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Abstract. This study deals with the Hyers–Ulam stability (HUS) of the second order linear dif-
ferential equations x′′ + αx′ + βx = f (t) without the assumption of continuity of f (t) . In par-
ticular, the main purpose of this study is to find a specific exact solution near the approximate
solution, and the best HUS constant. Furthermore, the instability is also discussed, and a neces-
sary and sufficient condition is obtained. Finally, a specific application example and a numerical
simulation are presented.
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