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(Communicated by J. Pecaric)

Abstract. In this paper, we focus on the Simpson type fractional integral inequalities. The ap-
proximate schemes of these integral inequalities are derived as well.

1. Introduction

It is a well known truth that the integral inequality plays an important role in the
theory of differential and integral equations. Indeed, this importance seems to have
increased during the last several decades. Moreover, the study of fractional order in-
tegral inequality is also of great importance in the theory of existence and uniqueness
for fractional differential equations [2, 12, 13, 14, 15, 16, 17, 18,27, 29]. The Simpson
type integral inequality is one of the fundamental results in numerical integration in-
equalities, it has attracted considerable attention as it is very important and remarkable
in numerical analysis and the study of convex and non-convex differentiable mappings
[3,4,5,6,7,21,22]. This type of inequality has been extended and generalized to the
case of fractional order by many researchers [8, 23].

The classical Simpson’s integral inequality is considered as follows

/ubf(t)df—bga [f(a);f( ) 2f<a+b>H<

o R

where f*) exists and is bounded on (a, b), with

91 = o [0 <

t€(a,b)

In [25], the authors established an approximate scheme of the integral || f f(r)dt related
to the Simpson’s inequality,

i=0
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where I, :a =1y <t <...<t, =D is a partition of the interval [a, b]. The error
estimate is given by

b
RS(f7 In):/u f(t)dt_AS(ﬁ In)»

and satisfies the inequality

Ry (- )] < g5 7]

n—1
20
=0

where [; =t;y1 —t;, i=0,1,...,n— 1. Plenty of novel Simpson type inequalities for
convex and non-convex functions have been refined and extended by many mathemati-
cians [24, 25, 26, 28]. In [6], Dragomir gave another inequality which can be achieved
without conditions on f4),

b

e

where \/2(f) denotes the total variation of f on [a, b)].

This paper aims to build the Simpson integral inequalities with Riemann-Liouville
and Hadamard fractional integrals, and the results are extended to Caputo and Caputo-
Hadamard cases as well. Further, the approximate schemes of these integral inequalities
are also derived.

2. Preliminaries

In this section, we begin with some fundamental definitions of fractional integrals
and derivatives.

DEFINITION 1. ([16]) The Riemann-Liouville integral of order o > 0 is defined
by

rRLD, 7 f(1) = ﬁ/ﬂt (t—u)* ' f(u)du, t > a,

where T'(¢) is the Gamma function.

DEFINITION 2. ([16]) The Riemann-Liouville derivative of order ¢ is defined by
o dy” —(n—a)
reDg f(0) = | 5 <RLDa,t I ))

= ﬁ (%)n/at (t—u)"" " fw)du, t > a,

where n—l<a<neZr.
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DEFINITION 3. ([16]) The Caputo derivative of order « is defined by
eD S (1) = reDy " (1)

1 ! n—o— n
=, 0w 1>
where n—1<oa<neZ’.

DEFINITION 4. ([11, 12]) The Hadamard integral of order o > 0 is defined by

1 t o—1 d
HD. ¢ (l)zm/a (10g£> f(u);u, t>a>0.

DEFINITION 5. ([11, 12]) The Hadamard derivative of order o is defined as

d\” ~(n-a
wsus0) = (1) (w02~ 10)

1 d\" st P du
_WGE) /a <1°g;> f)— t>a>0,

where n—1<a<neZ’.

DEFINITION 6. ([10]) The Caputo-Hadamard derivative of order ¢ is defined as

ens, 0 =0~ ( (1) 1))

1 ! el o d " du
= - 1 - I —
F(n—a)/u <0gu> (udu> f(u)u’ t>a>0,

where n—1l<a<neZr.

3. Main results

In this section, we state and prove the Simpson type fractional integral inequalities.
Throughout this paper, we always denote gD,/ (t)|,_, by rtD, /(D).

THEOREM 1. Let g: [a, b] — R be a positive and continuous function and f be
a mapping of bounded variation on |a, b]. For each x € |a, D], set

W) = [ o= gloyar 3)

If x € [@, %(b)] and g > 0, then

B rLD, 18(b) {f(a) + f(b)

rLD, 1 (f8)(b) 3 2

. zf<h‘<x>>] ‘

€]
x  rD.ig(b)

I'(q) 2

< (RLDafg(b) n

b
) V.
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where \/%(f) denotes the total variation of f on the interval [a, b].

Proof. For x € {M, %(b)} , set

= (=" ) s [ o et

3
Then one has

1 b ,
m/ w(o)f(1)dt

_ 7LD, 78(D) [f(a) +f(b)

(&)
: L0 2001 )] - i)

From [1], for a continuous function u : [a, b)) — R and a bounded variation function
v : [a, b] — R, the following inequality holds

b
1| < sup ()] \/(v). (6)
teab] a
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Using (5) and (6), we find

—-q
RLD;?(fg)(b) . RLDaétg(b) f(a> ;f(b) +2f(h1(x))] ‘
, )
1
< ), IW(l)\\u/(f)

Because of the fact that wy, j,-1(,(1) = h(t) — @ is increasing on [a,n~!(x)) and

(b)l},

Wit (x5 (1) = (1) = %(b) is also increasing on [h !(x), b], we have

w(h™! (x))],

lim  w(r)
1—(h 1 (x))~

)

t€la,b)

sup [w(7)| = max { w(a)l,

that is hb) W) Shib
sup |w(z)| = max{—,x— —, — —x} .
t€la,b) 6 6 6

Now we use the fact that max {A, B} = 1(A+ B+ |A — B|), which leads to

h(b) h(b) ‘
sup w(t)| = ——+[x——|.
IGM\ == 5
It is evident that
1 rLD, 18(D) x  rD.7g(b)
—— sup |w + — : . (8)
M M= g~ 2

By (7) and (8), we get

rLDL 7 (f8)(b) —

rLD, 7 g(b) {f(a) +f(b)
3 2

+2f<h1<x>>] ‘
) b
) Vo)

COROLLARY 1. Let f: [a,b] — R be a mapping bounded variation. Then the
following inequality holds for 0 < g < 1.

wpitso) e o | N w2 ()|

)
<O (- VO

x  rDglg(b
I'(q) 2

< (RLD;fg(b)

Thus, the proof is completed. [
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Proof. If we choose g(¢) =1 in Theorem 1, we have h(t) = é[(b—a)q —(b—1)1],

and for x = (2‘]’1) (b—a)?,wehave t =h 1(x) =h! (2q’1(b—a)’1) = 244 Then

q24 q24
inequality (4) becomes

xD1f(b) (b—a)t [f(a)+f(b)+2f<b+a>H

C3T(g+1) 2 )
(st |C) - skaml o
[ et oy
e (i) v

On the other hand, for 0 < g < 1, we have % < 2%,, which implies

b= srey [ (5

(b—a) (1 1\,
<t (8 V.

The proof is thus completed. [

THEOREM 2. Let F € C([a, b]) be positive function and be a mapping of bounded
variation. Let

t
h(t):(n+1)/(b—u)_pF'(u)ds, teab), neN, 0<p< 1.

Then

cDb, "\ (b) DB F(b) [F(a)+F"(b)
n+1 3

g<c1>zit3F<b> +| x _cDZJF(b)D\”/(Fn%

where x € [@, %(b)} .

Proof. Using Theorem 1, let g=1—p, f(t) = (n+1)(F(¢))" and g(t) = F'(1),
which implies

h(t) = (n+ l)/at(b— u) PF' (u)du.
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One has

RLD;Elip)F/(b)

#D ) (n 1)(F"F')(0) :

) [(n—i— 1)F"(a) er (4 DF®) ot l)F”(h_l(x))} ‘

—(1=p) 11 —(1=p) zzr b
RLDu,t F (b) X RLDa,z F (b) n
<(n+1)< 3 + Ty 5 \a/(F ).
Then
1=ppnt1yr 1=p n n
rLDg " (F")'(b) gDy, F'(b) [F"(a) + F"(b) nip—1
=l — 3 2 +2F"(h " (x))
1=p 1=p 1 b
rRLDg " F'(b) x rLDg " F'(b) n
S ( 3 r(l—p) 2 \a/(F )
Thus

CDg,tFnJrl(b) -~ CDg,tF(b) Fn(a) +Fn(b)
n+1 3 2

+2F" (! (x))} ‘

. <CD£:;3F<b> +|mx_ . _chitZF(b)D ().

The proof is finished. [

a

THEOREM 3. Let g: [a, b] — R be positive and continuous function and f be a
mapping of bounded variation. Set

1 -1 u
h(t):/u <1og§)q g(u)%, 1€ la,bl. ©)
Then the inequality
-q
D7) p) — P [T o i) '
(10)
uDg(b) | x  uDufg(b) )Q( f
= 3 I'(q) 2 v

holds for x € [@, %(b)} and g > 0.

Proof. The proof is similar to Theorem 1, so the details are omitted here. [J
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COROLLARY 2. Let f: [a,b] — R be a mapping bounded variation, then the
following inequality holds for 0 < g < 1.

yDt () — oga)” [f(a);rf(b)+2f<b;ra)]‘

al(g+1)
L [ (og2)” 1y, (a+b)?\]Y
ST+ | 3 +§'<log 4ab ) \a/(f)'

Proof. 1f we choose g(r) = 1 in Theorem 3, we get h(t) = ; [(log Y7 (log ?)q] ,
and for x = Ll] ((logs) (log 2%) ) we have

- o (o) (2] 5

By inequality (10), one has

WDLF(D) — 3(;?5 i)f) [f(a) O o <b+a)] ‘

(S e () Crs) )55
b )‘1 b
b

b
) a
(log2)? 11 b\! 2
a ~(10g2) - (1
3F(q+1)+r(q+l)‘2<0ga) <°ga+ \a/(f)
On the other hand, for 0 < g <1 and B > A > 0, we have B? — A9 < (B—A)4,
which implies
(log5)" [f@)+f(b) . (b+a
T(q+1) 2 2
(log2)* N 1 1 log a+b\?
3M(g+1)  T(g+1) |2 2a a+b

(log 2)” ‘(
AM(g+1) 2l(g+1)

So the proof is finished. [

D, 1 f(b) — 3

b
\/(f)

a+b

il
)}

COROLLARY 3. Let F € C([a, b]) be positive function and be a mapping of bounded
variation. Let

¢ P
h(t):(n+1)/ <log§> F'(u)du, t€la,b], neN, 0<p<1.
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Then
P rn+l 4 "(a n
CHD,:;_}:I () CHDaétF(b) {F ( )‘ZFF (b) +2F"(h_1(x))H
CHDgJF(b) X CHDg,tF(b) b n
<< 3 +'F(l—p)_ 2 D\Q/(F ’

Proof. If we apply Theorem 3 for g =1—p, f(t) = (n+1)(F(¢))" and g(¢) =
tF'(t), which implies

h(t) = (n+ 1)/; <1og§)_ppf(u)du.

Thus, we find the desired inequality. [

Next, we give the approximate schemes of the proposed integral inequalities. For
convenience, we make the following hypothesis.
Hypothesis [H]: Assume that G : [a, b] — R be a positive and continuous func-
tion, f : [a,b] — R be a mapping of bounded variation. Let I, : a = xo < x| <
.. < X, = b be a partition of [a,b], & € [ hiCxi+1) % , and m; = hi(x;p) =

[ (b —1)471G(t)dt, where i =0, 1, ...,n— 1.

Xi

THEOREM 4. Let f, G, h; and m; be defined as Hypothesis [H].
Let M= max {m;}. When 0 < g < 1, the following inequality holds

o<i<n—1
- S () + F i) 2\
r D, Y(fG)(b) - Y = [ ——"2 42 i <= .
@uzte) e - 3 5 (L oo@)) <3 V)
Proof. Set
_ (! .
gi(t) = (xi+1—f)q71G(t)7 i=0,1,...,n

and

hilt) = /):(x,H—u) gi(w)du, i=0,1,...,n

By Theorem 1, for A; and [x;, x;41], we find

RLDy Y (f8) (xig1) —

—q (X X; Xi -
RLth,il( +1) [f( )+2f( +1) +2f(h; l(éi))H

& RLDy % gi
I'(q) 2

< (RLD;?,;%(X:'H) n

) V).

Xi
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Thus

— b NI f(1)G(r)de—
‘F(q

o / O IG(>dI(M+2ﬂ ‘@)
1

W

['(g) 2

) V).

Xi

N

1
b 047Gt dt+‘ S —q)/ (b—1)1"'G(r)dr

3F(q

Now we use the fact that |A + B| < |A| + |B|, which yields that

n—1 1

20@/ (b—0)"" F(1)G(1)de

n—1 1 Xit1 » f(Xj)+f(xi 1)
_ %W/Xi (b—1)? 1G(t)dt<f++2f( (éz)))‘

nl 1 S D L_L DR
S Zé (m/}q (b—1)T"G(r)dr + ‘F(q) ) /x,- (b—1)1"'G(1)dt
Then we get

1 P . omi )+ f(xin) g
i | =0 swoma =3 s (L) o, <&,>>)'

<% (51

Therefore

) V.

Xi

m —
,__ ~—

‘ é,‘ _ mi
I'(q) 2I'(q)

)\/ ()

b, 170)0)~ %, s (L0 et) 1)) ‘

i—0 3F(‘1) 2
1 m; m; n—1%i+1
Sprg e (5T 2V
< b "L max 5.__’)\17/00)
T T(g) \ 3 =0t 21 ) VR

Dueto M = ,Jnax {m }and § € {ﬂ, Sﬂ} it is easy to obtain that

<isn—1

M t(o0) -3 5 (10 10) o (@)))‘
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This ends the proof.

THEOREM 5. Let T(x) = [*(b—u)?"'G(u)du, x € [a, b]. Suppose that

T D, G(b
=T <M> i=0.1,...n.

n

1
If hi(x) = [;.(b—u)"1G(u)du and & = %, i=0,1,...,n—1. Then

+S(In7vavéaq)7

where

(5—2i)pD,4(G)(b)
IS, £, G, &, q)| < s \a/(f)-

Proof. In fact

=3
SZS (5t |7t~ =t ) Vi

On the other hand, we have

':%(351(;) et s DXV(” S G*

=l X; X; _
(@R D (G)(B)— 3 ™ (M Lar (i 1(&»))'

It is evident that

mi = hi(xit1) = T (xir1) — T (x:)
_ (i+1)I(9)reD,7G(b)  iT(q)rLD, 1G(b)

n n

1 _
= ZF(Q)RLDaft{G(b)'
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So the following estimation holds

R e e Gl )|

(5-2ut )RLDu t -\

S 6nl"(gq z \/

i=0 x;

(5 25“)RLD;?(G) (5
B 6nI(q) V.

This completes the proof. [

Similarly, we have the following assertions.

THEOREM 6. Suppose that g : [a,b] — R is positive and continuous function
and f is a monotonic mapping of bounded variation. Let

h() :/a’ <log§>q_lg(u)%, 1€, b).

Then

2

om0 t(6)0)— 3 % (L0 1) (5»))'
< IMIF(b) ~ (@),

THEOREM 7. Let f and G be defined as Hypothesis [H]. If 0< g <1, M7 =

o nax. 1{mH} where m = hi(x;+1) and hi(x) = f;logSG( )44, The following in-
n

equality holds

2

—\mt Xi X
T(q)uD. ! (fG)(b) = ¥, = (Muﬂhf 1(&)))‘

THEOREM 8. Let T(x) = [ (logs)q_l

T(q)uD,G(b
x=T" (—l (@)D U), i=0,1,....n

G(u)%, x € [a, b]. Suppose that

n
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1
1) = I (1082) Gl and &= 1) 1= 0.1, 1. Then

4D, (fG)(b) :HD;q(G)(b) "il i)+ f(xip1) or (! 2%hi(xi+l)
@ 3n = 2 ! 3
+SH(In7f7 G»é»‘l)»
where

(52D, 9(G)(b) \”

ISt (In, f, G, &, q)| < o) \u/(f).

4. Conclusion

In the present paper, some classical Simpson integral inequalities are extended to

fractional order cases. The results involving a mapping of bounded variation function
have been also generated. The approximate schemes of the proposed integral inequali-
ties are studied as well.
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