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FUZZY MEANS AND HGA–TYPE INEQUALITIES

JOANNA NIKODEM AND KAZIMIERZ NIKODEM

(Communicated by J. Pečarić)

Abstract. The notion of fuzzy means of fuzzy numbers is introduced. Fuzzy counterparts of the
arithmetic, geometric and harmonic means are investigated and inequalities between them are
presented.

1. Introduction

Let I ⊂ R be an interval and n � 2 be an integer. A function M : In → I is said
to be a mean if

min{x1, . . . ,xn} � M(x1, . . . ,xn) � max{x1, . . . ,xn}, (1)

for all x1, . . . ,xn ∈ I .
The classical means, such as arithmetic, geometric or harmonic, were known and

investigated already in the ancient time. At present the theory of means is a well de-
veloped mathematical theory having various applications in mathematics itself as well
as in economics, information theory, engineering and natural science. There are books
and numerous papers devoted to it (see e.g. [2, 3, 5, 11, 13, 17] and the references given
there).

The theory of fuzzy sets, since its introduction over fifty years ago by Zadeh [18],
has found wide applications in engineering, economics,information sciences, medicine,
etc. (see e.g. [4, 7, 10, 19, 20] and the reference therein). It provides a framework for
mathematical modeling of all situations which involve an element of uncertainty or
imprecision in their description.

The aim of this paper is to generalize the classical definition of mean (1) to the
case of fuzzy numbers. We introduce the general notion of fuzzy means and, as ex-
amples, define the arithmetic, geometric and harmonic fuzzy means. We prove that
the classical inequalities H � G � A between the harmonic, geometric and arithmetic
means can be extended on fuzzy means. The notion of quasi-arithmetic fuzzy means is
also introduced and investigated.
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2. Preliminaries

Let us recall some basic notions and definitions needed in this paper. As usually a
fuzzy set A in a space Z is characterized by its membership function μA : Z → [0,1] ,
where the value μA(z) is the grade of membership of z in A . If A is ordinary (crisp)
subset of Z its membership function coincides with the characteristic function

μA(z) = χA(z) =
{

1, if z ∈ A
0, if z �∈ A.

Given a fuzzy set A and a number α ∈ (0,1] we define the α -cat of A by Aα = {z ∈
Z : μA(z) � α} . The set supp A = {z ∈ Z : μA(z) > 0} is called the support of A .

By a fuzzy number X we mean a fuzzy set of the real line R whose membership
function μX : R → [0,1] satisfies the conditions:

(i) μX is normalized (i.e. μX (y) = 1 for some y ∈ R);
(ii) μX is quasi-concave, i.e.

μX
(
ty1 +(1− t)y2

)
� min{μX(y1),μX (y2)}, for all t ∈ [0,1] and y1,y2 ∈ R;

(iii) μX is upper semi-continuous.
We assume, moreover, that the support of X is bounded.
Denote by F (R) the family of all fuzzy numbers. We say that X ∈ F (R) is

positive if μX(y) = 0 for all y < 0. Using the Zadeh extension principle [19] we define
the basic arithmetic and functional operations on fuzzy numbers. In particular, for
X1, . . . ,Xn ∈ F (R) the sum X1 + · · ·+Xn and the product X1 · · ·Xn are determined by
their membership functions

μX1+···+Xn(y) = sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y = y1 + · · ·+ yn
}

μX1···Xn(y) = sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y = y1 · · ·yn
}
.

If X ∈ F (R) and λ ∈ R, λ �= 0, then λX is defined by

μλX(y) = μX

( 1
λ

y
)
.

It is known that the sum and product of fuzzy numbers, as well as the product of a fuzzy
number by a scalar are fuzzy numbers (see e.g. [7, 8]).

Given an ordinary (crisp) function f : R → R and a fuzzy number X we define
the fuzzy image f (X) by

μ f (X)(y) =
{

sup
{

μX(t) | t ∈ f−1(y)
}
, if f−1(y) �= /0

0, othervise.
(2)

If f is strictly monotonic on an interval I ⊂ R , then for every y ∈ f (I) there exists
exactly one t ∈ I such that y = f (t) , and then condition (2) reduces to

μ f (X)(y) = μX ( f−1(y)), y ∈ f (I). (3)
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In particular, applying (3) for f (t) = 1/t, t > 0 and f (t) = n
√

t, t � 0, we define, for
a positive fuzzy number X , the inverse and the n -th root (n � 2) of X putting

μ 1
X
(y) = μX

(1
y

)
, y > 0

μ n√X (y) = μX (yn), y � 0,

respectively. From the next proposition it follows that 1
X and n

√
X are fuzzy numbers

(cf. also [1, 7, 15]).

PROPOSITION 1. Let X be a fuzzy number with supp X ⊂ I and f : I → R be a
continuous strictly monotonic function. Then f (X) is also a fuzzy number.

Proof. Since μX is normalized, we have μX(y0) = 1 for some y0 ∈ supp X .
Then μ f (X)( f (y0)) = μX (y0) = 1 and so μ f (X) is normalized.

Assume now that y1,y2 ∈ f (I) , t ∈ [0,1] and y = ty1+(1−t)y2. Since f is strictly
monotonic, also f−1 is strictly monotonic and hence f−1(y) is between f−1(y1) and
f−1(y2). From here, by the quasi-concavity of μX , we get

μ f (X)(ty1 +(1− t)y2) = μ f (X)(y) = μX( f−1(y))

� min{μX( f−1(y1)),μX ( f−1(y2))} = min{μ f (X)(y1),μ f (X)(y2)},

which shows that μ f (X) is quasi-concave.

Since f is continuous and strictly monotonic, also f−1 is continuous. Hence,
using the fact that μX is upper semi-continuous, we infer that μ f (X) = μX ◦ f−1 is also
upper semi-continuous. Thus f (X) is a fuzzy number. �

Since the membership function of any fuzzy number X is quasi-concave and upper
semi-continuous, all the α -cats of X are closed intervals. Denote[

xα ,xα
]
= Xα = {y ∈ R : μX(y) � α}, α ∈ (0,1].

The inequality relation between two fuzzy numbers is defined by use of their α -cats.
Let X ,Y ∈ F (R) . We say that X is not greater than Y (and write X � Y ) if

xα � yα and xα � yα

for every α ∈ (0,1] (see e.g. [14]).

3. Fuzzy means

In this section we introduce the general definition of a fuzzy mean and consider
arithmetic, geometric and harmonic fuzzy means. Given a set A ⊂ R we denote by
convA the convex hull of A. Assume that n � 2.
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DEFINITION 1. We say that a function M̃ : F (R)n → F (R) is a fuzzy mean if

μM̃(X1,...,Xn)
(y) (4)

� sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y ∈ conv{y1, . . . ,yn}
}

for all X1, . . . ,Xn ∈ F (R) and y ∈ R .

PROPOSITION 2. If M̃ is a fuzzy mean, then

supp M̃(X1, . . . ,Xn) ⊂ conv(supp X1∪ . . .∪ supp Xn) (5)

for all X1, . . . ,Xn ∈ F (R) . If X1, . . . ,Xn ∈ R (are ordinary numbers), then

supp M̃(X1, . . . ,Xn) ⊂
[
min{X1, . . . ,Xn},max{X1, . . . ,Xn}

]
. (6)

Proof. Take y ∈ supp M̃(X1, . . . ,Xn) . Then

μM̃(X1,...,Xn)
(y) > 0. (7)

Suppose, contrary to our claim, that y �∈ conv(supp X1 ∪ . . .∪ supp Xn) . Then for
all y1, . . . ,yn ∈ R with y ∈ conv{y1, . . . ,yn} there exists an i ∈ {1, . . . ,n} such that
yi �∈ supp Xi . Hence μXi(yi) = 0 and, consequently,

μM̃(X1,...,Xn)
(y) � sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y ∈ conv{y1, . . . ,yn}

}
= 0,

which contradicts (7) and proves (5).
If X1, . . . ,Xn ∈ R , then supp Xi = {xi} , i = 1, . . . ,n . From here

conv(supp X1∪. . .∪ supp Xn)= conv{X1, . . .Xn}=
[
min{X1, . . . ,Xn},max{X1, . . . ,Xn}

]
,

which proves (6). �

PROPOSITION 3. Every ordinary mean M : R
n → R is a fuzzy mean.

Proof. Assume that M is a mean and fix X1, . . . ,Xn ∈ R. Then

μM(X1,...,Xn)(y) = χM(X1,...,Xn)(y).

Hence, if y �= M(X1, . . . ,Xn) , then μM(X1,...,Xn)(y) = 0 and condition (4) in Definition 1
is satisfied. If y = M(X1, . . . ,Xn) , then by the definition of means

y ∈ [
min{X1, . . . ,Xn},max{X1, . . . ,Xn}

]
= conv{X1, . . . ,Xn}.

Taking yi = Xi, i = 1, . . . ,n, we get

y ∈ conv{y1, . . . ,yn} and μXi(yi) = 1, i = 1, . . . ,n.

Hence

sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y ∈ conv{y1, . . . ,yn}
}

= 1

which shows that condition (4) is also satisfied. �
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REMARK 1. Let S(R) be the family of all nonempty subsets of R . Following
[16] a map M : R

n → S(R) is called a set-valued mean if

M(X1, . . . ,Xn) ⊂ conv{X1, . . . ,Xn},
for all X1, . . . ,Xn ∈R . Note that such set-valued means satisfy also condition (4) in Def-
inition 1. Indeed, assume that X1, . . . ,Xn ∈ R. If y �∈ M(X1, . . . ,Xn) , then μM(X1,...,Xn) =
0 and (4) is satisfied trivially. If y ∈ M(X1, . . . ,Xn) , then taking yi = Xi, i = 1, . . . ,n,
we get

sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y ∈ conv{y1, . . . ,yn}
}

= 1

and (4) is also satisfied.

The classical arithmetic, geometric and harmonic means defined by

A(y1, . . . ,yn) =
y1 + · · ·+ yn

n
, y1, . . . ,yn ∈ R,

G(y1, . . . ,yn) = n
√

y1 · · ·yn , y1, . . . ,yn � 0,

H(y1, . . . ,yn) =
n

1
y1

+ · · ·+ 1
yn

, y1, . . . ,yn > 0,

can be extended in a natural way on fuzzy numbers (see [6, 12, 9] for some related
results).

Given fuzzy numbers X1, . . . ,Xn ∈ F (R) , we define their arithmetic fuzzy mean
by

Ã(X1, . . . ,Xn) =
1
n

(
X1 + · · ·+Xn

)
.

PROPOSITION 4. The membership function of the arithmetic fuzzy mean of X1, . . . ,
Xn ∈ F (R) is of the form

μÃ(X1,...,Xn)
(y) (8)

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y = A(y1, . . . ,yn)
}
.

Proof. By the definitions of the sum of fuzzy numbers and the multiplication of
fuzzy numbers by a scalar we obtain

μÃ(X1,...,Xn)
(y) = μ 1

n (X1+···+Xn)
(y) = μX1+···+Xn(ny)

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y1 + · · ·+ yn = ny
}

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y = A(y1, . . . ,yn)
}
. �

REMARK 2. From (8), using the fact that A(y1, . . . ,yn) ∈ conv{y1, . . . ,yn} , we
obtain

μÃ(X1,...,Xn)
(y)� sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈R, y∈ conv{y1, . . . ,yn}

}
,
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which shows that Ã : F (R)n → F (R) is a fuzzy mean in the sense of Definition 1. If
X1, . . . ,Xn ∈ R (are ordinary numbers), then Ã(X1, . . . ,Xn) coincides with the classical
arithmetic mean A(X1, . . . ,Xn). Indeed, if y = A(X1, . . . ,Xn) , then taking in (8) yi = Xi

we get μÃ(X1,...,Xn)
(y) = 1. On the other hand, if y �= A(X1, . . . ,Xn) , then for each

y1, . . . ,yn ∈R with y = A(y1, . . . ,yn) there exists an i∈ {1, . . . ,n} such that yi �= xi , and
hence μÃ(X1,...,Xn)

(y) = 0. Thus μÃ(X1,...,Xn)
(y) = χA(X1,...,Xn)(y) and so Ã(X1, . . . ,Xn) =

A(X1, . . . ,Xn), X1, . . . ,Xn ∈ R.

Given positive fuzzy numbers X1, . . . ,Xn ∈F (R) , we define their geometric fuzzy
mean by

G̃(X1, . . . ,Xn) = n
√

X1 · · ·Xn.

PROPOSITION 5. The membership function of the geometric fuzzy mean of pos-
itive X1, . . . ,Xn ∈ F (R) is of the form

μG̃(X1,...,Xn)(y) (9)

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn � 0, y = G(y1, . . . ,yn)
}
.

Proof. By the definition of the n -th root of fuzzy numbers we obtain

μG̃(X1,...,Xn)
(y) = μ n√X1···Xn

(y) = μX1···Xn(y
n)

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn � 0, y1 · · ·yn = yn}
= sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn � 0, y = G(y1, . . . ,yn)

}
. �

REMARK 3. From (9), using the fact that G(y1, . . . ,yn) ∈ conv{y1, . . . ,yn} , we
obtain

μG̃(X1,...,Xn)
(y)� sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn � 0, y∈ conv{y1, . . . ,yn}

}
,

which shows that G̃ is a fuzzy mean in the sense of Definition 1. Note also that for
ordinary numbers X1, . . . ,Xn � 0 we have μG̃(X1,...,Xn)

= χG(X1,...,Xn) and so G̃ coincides
with the classical geometric mean in this case.

Now, given positive fuzzy numbers X1, . . . ,Xn ∈ F (R) , we define their harmonic
fuzzy mean by

H̃(X1, . . . ,Xn) =
n

1
X1

+ · · ·+ 1
Xn

.

PROPOSITION 6. The membership function of the harmonic fuzzy mean of posi-
tive X1, . . . ,Xn ∈ F (R) is of the form

μH̃(X1,...,Xn)
(y) (10)

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn > 0, y = H(y1, . . . ,yn)
}
.
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Proof. By the definitions of the inverse, sum and scalar multiplication of fuzzy
numbers we get

μH̃(X1,...,Xn)
(y) = μ n

1
X1

+···+ 1
Xn

(y) = μ 1
1

X1
+···+ 1

Xn

(1
n
y
)

= μ 1
X1

+···+ 1
Xn

(n
y

)

= sup
{

min{μ 1
X1

(s1), . . . ,μ 1
Xn

(sn)} | s1, . . . ,sn > 0, s1 + · · ·+ sn =
n
y

}
= sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn > 0, y = H(y1, . . . ,yn)

}
. �

REMARK 4. From (10), using the fact that H(y1, . . . ,yn) ∈ conv{y1, . . . ,yn} , we
obtain

μH̃(X1,...,Xn)
(y)� sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn > 0, y∈ conv{y1, . . . ,yn}

}
,

which shows that H̃ is a fuzzy mean in the sense of Definition 1. Note also that for
ordinary numbers X1, . . . ,Xn > 0 we have μH̃(X1,...,Xn)

= χH(X1,...,Xn) and so H̃ coincides
with the classical harmonic mean in this case.

4. The H̃ � G̃ � Ã inequalities

In this section we prove that the classical inequalities between the harmonic, geo-
metric and arithmetic means can be extended to the corresponding fuzzy means.

THEOREM 5. For every n � 2 and all X1, . . . ,Xn ∈ F (R),

H̃(X1, . . . ,Xn) � G̃(X1, . . . ,Xn) � Ã(X1, . . . ,Xn).

Proof. Assume, for simplicity, that n = 2 and fix positive X1,X2 ∈ F (R). To
prove that H̃(X1,X2) � G̃(X1,X2) fix any α ∈ (0,1] and consider the α -cuts[

hα ,hα
]
= {y ∈ R : μH̃(X1,X2)

(y) � α},
[
gα ,gα

]
= {y ∈ R : μG̃(X1,X2)

(y) � α}.
We have to prove that

hα � gα and hα � gα . (11)

To show the left inequality in (11) we consider two cases.
Clearly μG̃(X1,X2)

(gα) � α. Assume first that μG̃(X1,X2)
(gα) > α. By the form of

the membership function of G̃(X1,X2) (see (9)) there exist y1,y2 > 0 such that gα =
G(y1,y2) and μX1(y1) > α, μX2(y2) > α. Put z = H(y1,y2) . Then z � gα (because
H(y1,y2) � G(y1,y2)) and, by (10),

μH̃(X1,X2)
(z) = sup

{
min{μX1(z1),μX2(z2)} | z1,z2 > 0, z = H(z1,z2)

}
� min{μX1(y1),μX2(y2)} > α.
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Hence
hα = min{y ∈ R : μH̃(X1,X2)

(y) � α} � z � gα .

Now assume that μG̃(X1,X2)
(gα) = α. By the form of μG̃(X1,X2)

and the definition of

supremum there exist two sequences (y1,n),(y2,n) of positive numbers such that gα =
G(y1,n,y2,n) for all n ∈ N , and

lim
n→∞

min{μX1(y1,n),μX2(y2,n)} = α. (12)

Define zn = H(y1,n,y2,n), n ∈ N . Then zn � gα and

μH̃(X1,X2)
(zn) = sup

{
min{μX1(z1,n),μX2(z2,n)} | z1,n,z2,n > 0,zn = H(z1,n,z2,n)

}
(13)

� min{μX1(y1,n),μX2(y2,n)}.
Since zn ∈ (0,gα ] , n ∈ N , the sequence (zn) is bounded. Therefore it contains a

convergent subsequence. Without loss of generality we may assume that zn → z. Then,
z � gα and by the upper semi-continuity of μG̃(X1,X2)

, (13), and (12), we get

μH̃(X1,X2)
(z) � limsup

n→∞
μH̃(X1,X2)

(zn)

� limsup
n→∞

min{μX1(y1,n),μX2(y2,n)} = α.

Hence
hα = min{y ∈ R : μH̃(X1,X2)

(y) � α} � z � gα ,

which finish the proof of the left inequality in (11).
To prove the right inequality in (11) we also consider two cases.
Clearly μH̃(X1,X2)

(hα) � α. Assume first that μG̃(X1,X2)
(hα) > α. By the form

of the membership function of H̃(X1,X2) (see (10)) there exist y1,y2 > 0 such that
hα = H(y1,y2) and μX1(y1) > α, μX2(y2) > α. Put z = G(y1,y2) . Then z � hα and,
by (9),

μG̃(X1,X2)
(z) = sup

{
min{μX1(z1),μX2(z2)} | z1,z2 � 0, z = G(z1,z2)

}
� min{μX1(y1),μX2(y2)} > α.

Consequently,
gα = max{y ∈ R : μG̃(X1,X2)

(y) � α} � z � hα .

Now assume that μG̃(X1,X2)
(hα) = α. By the form of μH̃(X1,X2) there exist two

sequences (y1,n),(y2,n) of positive numbers such that hα = H(y1,n,y2,n) for all n ∈ N ,
and

lim
n→∞

min{μX1(y1,n),μX2(y2,n)} = α. (14)

Define zn = G(y1,n,y2,n), n ∈ N . Then zn � hα and

μG̃(X1,X2)(zn) = sup
{

min{μX1(z1,n),μX2(z2,n)} | z1,n,z2,n � 0,zn = G(z1,n,z2,n)
}
(15)

� min{μX1(y1,n),μX2(y2,n)}.
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From (14) it follows that y1,n ∈ supp X1 and y2,n ∈ supp X2 for sufficiently large n∈N.
Since, by our assumption, the supports of X1 and X2 are bounded, the sequence (zn) is
bounded and, consequently it contains a convergent subsequence. We may assume that
zn → z . Then, z � hα and by the upper semi-continuity of μG̃(X1,X2)

, (15), and (14), we
get

μG̃(X1,X2)
(z) � limsup

n→∞
μG̃(X1,X2)

(zn)

� limsup
n→∞

min{μX1(y1,n),μX2(y2,n)} = α.

Hence
gα = max{y ∈ R : μG̃(X1,X2)

(y) � α} � z � hα ,

which finishes the proof of the right inequality in (11). Thus for every α ∈ (0,1] both
inequalities in (11) are satisfied, which means that H̃(X1,X2) � G̃(X1,X2).

The proof of the inequality G̃(X1,X2) � Ã(X1,X2) is quite analogous and therefore
we omit its details. For any fixed α ∈ (0,1] we consider the α -cuts[

gα ,gα
]
= {y ∈ R : μG̃(X1,X2)

(y) � α},
[
aα ,aα

]
= {y ∈ R : μÃ(X1,X2)

(y) � α}
and, in a similarly way as previously, we prove that

gα � aα and gα � aα .

This shows that G̃(X1,X2) � Ã(X1,X2) and completes the whole proof. �

5. Quasi-arithmetic fuzzy means

In this section we introduce the notion of quasi-arithmetic fuzzy mean which is a
joint generalization of arithmetic, geometric and harmonic fuzzy means. Let I ⊂ R be
an interval and f : I → R be a continuous strictly monotonic function. The function
Af : In → I defined by

Af (x1, . . . ,xn) = f−1
( f (x1)+ · · ·+ f (xn)

n

)
is the classical quasi-arithmetic mean generated by f (see e.g. [13] and the references
therein). In an analogous way we can define the quasi-arithmetic fuzzy mean generated
by f putting, for X1, . . . ,Xn ∈ F (R),

Ã f (X1, . . . ,Xn) = f−1
( f (X1)+ · · ·+ f (Xn)

n

)
.
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PROPOSITION 7. The membership function of the quasi-arithmetic fuzzy mean
of X1, . . . ,Xn ∈ F (R) is of the form

μÃ f (X1,...,Xn)
(y) (16)

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y = Af (y1, . . . ,yn)
}
.

Proof. By the definitions of operations on fuzzy numbers we have

μÃ f (X1,...,Xn)
(y) = μ

f−1
(

f (X1)+···+ f (Xn)
n

)(y) = μ f (X1)+···+ f (Xn)
n

( f (y))

= sup
{

min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R,
f (y1)+ · · ·+ f (yn)

n
= f (y)

}
= sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈ R, y = Af (y1, . . . ,yn)

}
. �

REMARK 6. By Proposition 1 it follows tyhat Ã f (X1, . . . ,Xn) is a fuzzy number.
From (16), using the fact that Af (y1, . . . ,yn) ∈ conv{y1, . . . ,yn} , we obtain

μÃ f (X1,...,Xn)
(y)� sup

{
min{μX1(y1), . . . ,μXn(yn)} | y1, . . . ,yn ∈R, y∈ conv{y1, . . . ,yn}

}
.

This shows that Ã f is a fuzzy mean in the sense of Definition 1. For ordinary num-

bers X1, . . . ,Xn � 0 we have μÃ f (X1,...,Xn)
= χAf (X1,...,Xn) and so Ã f coincides with the

classical quasi-arithmetic mean in this case. Note also that for positive fuzzy numbers
the arithmetic, geometric and harmonic fuzzy means are quasi-arithmetic fuzzy means
generated by the functions f (x) = x , f (x) = lnx and f (x) = 1/x , respectively.
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