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Abstract. This study deals with the Hyers–Ulam stability (HUS) of the second order linear dif-
ferential equations x′′ + αx′ + βx = f (t) without the assumption of continuity of f (t) . In par-
ticular, the main purpose of this study is to find a specific exact solution near the approximate
solution, and the best HUS constant. Furthermore, the instability is also discussed, and a neces-
sary and sufficient condition is obtained. Finally, a specific application example and a numerical
simulation are presented.

1. Introduction

In this paper, we consider the second-order linear differential equation

x′′ + αx′ + βx = f (t) (1.1)

on R , where α and β are real-valued coefficients, and f (t) is a summable function on
each segment contained in R . Needless to say, our equation includes the case that f (t)
is continuous on R . In the field of mechanical engineering, there are many applications
that can be described by second-order linear differential equations of the form (1.1).
For example, the problem determining the mass’s motion of the mass-spring-damper
system is one of the most important problem (see [2, 18]). In this problem, the function
f (t) in (1.1) usually is called an “external force” or an “applied force”. Set the new
variable y = x′ . Then (1.1) is reduced to the system

x′ = y, y′ = −βx−αy+ f (t), (1.2)

or, equivalently, the equation

xxx′ =
(

0 1
−β −α

)
xxx+
(

0
f (t)

)
, xxx =

(
x
y

)
.
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Note here that the discontinuity on the right hand side is allowed in this equation. If the
right hand side in the equation is a summable function on each segment contained in
R , then the equation is often called “Carathéodory equation”. Throughout this paper,
let I be a nonempty open interval of R . A real-valued function (x(t),y(t)) defined
on I is called a “Carathéodory solution” of (1.2) on I if x(t) and y(t) are absolutely
continuous on each closed interval of I and satisfies (1.2) almost everywhere on I . If
f (t) is continuous on R , then the solution of (1.2) is continuously differentiable on
R . Needless to say, the continuous differentiability implies the absolute continuity, so,
we can say that any classical solution is a Carathéodory solution. We can refer to the
global existence and uniqueness of Carathéodory solutions of (1.2) (see [6, p. 4], [14,
pp. 5–6], [19, p. 30]). Modifying the definition of Carathéodory solution for (1.1)
yields: A real-valued function x(t) defined on I is called a “Carathéodory solution” of
(1.1) on I if x(t) is differentiable on I , and its derivative is absolutely continuous on
each closed interval of I and satisfies (1.1) almost everywhere on I . Note that x(t) is
also absolutely continuous on each closed interval of R from the absolute continuity
of x′(t) . Moreover, it is known that absolute continuity implies almost everywhere
differentiability. In many engineering and physical applications, we can find the case
where the right hand side in the equation is discontinuous. In particular, Carathéodory
differential equations are studied as important equations in the field of control theory
(see [6]). In this field, the function f (t) in (1.1) is called an “input function” or a
“control function” (see [36]). For example, we consider the differential equation

x′′ − x = δ (t),

where δ (t) is the step function (on-off function) defined by

δ (t) =

{
1 if t � 0,

0 if t < 0.

Then we can easily check that the function x(t) = δ (t)(cosh t − 1) is a Carathéodory
solution of this equation. Note here that the second derivative x′′(t) = δ (t)cosh t of the
solution does not exist at t = 0.

Now we will give the definition of a stability for (1.1). We call that (1.1) has
“Hyers–Ulam stability” on I if and only if there exists a constant K > 0 with the
following property: Let ε > 0 be a given arbitrary constant, and let ξ : I → R be
differentiable on I , and its derivative be absolutely continuous on each closed interval
of I . If |ξ ′′(t)+αξ ′(t)+β ξ (t)− f (t)| � ε holds for almost all t ∈ I , then there exists
a Carathéodory solution x : R → R of (1.1) such that |ξ (t)− x(t)| � Kε for all t ∈ I .
We call such K a “HUS constant” for (1.1) on I .

Hyers–Ulam stability was initiated by Ulam’s proposal [38, 39] for certain stability
problem for functional equations. In 1941, Hyers [20, 21] gave a partial answer to it,
and many researchers have been working on this problem until recently. See [3, 9, 10,
23] for the Hyers–Ulam stability of functional equations. In recent years, research on
Hyers–Ulam stability for differential equations has started. The study of the Hyers–
Ulam stability of differential equations is developing rapidly and has received much
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attention. For example, see [5, 8, 11, 28, 29, 30, 31, 32, 37, 40]. Recently, many
researchers have been study Hyers–Ulam stability of various kinds of second-order
linear differential equations under the assumption that f (t) is continuous or it is equal
to 0 (see [1, 4, 7, 12, 13, 15, 16, 17, 22, 24, 25, 26, 27, 33, 34, 41, 42]). In 2010, Li and
Shen [27, Theorem 2.2] established the following theorem.

THEOREM A. Let I be a finite nonempty closed interval of R , and let ε > 0 be a
given arbitrary constant. Suppose that f (t) is continuous on I and that the character-
istic equation μ2 +αμ +β = 0 for x′′ +αx′ +βx = 0 has two different positive roots.
Then there exists a constant K > 0 with the following property: If a twice continuously
differentiable function ξ : I → R satisfies |ξ ′′(t)+ αξ ′(t)+ β ξ (t)− f (t)| � ε for all
t ∈ I , then there exists a solution x : I → R of (1.1) such that |ξ (t)−x(t)| � Kε for all
t ∈ I .

Note here that they assume that I is finite interval, the characteristic equation has
two different positive roots, and ξ is twice continuously differentiable. In this paper,
we will show that these assumptions can be relaxed to weaker conditions. In particular,
the purpose of this paper is to find an explicit constant K on I , and the explicit solution
x of (1.1) such that |ξ (t)− x(t)|� Kε for all t ∈ R .

In the next section, we summarize the previous study on the Carathéodory equa-
tion. In Section 3, we consider Hyers–Ulam stability of (1.1). In Section 4, we will
show that the obtained HUS constant is the best one. In Section 5, we discuss the insta-
bility of (1.1), and so that we obtain a necessary and sufficient condition. Finally, for
illustration of the obtained results, we will take an example with a numerical simulation.

2. Previous study on the Carathéodory equation

As a previous study on the Carathéodory equation, we can refer to the results of
the author [29] for the first-order linear differential equation

x′ = ax+ f (t) (2.1)

on R , where a is a non-zero real number, and f (t) is a summable real-valued function
on each segment contained in R . We say that (2.1) has “Hyers–Ulam stability” on I
if and only if there exists a constant K > 0 with the following property: Let ε > 0 be
a given arbitrary constant, and let ξ : I → R be an absolutely continuous function on
each closed interval of I . If |ξ ′(t)−aξ (t)− f (t)| � ε holds for almost all t ∈ I , then
there exists a Carathéodory solution x : R→ R of (2.1) such that |ξ (t)−x(t)|� Kε for
all t ∈ I . In 2019, the author presented the following result.

THEOREM B. Let I = (σ ,τ) with −∞ � σ < τ � ∞ , and let ε > 0 be a given
arbitrary constant. Suppose that a �= 0 and that ξ : I → R is an absolutely continuous
function on each closed interval of I and it satisfies |ξ ′(t)− aξ (t)− f (t)| � ε for
almost all t ∈ I . Then one of the following holds:
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(i) if a > 0 and τ < ∞ , then limt→τ−0 ξ (t) exists, and any Carathéodory solution
x : R→R of (2.1) with | limt→τ−0 ξ (t)−x(τ)|< ε/a satisfies that |ξ (t)−x(t)|<
ε/a for all t ∈ I ;

(ii) if a> 0 and τ = ∞ , then limt→∞ (ξ (t)e−at − ∫ f (t)e−atdt) exists, and there exists
the unique Carathéodory solution

x(t) =
{∫

f (t)e−atdt + lim
t→∞

(
ξ (t)e−at −

∫
f (t)e−atdt

)}
eat

of (2.1) such that |ξ (t)− x(t)|� ε/a for all t ∈ I ;

(iii) if a < 0 and σ >−∞ , then limt→σ+0 ξ (t) exists, and any Carathéodory solution
x : R → R of (2.1) with | limt→σ+0 ξ (t)− x(σ)| < ε/|a| satisfies that |ξ (t)−
x(t)| < ε/|a| for all t ∈ I ;

(iv) if a < 0 and σ = −∞ , then limt→−∞ (ξ (t)e−at − ∫ f (t)e−atdt) exists, and there
exists the unique Carathéodory solution

x(t) =
{∫

f (t)e−atdt + lim
t→−∞

(
ξ (t)e−at −

∫
f (t)e−atdt

)}
eat

of (2.1) such that |ξ (t)− x(t)|� ε/|a| for all t ∈ I .

By using Theorem B, we can establish the following result, immediately.

COROLLARY C. Let I be a nonempty open interval of R . If a �= 0 then (2.1) has
Hyers–Ulam stability with an HUS constant 1/|a| on I .

3. Hyers–Ulam stability

In this section, we consider Hyers–Ulam stability of second-order linear differen-
tial equation (1.1). First, we present a simple result as follows.

THEOREM 3.1. Let I be a nonempty open interval of R . Suppose that the char-
acteristic equation μ2 +αμ +β = 0 for x′′+αx′ +βx = 0 has the non-zero real roots
μ1 and μ2 . Then (1.1) has Hyers–Ulam stability with an HUS constant 1/|μ1μ2| on I .

Proof. Suppose that ξ (t) is differentiable on I and ξ ′(t) is absolutely continuous
on each closed interval of I , and they satisfying |ξ ′′(t)+ αξ ′(t)+ β ξ (t)− f (t)| � ε
for almost all t ∈ I . Define ηi(t) = ξ ′(t)− μiξ (t) for t ∈ I and i ∈ {1,2} , where
μ1 and μ2 are non-zero real roots of characteristic equation μ2 + αμ + β = 0. Since
μi + μ3−i = μ1 + μ2 = −α and μiμ3−i = μ1μ2 = β , we have

|η ′
i (t)− μ3−iηi(t)− f (t)|= |ξ ′′(t)− (μi + μ3−i)ξ ′(t)+ μiμ3−iξ (t)− f (t)|

= |ξ ′′(t)+ αξ ′(t)+ β ξ (t)− f (t)|� ε (3.1)
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for almost all t ∈ I . Using (3.1) and Corollary C, we see that there exists a Carathéodory
solution y : R → R of

y′ = μ3−iy+ f (t) (3.2)

such that
|ξ ′(t)− μiξ (t)− y(t)|= |ηi(t)− y(t)|� ε

|μ3−i| (3.3)

for all t ∈ I . Note that y(t) is absolutely continuous on each closed interval of R

because it is a Carathéodory solution, so that y(t) is differentiable almost everywhere
on R . From (3.3) and Corollary C, we see that there exists a Carathéodory solution
z : R → R of

z′ = μiz+ y(t) (3.4)

such that |ξ (t)− z(t)|< ε/|μ1μ2| for all t ∈ I . Note that the function z(t) is the classi-
cal solution of (3.4) because y(t) is continuous on R . Therefore, z(t) is continuously
differentiable on R . From (3.4) and the almost everywhere differentiability of y(t) ,
z′(t) is also differentiable almost everywhere on R . It follows from (3.2) and (3.4) that

z′′(t)+ αz′(t)+ β z(t) = z′′(t)− (μi + μ3−i)z′(t)+ μiμ3−iz(t)
= (z′(t)− μiz(t))′ − μ3−i(z′(t)− μiz(t))
= y′(t)− μ3−iy(t) = f (t) (3.5)

for almost all t ∈ I , and therefore, z(t) is a Carathéodory solution of (1.1). This com-
pletes the proof of Theorem 3.1. �

Theorem 3.1 gives an explicit HUS constant. A natural question now arises.
Can we find the explicit Carathéodory solution x(t) of (1.1) satisfying |ξ (t)− x(t)| �
ε/|μ1μ2| for all R? The answer to this question is as follows.

THEOREM 3.2. Let I = (σ ,τ) with −∞ � σ < τ � ∞ , and let ε > 0 be a given
arbitrary constant. Suppose that the characteristic equation μ2 + αμ + β = 0 for
x′′ +αx′+βx = 0 has the non-zero real roots μ1 and μ2 . Suppose also that ξ : I → R

is differentiable on I , and its derivative is absolutely continuous on each closed interval
of I , and |ξ ′′(t) + αξ ′(t) + β ξ (t)− f (t)| � ε holds for almost all t ∈ I . Then the
following holds:

(i) if μ1 > 0 , μ2 > 0 and τ = ∞ , then

lim
t→∞

{
(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)

}
and

lim
t→∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c+)e(μ2−μ1)t dt

}
exist, and there exists the unique Carathéodory solution

x(t) =
[∫

(F(t)+ c+)e(μ2−μ1)t dt

+ lim
t→∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c+)e(μ2−μ1)t dt

}]
eμ1t
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of (1.1) such that |ξ (t)−x(t)|� ε/(μ1μ2) for all t ∈ I , where F(t)=
∫

f (t)e−μ2tdt
and c+ = limt→∞ {(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)} ;

(ii) if μ1 < 0 , μ2 < 0 and σ = −∞ , then

lim
t→−∞

{
(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)

}
and

lim
t→−∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c−)e(μ2−μ1)t dt

}
exist, and there exists the unique Carathéodory solution

x(t) =
[∫

(F(t)+ c−)e(μ2−μ1)t dt

+ lim
t→−∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c−)e(μ2−μ1)t dt

}]
eμ1t

of (1.1) such that |ξ (t)−x(t)|� ε/(μ1μ2) for all t ∈ I , where F(t)=
∫

f (t)e−μ2tdt
and c− = limt→−∞ {(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)} ;

(iii) if μ1 < 0 < μ2 , σ = −∞ and τ = ∞ , then

lim
t→∞

{
(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)

}
and

lim
t→−∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c+)e(μ2−μ1)t dt

}
exist, and there exists the unique Carathéodory solution

x(t) =
[∫

(F(t)+ c+)e(μ2−μ1)t dt

+ lim
t→−∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c+)e(μ2−μ1)t dt

}]
eμ1t

of (1.1) such that |ξ (t)−x(t)|� ε/|μ1μ2| for all t ∈ I , where F(t)=
∫

f (t)e−μ2t dt
and c+ = limt→∞ {(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)} .

Proof. Let arbitrary ε > 0 be given. Suppose that |ξ ′′(t) + αξ ′(t) + β ξ (t)−
f (t)| � ε for almost all t ∈ I , where ξ (t) is a differentiable function on I , and ξ ′(t) is
an absolutely continuous function on each closed interval of I . Define ηi(t) = ξ ′(t)−
μiξ (t) for t ∈ I and i ∈ {1,2} . Then we have inequality (3.1) for almost all t ∈ I . For
the sake of simplicity, we write

Fi(t) =
∫

f (t)e−μit dt

for i ∈ {1,2} .
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First we prove case (i). Let μ1 > 0, μ2 > 0 and τ = ∞ . From (3.1) and Theorem B
(ii),

lim
t→∞

{
(ξ ′(t)− μiξ (t))e−μ3−it −F3−i(t)

}
= lim

t→∞

(
ηi(t)e−μ3−it −F3−i(t)

)
exists, and there exists the unique Carathéodory solution y(t) = (F3−i(t)+ c+

i )eμ3−it of
(3.2) satisfying (3.3) for all t ∈ I , where

c+
i = lim

t→∞

{
(ξ ′(t)− μiξ (t))e−μ3−it −F3−i(t)

}
. (3.6)

From (3.3) and Theorem B (ii) again, we see that

lim
t→∞

{
ξ (t)e−μit −

∫
(F3−i(t)+ c+

i )e(μ3−i−μi)t dt

}
exists, and there exists the unique classical solution

x(t) =
[∫

(F3−i(t)+ c+
i )e(μ3−i−μi)t dt

+ lim
t→∞

{
ξ (t)e−μit −

∫
(F3−i(t)+ c+

i )e(μ3−i−μi)t dt

}]
eμit

of (3.4) such that |ξ (t)− x(t)| � ε/(μ1μ2) for all t ∈ I . By the same calculation as
(3.5), we conclude that x(t) is a Carathéodory solution of (1.1) on R .

Now we will show that x(t) is the unique Carathéodory solution of (1.1) such
that |ξ (t)− x(t)| � ε/(μ1μ2) for all t ∈ I . Since x(t) is a Carathéodory solution of
second-order linear differential equation (1.1), it can be rewritten in the form:

x(t) = eμit
∫

F3−i(t)e(μ3−i−μi)t dt +d1e
μit +d2

{
eμ3−it if μi �= μ3−i,

teμit if μi = μ3−i

for some d1 , d2 ∈ R . Suppose to the contrary that there exists a Carathéodory solution
x̃(t) of (1.1) such that x̃(t) �≡ x(t) and |ξ (t)− x̃(t)|� ε/(μ1μ2) for all t ∈ I . Due to the
uniqueness of the solution with respect to the initial value of the differential equation,
it can be written as

x̃(t) = eμit
∫

F3−i(t)e(μ3−i−μi)t dt + d̃1e
μit + d̃2

{
eμ3−it if μi �= μ3−i,

teμit if μi = μ3−i

for some d̃1 , d̃2 ∈ R with
(
d̃1, d̃2

) �= (d1,d2) . Then

x(t)− x̃(t) =
(
d1− d̃1

)
eμit +

(
d2− d̃2

){eμ3−it if μi �= μ3−i,

teμit if μi = μ3−i

for all t ∈ I , and so that

2ε
μ1μ2

� |x(t)− ξ (t)|+ |ξ (t)− x̃(t)|

�
∣∣∣∣∣(d1− d̃1

)
eμit +

(
d2− d̃2

){eμ3−it if μi �= μ3−i,

teμit if μi = μ3−i

∣∣∣∣∣
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for all t ∈ I . We now consider the case d1 = d̃1 . Then d2 �= d̃2 and

lim
t→∞

∣∣∣∣∣(d2− d̃2
){eμ3−it if μi �= μ3−i,

teμit if μi = μ3−i

∣∣∣∣∣= ∞

from μ1 > 0, μ2 > 0 and τ = ∞ . Hence, this is a contradiction to the above inequality.
Next consider the case d1 �= d̃1 . Then we see that there exist T ∈ I and k > 0 such that∣∣∣∣∣d1− d̃1 +

(
d2− d̃2

){e(μ3−i−μi)t if μi �= μ3−i,

t if μi = μ3−i

∣∣∣∣∣� k

for all t � T . This implies

lim
t→∞

∣∣∣∣∣(d1− d̃1
)
eμit +

(
d2− d̃2

){eμ3−it if μi �= μ3−i,

teμit if μi = μ3−i

∣∣∣∣∣� lim
t→∞

keμit = ∞.

This is a contradiction. Therefore, the uniqueness of x(t) is shown.
We next consider case (ii). Let μ1 < 0, μ2 < 0 and σ = −∞ . From (3.1) and

Theorem B (iv),

lim
t→−∞

{
(ξ ′(t)− μiξ (t))e−μ3−it −F3−i(t)

}
= lim

t→−∞

(
ηi(t)e−μ3−it −F3−i(t)

)
exists, and there exists the unique Carathéodory solution y(t) = (F3−i(t)+ c−i )eμ3−it of
(3.2) satisfying (3.3) for all t ∈ I , where

c−i = lim
t→−∞

{
(ξ ′(t)− μiξ (t))e−μ3−it −F3−i(t)

}
.

From (3.3), (3.5) and Theorem B (iv) again, we see that

lim
t→−∞

{
ξ (t)e−μit −

∫
(F3−i(t)+ c−i )e(μ3−i−μi)tdt

}

exists, and there exists the unique Carathéodory solution

x(t) =
[∫

(F3−i(t)+ c−i )e(μ3−i−μi)tdt

+ lim
t→−∞

{
ξ (t)e−μit −

∫
(F3−i(t)+ c−i )e(μ3−i−μi)t dt

}]
eμit

of (1.1) such that |ξ (t)− x(t)|� ε/|μ1μ2| for all t ∈ I . The uniqueness of x(t) can be
shown by the same argument as in case (i).

Finally, we consider case (iii). Let μ1 < 0 < μ2 , σ =−∞ and τ = ∞ , and let i = 1.
From (3.1) and Theorem B (ii), limt→∞(η1(t)e−μ2t −F2(t)) exists, and there exists the
unique Carathéodory solution y(t) = (F2(t)+ c+

1 )eμ2t of (3.2) satisfying (3.3) for all
t ∈ I , where c+

i given by (3.6). From (3.3), (3.5) and Theorem B (iv), we see that

lim
t→−∞

{
ξ (t)e−μ1t −

∫
(F2(t)+ c+

1 )e(μ2−μ1)t dt

}
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exists, and there exists the unique Carathéodory solution

x(t) =
[∫

(F2(t)+ c+
1 )e(μ2−μ1)tdt

+ lim
t→−∞

{
ξ (t)e−μ1t −

∫
(F2(t)+ c+

1 )e(μ2−μ1)t dt
}]

eμ1t

of (1.1) such that |ξ (t)− x(t)|� ε/|μ1μ2| for all t ∈ I . The uniqueness of x(t) can be
shown by the same argument as in case (i). However, it is necessary to pay attention
to whether contradiction occurs at t → ∞ or t → −∞ . This completes the proof of
Theorem 3.2. �

Under the assumption that I = R , we obtain the following corollary from Theo-
rem 3.2.

COROLLARY 3.3. Suppose that the characteristic equation μ2 +αμ +β = 0 for
x′′ + αx′ + βx = 0 has the non-zero real roots μ1 and μ2 . Then (1.1) has Hyers–
Ulam stability with an HUS constant 1/|μ1μ2| on R . Furthermore, the Carathéodory
solution x(t) of (1.1) satisfying |ξ (t)− x(t)| � ε/|μ1μ2| for all t ∈ R is the unique,
which written as

x(t) =
[∫

(F(t)+ c)e(μ2−μ1)tdt + lim
μ1t→∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c)e(μ2−μ1)t dt

}]
eμ1t ,

where F(t) =
∫

f (t)e−μ2t dt , and c = limμ2t→∞ {(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)} and

lim
μ1t→∞

{
ξ (t)e−μ1t −

∫
(F(t)+ c)e(μ2−μ1)t dt

}
are finite constants.

Corollary 3.3 implies the following results.

COROLLARY 3.4. Suppose that the characteristic equation μ2 +αμ +β = 0 for
x′′ + αx′ + βx = 0 has two different real roots μ1 and μ2 with μ1μ2 �= 0 . Then (1.1)
has Hyers–Ulam stability with an HUS constant 1/|μ1μ2| on R . Furthermore, the
Carathéodory solution x(t) of (1.1) satisfying |ξ (t)−x(t)|� ε/|μ1μ2| for all t ∈ R is
the unique, which written as

x(t) =

{∫
F(t)e(μ2−μ1)t dt

+ lim
μ1t→∞

(
ξ (t)e−μ1t −

∫
F(t)e(μ2−μ1)tdt− ce(μ2−μ1)t

μ2 − μ1

)}
eμ1t +

c
μ2 − μ1

eμ2t ,

where F(t) =
∫

f (t)e−μ2t dt , and c = limμ2t→∞ {(ξ ′(t)− μ1ξ (t))e−μ2t −F(t)} and

lim
μ1t→∞

(
ξ (t)e−μ1t −

∫
F(t)e(μ2−μ1)t dt− ce(μ2−μ1)t

μ2 − μ1

)

are finite constants.
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COROLLARY 3.5. Suppose that the characteristic equation μ2 +αμ +β = 0 for
x′′+αx′+βx = 0 has exactly one real root μ with μ �= 0 . Then (1.1) has Hyers–Ulam
stability with an HUS constant 1/μ2 on R . Furthermore, the Carathéodory solution
x(t) of (1.1) satisfying |ξ (t)− x(t)| � ε/μ2 for all t ∈ R is the unique, which written
as

x(t) =
{∫

F(t)dt + lim
μt→∞

(
ξ (t)e−μt −

∫
F(t)dt− ct

)}
eμt + cteμt,

where F(t) =
∫

f (t)e−μt dt , and c = limμt→∞ {(ξ ′(t)− μξ (t))e−μt −F(t)} and

lim
μt→∞

(
ξ (t)e−μt −

∫
F(t)dt− ct

)
are finite constants.

THEOREM 3.6. Let I = (σ ,τ) with −∞ � σ < τ � ∞ , and let ε > 0 be a given
arbitrary constant. Suppose that the characteristic equation μ2 + αμ + β = 0 for
x′′ +αx′+βx = 0 has the non-zero real roots μ1 and μ2 . Suppose also that ξ : I → R

is differentiable on I , and its derivative is absolutely continuous on each closed interval
of I , and |ξ ′′(t) + αξ ′(t) + β ξ (t)− f (t)| � ε holds for almost all t ∈ I . Then the
following holds:

(i) if μ1 > 0 , μ2 > 0 and τ < ∞ , then limt→τ−0 ξ (t) and limt→τ−0 ξ ′(t) exist, and
any Carathéodory solution x : R → R of (1.1) with⎧⎪⎪⎨

⎪⎪⎩

∣∣∣∣ lim
t→τ−0

(ξ ′(t)− μ1ξ (t))− (x′(τ)− μ1x(τ))
∣∣∣∣< ε

μ2
,∣∣∣∣ lim

t→τ−0
ξ (t)− x(τ)

∣∣∣∣< ε
μ1μ2

(3.7)

satisfies that |ξ (t)− x(t)|< ε/(μ1μ2) for all t ∈ I ;

(ii) if μ1 < 0 , μ2 < 0 and σ > −∞ , then limt→σ+0 ξ (t) and limt→σ+0 ξ ′(t) exist,
and any Carathéodory solution x : R → R of (1.1) with⎧⎪⎪⎨

⎪⎪⎩

∣∣∣∣ lim
t→σ+0

(ξ ′(t)− μ1ξ (t))− (x′(σ)− μ1x(σ))
∣∣∣∣< ε

|μ2| ,∣∣∣∣ lim
t→σ+0

ξ (t)− x(σ)
∣∣∣∣< ε

μ1μ2

(3.8)

satisfies that |ξ (t)− x(t)|< ε/(μ1μ2) for all t ∈ I ;

(iii) if μ1 < 0 < μ2 and −∞ < σ < τ < ∞ , then limt→σ+0 ξ (t) , limt→σ+0 ξ ′(t) ,
limt→τ−0 ξ (t) and limt→τ−0 ξ ′(t) exist, and any Carathéodory solution x : R →
R of (1.1) with⎧⎪⎪⎨

⎪⎪⎩

∣∣∣∣ lim
t→τ−0

(ξ ′(t)− μ1ξ (t))− (x′(τ)− μ1x(τ))
∣∣∣∣< ε

μ2
,∣∣∣∣ lim

t→σ+0
ξ (t)− x(σ)

∣∣∣∣< ε
|μ1μ2|

(3.9)
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⎛
⎜⎜⎝resp.,

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣ lim
t→σ+0

(ξ ′(t)− μ2ξ (t))− (x′(σ)− μ2x(σ))
∣∣∣∣< ε

|μ1| ,∣∣∣∣ lim
t→τ−0

ξ (t)− x(τ)
∣∣∣∣< ε

|μ1μ2|

⎞
⎟⎟⎠

satisfies that |ξ (t)− x(t)|< ε/|μ1μ2| for all t ∈ I ;

(iv) if μ1 < 0 < μ2 , σ = −∞ and τ < ∞ , then limt→τ−0 ξ (t) and

lim
t→−∞

{
(ξ ′(t)− μ2ξ (t))e−μ1t −F1(t)

}
exist, and any Carathéodory solution x : R → R of (1.1) with

x′(τ)−μ2x(τ) = (F1(τ)+c1)eμ1τ and

∣∣∣∣ lim
t→τ−0

ξ (t)− x(τ)
∣∣∣∣< ε

|μ1μ2| (3.10)

satisfies that |ξ (t)− x(t)| < ε/|μ1μ2| for all t ∈ I , where F1(t) =
∫

f (t)e−μ1t dt
and c1 = limt→−∞ {(ξ ′(t)− μ2ξ (t))e−μ1t −F1(t)};

(v) if μ1 < 0 < μ2 , σ > −∞ and τ = ∞ , then limt→σ+0 ξ (t) and

lim
t→∞

{
(ξ ′(t)− μ1ξ (t))e−μ2t −F2(t)

}
exist, and any Carathéodory solution x : R → R of (1.1) with

x′(σ)− μ1x(σ) = (F2(σ)+ c2)eμ2σ and

∣∣∣∣ lim
t→σ+0

ξ (t)− x(σ)
∣∣∣∣< ε

|μ1μ2|
satisfies that |ξ (t)− x(t)| < ε/|μ1μ2| for all t ∈ I , where F2(t) =

∫
f (t)e−μ2t dt

and c2 = limt→∞ {(ξ ′(t)− μ1ξ (t))e−μ2t −F2(t)} .

Proof. Define ηi(t) = ξ ′(t)− μiξ (t) for t ∈ I and i ∈ {1,2} . Then inequality
(3.1) holds for almost all t ∈ I .

First, we prove case (i). Let μ1 > 0, μ2 > 0 and τ < ∞ . From (3.1) and (i) in
Theorem B, we see that

lim
t→τ−0

(
ξ ′(t)− μiξ (t)

)
= lim

t→τ−0
ηi(t)

exists, and any Carathéodory solution y : R→R of (3.2) with | limt→τ−0 ηi(t)−y(τ)|<
ε/μ3−i satisfies that inequality (3.3) for all t ∈ I . Moreover, from (3.3) and (i) in
Theorem B, limt→τ−0 ξ (t) exists, and any Carathéodory solution z : R → R of (3.4)
with | limt→τ−0 ξ (t)− z(τ)| < ε/(μ1μ2) satisfies that |ξ (t)− z(t)| < ε/(μ1μ2) for all
t ∈ I . Note here that the function y(t) in (3.4) requires both that it is a Carathéodory
solution of (3.2) on R and that it satisfies | limt→τ−0 ηi(t)− y(τ)| < ε/μ3−i . Since
limt→τ−0 ξ (t) and limt→τ−0 ηi(t) exist, limt→τ−0 ξ ′(t) also exists. For the sake of
simplicity, let

ξτ = lim
t→τ−0

ξ (t) and ξ ′
τ = lim

t→τ−0
ξ ′(t).
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We now consider any Carathéodory solution x : R → R of (1.1) with (3.7). Define
w(t) = x′(t)− μix(t) for all t ∈ R and i ∈ {1,2} . From (3.7), w(t) satisfies∣∣∣∣ lim

t→τ−0
ηi(t)−w(τ)

∣∣∣∣= ∣∣ξ ′
τ − μiξτ −w(τ)

∣∣< ε
μ3−i

.

Since w(t) is absolutely continuous on each closed interval of R and it satisfies

w′(t)− μ3−iw(t)− f (t) = x′′(t)+ αx′(t)+ βx(t)− f (t) = 0

for almost all t ∈ R , w(t) is a Carathéodory solution of (3.2) with | limt→τ−0 ηi(t)−
w(τ)|< ε/μ3−i on R . From this and (3.7), x(t) is a Carathéodory solution of (3.4) with
|ξτ − x(τ)| < ε/(μ1μ2) and y(t) = w(t) . Therefore, we conclude that |ξ (t)− x(t)| <
ε/(μ1μ2) holds for all t ∈ I .

Next, we prove case (ii). Suppose that μ1 and μ2 are negative and σ > −∞ . Let
s = −t , γ(s) = ξ (−s) , ν1 = −μ1 , ν2 = −μ2 , g(s) = f (−s) , and γ̇ = dγ/ds . Then we
can transform |ξ ′′(t)− (μ1 + μ2)ξ ′(t)+ μ1μ2ξ (t)− f (t)| � ε for almost all t ∈ I into
the inequality

|γ̈(s)− (ν1 + ν2)γ̇(s)+ ν1ν2γ(s)−g(s)| � ε

for almost all s ∈ (−τ,−σ) . Clearly, ν1 and ν2 are positive roots of the characteris-
tic equation μ2 + αμ + β = 0. Using (i) in Theorem 3.6, we see that the following.
lims→−σ−0 γ(s) and lims→−σ−0 γ̇(s) exist, and any Carathéodory solution X : R → R

of Ẍ − (ν1 + ν2)Ẋ + ν1ν2X = g(s) with initial condition∣∣∣∣ lim
s→−σ−0

(γ̇(s)−ν1γ(s))− (Ẋ(−σ)−ν1X(−σ)
)∣∣∣∣< ε

ν2

and ∣∣∣∣ lim
s→−σ−0

γ(s)−X(−σ)
∣∣∣∣< ε

ν1ν2

satisfies that |γ(s)−X(s)| < ε/(ν1ν2) for all s ∈ (−τ,−σ) . Let x(t) = X(−t) . Thus,
taking notice that ξ (t) = γ(−t) , ξ ′(t) = −γ̇(−t) and

lim
t→σ+0

ξ ′(t) = lim
s→−σ−0

(−γ̇(s)) and lim
t→σ+0

ξ (t) = lim
s→−σ−0

γ(s),

we can conclude that any Carathéodory solution of (1.1) with (3.8) satisfies that |ξ (t)−
x(t)| < ε/(μ1μ2) for all t ∈ I .

We will prove case (iii). Let μ1 < 0 < μ2 and −∞ < σ < τ < ∞ . From (3.1) and
(i) (resp., (iii)) in Theorem B, we see that

lim
t→τ−0

(
ξ ′(t)− μ1ξ (t)

)
= lim

t→τ−0
η1(t)

(
resp., lim

t→σ+0

(
ξ ′(t)− μ2ξ (t)

)
= lim

t→σ+0
η2(t)

)

exists, and any Carathéodory solution y : R→R of (3.2) with | limt→τ−0 η1(t)−y(τ)|<
ε/μ2 and i = 1 (resp., | limt→σ+0 η2(t)− y(σ)| < ε/|μ1| and i = 2) satisfies that in-
equality (3.3) with i = 1 (resp., i = 2) for all t ∈ I . Moreover, from (3.3) with i = 1
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(resp., i = 2) and (iii) (resp., (i)) in Theorem B, limt→σ+0 ξ (t) (resp., limt→τ−0 ξ (t))
exists, and any Carathéodory solution z : R→R of (3.4) with | limt→σ+0 ξ (t)−z(σ)|<
ε/|μ1μ2| and i = 1 (resp., | limt→τ−0 ξ (t)− z(τ)| < ε/|μ1μ2| and i = 2) satisfies that
|ξ (t)− z(t)|< ε/|μ1μ2| for all t ∈ I . Therefore,

lim
t→σ+0

ξ (t), lim
t→σ+0

ξ ′(t), lim
t→τ−0

ξ (t) and lim
t→τ−0

ξ ′(t)

exist. Define

ξσ = lim
t→σ+0

ξ (t), ξ ′
σ = lim

t→σ+0
ξ ′(t), ξτ = lim

t→τ−0
ξ (t) and ξ ′

τ = lim
t→τ−0

ξ ′(t).

We have only to prove the case i = 1 because the proof of the case i = 2 is the same.
We now consider any Carathéodory solution x : R → R of (1.1) with (3.9). Define

w(t) = x′(t)− μ1x(t) for all t ∈ R . Using (3.9), we see that w(t) is a Carathéodory
solution of (3.2) with i = 1 and∣∣∣∣ lim

t→τ−0
η1(t)−w(τ)

∣∣∣∣= ∣∣ξ ′
τ − μ1ξτ −w(τ)

∣∣< ε
μ2

on R . From this and (3.9), x(t) is a Carathéodory solution of (3.4) with |ξσ − x(σ)| <
ε/|μ1μ2| , y(t) = w(t) and i = 1. Therefore, we obtain |ξ (t)− x(t)|< ε/|μ1μ2| for all
t ∈ I .

Next we prove case (iv). Let μ1 < 0 < μ2 , σ = −∞ and τ < ∞ . From (3.1) and
Theorem B (iv), we see that

lim
t→−∞

(
η2(t)e−μ1t −

∫
f (t)e−μ1t dt

)

exists, and there exists the unique Carathéodory solution

y(t) =
{∫

f (t)e−μ1t dt + lim
t→−∞

(
η2(t)e−μ1t −

∫
f (t)e−μ1t dt

)}
eμ1t

of (3.2) with i = 2 satisfying (3.3) with i = 2 for all t ∈ I . Moreover, from (3.3)
with i = 2 and (i) in Theorem B, limt→τ−0 ξ (t) exists, and any Carathéodory solution
z : R → R of (3.4) with | limt→τ−0 ξ (t)− z(τ)| < ε/|μ1μ2| satisfies that |ξ (t)− z(t)| <
ε/|μ1μ2| for all t ∈ I .

We consider any Carathéodory solution x : R → R of (1.1) with (3.10). Define
w(t) = x′(t)−μ2x(t) and F(t) =

∫
f (t)e−μ1t dt for all t ∈ R . Then, we see that w(t) is

a Carathéodory solution of (3.2) with i = 2, and it satisfies

w(τ) = x′(τ)− μ2x(τ) =
{

F(τ)+ lim
t→−∞

(
η2(t)e−μ1t −F(t)

)}
eμ1τ = y(τ)

from (3.10). By means of the uniqueness of Carathéodory solutions of (3.2) with i = 2,
we conclude that w(t) = y(t) for all t ∈R . From this and (3.10), x(t) is a Carathéodory
solution of (3.4) with | limt→τ−0 ξ (t)−x(τ)|< ε/|μ1μ2| , y(t) = w(t) and i = 2. There-
fore, we obtain |ξ (t)− x(t)|< ε/|μ1μ2| for all t ∈ I .

Finally, using the same transformation as in the proof of case (ii) and using asser-
tion (iv), we can prove case (v). This completes the proof of Theorem 3.6. �
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REMARK 3.1. The conditions∣∣∣∣ lim
t→τ−0

ξ ′(t)− x′(τ)
∣∣∣∣+ μ1

∣∣∣∣ lim
t→τ−0

ξ (t)− x(τ)
∣∣∣∣< ε

μ2

and ∣∣∣∣ lim
t→σ+0

ξ ′(t)− x′(σ)
∣∣∣∣+ |μ1|

∣∣∣∣ lim
t→σ+0

ξ (t)− x(σ)
∣∣∣∣< ε

|μ2|
imply conditions (3.7) and (3.8), respectively. Then, initial conditions (3.7) and (3.8) in
Theorem 3.6 can be changed to simple conditions.

4. Best HUS constant

In the previous section, we discussed the Hyers–Ulam stability for (1.1) and ob-
tained the an exact HUS constant given by 1/|μ1μ2| . Needless to say, any value greater
than this constant is one of the HUS constants. Now the question arises. Is this HUS
constant the minimum of HUS constants? Section 4 answers this question. If there
exists the minimum of HUS constant, we call it the “best HUS constant” for (1.1) on I .
Recently, the best constants have been derived for various equations. For example, see
[5, 7, 15, 16, 29, 30]. Now, we present a result as follows.

THEOREM 4.1. Let I = (σ ,τ) with −∞ � σ < τ � ∞ . Suppose that the charac-
teristic equation μ2 + αμ + β = 0 for x′′ + αx′ + βx = 0 has the non-zero real roots
μ1 and μ2 . Then the following holds:

(i) if μ1 > 0 , μ2 > 0 and τ = ∞ , then (1.1) has Hyers–Ulam stability with the best
HUS constant 1/(μ1μ2) on I ;

(ii) if μ1 < 0 , μ2 < 0 and σ = −∞ , then (1.1) has Hyers–Ulam stability with the
best HUS constant 1/(μ1μ2) on I ;

(iii) if μ1 < 0 < μ2 , σ = −∞ and τ = ∞ , then (1.1) has Hyers–Ulam stability with
the best HUS constant 1/|μ1μ2| on I .

Proof. Let μ1 and μ2 be the non-zero real roots of μ2 + αμ + β = 0. Define the
function ψ by

ψ(t) := eμ1t
∫ (

e(μ2−μ1)t
∫

f (t)e−μ2t dt

)
dt +

ε
μ1μ2

on I , where f (t) is a summable function on each segment contained in R . Since

ψ ′(t) = μ1ψ(t)+ eμ2t
∫

f (t)e−μ2t dt− ε
μ2

holds, we have

ψ ′′(t) = μ1ψ ′(t)+ μ2

(
ψ ′(t)− μ1ψ(t)+

ε
μ2

)
+ f (t) = −αψ ′(t)−β ψ(t)+ ε + f (t),
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so that ψ(t) satisfies the equation

∣∣ψ ′′(t)+ αψ ′(t)+ β ψ(t)− f (t)
∣∣= ε

for all t ∈ I .
First, we consider case (i). Suppose μ1 > 0, μ2 > 0 and τ = ∞ . Now we will use

Theorem 3.2 (i). From

(ψ ′(t)− μ1ψ(t))e−μ2t =
∫

f (t)e−μ2t dt− ε
μ2

e−μ2t = F(t)− ε
μ2

e−μ2t ,

we get

lim
t→∞

{
(ψ ′(t)− μ1ψ(t))e−μ2t −F(t)

}
= − ε

μ2
lim
t→∞

e−μ2t = 0 = c+.

Moreover, by

ψ(t)e−μ1t −
∫

(F(t)+ c+)e(μ2−μ1)t dt =
ε

μ1μ2
e−μ1t ,

we have

lim
t→∞

{
ψ(t)e−μ1t −

∫
(F(t)+ c+)e(μ2−μ1)tdt

}
= 0.

Hence, using Theorem 3.2 (i), we see that there exists the unique Carathéodory solution

x(t) = eμ1t
∫ (

e(μ2−μ1)t
∫

f (t)e−μ2t dt

)
dt

of (1.1) such that |ψ(t)− x(t)| � ε/(μ1μ2) for all t ∈ I . More precisely, the last in-
equality will be equality as follows:

|ψ(t)− x(t)|= ε
μ1μ2

for all t ∈ I . This says that the minimum HUS constant on I is at least 1/(μ1μ2) .
Using the same argument we have assertions (ii) and (iii). This completes the

proof. �

If I = R then we obtain the following result, immediately.

COROLLARY 4.2. Suppose that the characteristic equation μ2 +αμ +β = 0 for
x′′ +αx′ +βx = 0 has the non-zero real roots μ1 and μ2 . Then (1.1) has Hyers–Ulam
stability with the best HUS constant 1/|μ1μ2| on R .
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5. Instability

In this section, we deal with the instability for (1.1). As a result, the necessary and
sufficient condition is finally obtained.

THEOREM 5.1. Let I = (σ ,τ) with −∞ � σ < τ � ∞ . Suppose that σ = −∞ or
τ = ∞ . Suppose also that the characteristic equation μ2 +αμ +β = 0 for x′′ +αx′ +
βx = 0 has real roots μ1 and μ2 . If μ1μ2 = 0 , then (1.1) does not have Hyers–Ulam
stability on I .

Proof. First, we consider the case that the characteristic equation μ2+αμ +β = 0
for x′′ + αx′ + βx = 0 has exactly one real root μ1 = μ2 = 0. Now, we consider the
function

ξ (t) = ε
t2

2
+
∫ (∫

f (t)dt

)
dt,

where ε > 0 is a given arbitrary constant and f (t) is a summable real-valued function
on each segment contained in I . Then ξ (t) satisfies |ξ ′′(t)− f (t)| = ε for almost
all t ∈ I . Clearly, the characteristic equation for x′′ = 0 has exactly one real root
μ1 = μ2 = 0. Consider the case τ = ∞ . Since any Carathéodory solution of x′′ = f (t)
is given by

x(t) = c1t + c2 +
∫ (∫

f (t)dt

)
dt,

where c1 and c2 are arbitrary constants, we have

lim
t→∞

|ξ (t)− x(t)|= lim
t→∞

∣∣∣∣εt2

2
− c1t− c2

∣∣∣∣= ∞.

Similarly, the case σ =−∞ leads to limt→−∞ |ξ (t)−x(t)|= ∞ . Hence, x′′ = f (t) does
not have Hyers–Ulam stability on I .

Next, we consider the case that the characteristic equation μ2 + αμ + β = 0 for
x′′ + αx′ + βx = 0 has two different real roots μ1 �= μ2 = 0. We consider the function

ξ (t) = − εt
μ1

+ eμ1t
∫ (

e−μ1t
∫

f (t)dt

)
dt,

where ε > 0 is a given arbitrary constant and f (t) is a summable real-valued function
on each segment contained in I . Then ξ (t) satisfies |ξ ′′(t)− μ1ξ ′(t)− f (t)| = ε for
almost all t ∈ I . Clearly, the characteristic equation for x′′ −μ1x′ = 0 has two different
real roots μ1 �= 0 and 0. Consider the case τ = ∞ . Since any Carathéodory solution of
x′′ − μ1x′ = f (t) is given by

x(t) = c1 + c2e
μ1t + eμ1t

∫ (
e−μ1t

∫
f (t)dt

)
dt,

where c1 and c2 are arbitrary constants, we have

lim
t→∞

|ξ (t)− x(t)|= lim
t→∞

∣∣∣∣− εt
μ1

− c1− c2e
μ1t

∣∣∣∣= ∞.
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Using the same argument, we see that the case σ =−∞ leads to limt→−∞ |ξ (t)−x(t)|=
∞ . Therefore, x′′ − μ1x′ = f (t) does not have Hyers–Ulam stability on I . �

Under the assumption that I = R , we obtain the following result from Theo-
rem 5.1, immediately.

COROLLARY 5.2. Suppose that the characteristic equation μ2 +αμ +β = 0 for
x′′ + αx′ + βx = 0 has real roots μ1 and μ2 . If μ1μ2 = 0 , then (1.1) does not have
Hyers–Ulam stability on R .

Theorems 3.1 and 5.1 imply the following result.

THEOREM 5.3. Let I = (σ ,τ) with −∞ � σ < τ � ∞ . Suppose that σ = −∞ or
τ = ∞ . Suppose also that the characteristic equation μ2 +αμ +β = 0 for x′′ +αx′ +
βx = 0 has real roots μ1 and μ2 . Then (1.1) has Hyers–Ulam stability on I if and only
if μ1μ2 �= 0 .

6. Example and numerical simulation

In this section, we will present an example with a numerical simulation.

EXAMPLE 6.1. Let us consider the forced equation

x′′ + αx′ + βx = f (t)+ e(t) (6.1)

on R , where α and β are real-valued constants, and f (t) and e(t) are summable real-
valued functions on each segment contained in R . We assume that the characteristic
equation μ2 + αμ + β = 0 has the non-zero real roots μ1 and μ2 . Then, by means of
Corollary 4.2, (6.1) has Hyers–Ulam stability with the best HUS constant 1/|μ1μ2| on
R .

Now we regard (1.1) and (6.1) as the mathematical model and the real model,
respectively. In addition, we can regard e(t) as the error between mathematical and real
models. Note here that we can easily find the Carathéodory solution of mathematical
model (1.1), however, the solution of real model (6.1) is unknown because this model
includes unknown error e(t) . Let ξ (t) be a Carathéodory solution of (1.1) (math.
model). That is, ξ (t) is an approximate solution of (6.1) (real model). We may assume
without loss of generality that the error is small, that is, |e(t)| � ε holds for all t ∈ R .
Using this, Carathéodory solution ξ (t) of (1.1) satisfies

|ξ ′′(t)+ αξ ′(t)+ β ξ (t)− f (t)− e(t)|= |e(t)| � ε

for almost all t ∈ R . Since (6.1) has Hyers–Ulam stability with the best HUS con-
stant 1/|μ1μ2| on R , there exists a Carathéodory solution x(t) of real model (6.1) near
to ξ (t) for all t ∈ R . To be precise, we see that |ξ (t)− x(t)| � ε/|μ1μ2| for all t ∈ R .
This says that, for all t ∈ R , the error between solutions of mathematical and real mod-
els is at most ε/|μ1μ2| . In this way, the best HUS constant represents the maximum
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value of the error that occurs between an approximate solution and an exact solution,
and plays an important role in application.

Now we will present a numerical simulation. Let I = (0,∞) , α = 3 and β =
2. Then characteristic equation has the non-zero real roots μ1 = −2 and μ2 = −1.
We consider the Carathéodory solution ξ (t) of the initial value problem (1.1) with
(ξ (0),ξ ′(0)) = (ξ0,ξ ′

0) on R . Using (ii) in Theorem 3.6, we conclude that any Cara-
théodory solution x(t) of (6.1) with x′(0) = ξ ′

0 and |ξ0 − x(0)| < ε/2 satisfies that
|ξ (t)− x(t)| < ε/2 for all t ∈ I . This means that any solution x(t) of (6.1) starting in
the neighborhood of ξ0 stays in the neighborhood of ξ (t) for all t ∈ I when x′(0) = ξ ′

0 .
To present a numerical simulation, we give some information. Define the step function
(on-off function) δ by

δ (t) =

{
1 if 2n � t < 2n+1,

0 if 2n+1 � t < 2(n+1),
n ∈ Z.

Let f (t) = 10δ (t) and e(t) = 4sin t . A solution curve of (1.1) with (ξ (0),ξ ′(0)) =
(8,0) is given in Figure 1 (red curve). Moreover, dashed curves are graphs of ξ (t)−2
and ξ (t)+2, respectively. Each solution curve of (6.1) with (x(0),x′(0)) = (6.1,0) or
(x(0),x′(0)) = (9.9,0) is also given in Figure 1 (blue curves).

4 8 12 16
t

2

4

6

8

10
x

Figure 1: Solution curves of (1.1) and (6.1) with α = 3 , β = 2 , f (t)= 10δ (t) and e(t) = 4sin t .

7. Conclusions

The purpose of this study was to deal with Hyers–Ulam stability for second-order
linear differential equations. In particular, this work clarified the following: finding an
explicit HUS constant K on I , and the explicit solution x of (1.1) such that |ξ (t)−
x(t)| � Kε for all t ∈ R . It have given some theorems that describe the exact behavior
of the solutions for the various situations of σ and τ in I = (σ ,τ) . Moreover, it was
shown that the obtained HUS constant is the best one. On the other hand, the instability
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was also considered and a necessary and sufficient condition was obtained. In the end,
in order to assert the importance of Hyers–Ulam stability, an example was presented. It
clarified that the best HUS constant means the maximum value of the error between an
approximate solution and an exact solution.
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