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STRONG CONSISTENCY OF LS ESTIMATORS IN SIMPLE

LINEAR EV REGRESSION MODELS WITH WOD ERRORS
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(Communicated by T. Burić)

Abstract. For a simple linear errors-in-variables regression model with widely orthant dependent
errors, we provide sufficient conditions for the convergence rate in the strong consistency of the
least squares estimators. We also provide necessary conditions. Our result improves and extends
some results of Liu et al. (J. Math. Ineq., 14 (2020), 771–779).

1. Introduction

Consider the simple linear errors-in-variables (EV) regression model:

ηk = axk +b+ εk, ξk = xk + δk, 1 � k � n, (1.1)

where a,b,x1, · · · ,xn are unknown parameters or constants, (εk,δk) , 1 � k � n, are
random vectors and ξk,ηk , 1 � k � n, are observable variables. From (1.1),

ηk = aξk +b+(εk−aδk), 1 � k � n.

Then, as a usual regression model of ηk on ξk with the errors εk−aδk , the least squares
(LS) estimators of a and b are given as

ân = ∑n
k=1(ξk − ξ n)(ηk −ηn)

∑n
k=1(ξk − ξ n)2

, b̂n = ηn − ânξ n,

where ξ n = n−1 ∑n
k=1 ξk. The notations of ηn , δ n and xn are defined in the same way.

Based on the above notations, we have

ân−a = ∑n
k=1(δk − δn)εk + ∑n

k=1(xk − xn)(εk −aδk)−a∑n
k=1(δk − δ n)2

∑n
k=1(ξk − ξ n)2

(1.2)

and
b̂n−b = −xn(ân−a)− (ân−a)δn + ε n−aδn. (1.3)
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The EV model was proposed by Deaton (1985) to correct the effects of the sam-
pling errors and is somewhat more practical than the ordinary regression model. Fuller
(1987) summarized many early works for the EV models. Due to the simple form and
wide applicability, the studies for the EV model have attracted much attention for the
past three decades. For more details, we refer to Chen et al. (2020), Hu et at. (2017),
Lita da Silva (2018, 2020), Liu and Chen (2005), Liu et al. (2020), Miao et al. (2011),
Wang et al. (2015), Wang et al. (2018), Wu et al. (2018), Zhang et al. (2019) and
so on. In particular, Liu et al. (2020) obtained a necessary and sufficient condition for
the convergence rate of the strong consistency for each of the unknown parameters as
follows.

THEOREM A. (Liu et al., 2020)Under the model (1.1) , assume that {(ε,δ ),(εn,δn),
n � 1} is a sequence of independent and identically distributed random vectors with
Eε = Eδ = 0 , 0 < E|ε|β ,E|δ |β < ∞ for 1/p = 1/2+ 1/β , where 1 � p < 2 , and
Eδε �= aEδ 2 . Then

n1−1/p(ân−a)→ 0 a.s. if and only if n2−1/p/sn → 0,

where sn = ∑n
k=1(xk − xn)2.

Further, if supn�1 min{n,sn}x2
n/s∗n < ∞ , then

n1−1/p(b̂n −b)→ 0 a.s. if and only if n2−1/pxn/s∗n → 0,

where s∗n = max{n,sn} .

In this paper, we improve and extend Theorem A to widely orthant dependent
(WOD) random variables.

A sequence of random variables {Xn,n � 1} is said to be widely upper orthant
dependent (WUOD) if for each n � 1, there exists a positive number gU(n) such that
for all real numbers xi,1 � i � n,

P(X1 > x1, · · · ,Xn > xn) � gU(n)
n

∏
i=1

P(Xi > xi),

it is said to be widely lower orthant dependent (WLOD) if for each n � 1, there exists
a positive number gL(n) such that for all real numbers xi,1 � i � n,

P(X1 � x1, · · · ,Xn � xn) � gL(n)
n

∏
i=1

P(Xi � xi),

and it is said to be WOD if it is both WUOD and WLOD. The sequences {gU(n),n � 1}
and {gL(n),n � 1} are called dominating coefficients (see Wang et al., 2013). If for all
n � 1, gU(n) = gL(n) = M for some positive constant M, then {Xn,n � 1} is said to
be extended negatively dependent (END). In particular, if M = 1, then {Xn,n � 1} is
said to be negatively orthant dependent (NOD) or negatively dependent. Since the class
of WOD random variables contains independent random variables, END random vari-
ables and NOD random variables as special cases, it is interesting to study the limiting
behavior of WOD random variables.

We now state the main results. Some lemmas and the proofs of the main results
will be detailed in the next section.
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THEOREM 1.1. Under the model (1.1) , let {ε,εn,n � 1} and {δ ,δn,n � 1} be
two sequences of identically distributed WOD random variables with dominating co-
efficients gL(n) and gU(n) , g′L(n) and g′U(n) for n � 1 , respectively. Suppose that
Eε = Eδ = 0 , 0 < E|ε|2t p/(2t−p),E|δ |2t p/(2t−p) < ∞ for some 1 < p < 2 and 1 � t <
2p/(4−2p), and there exist a positive function g(x) for x � 0 and a nonnegative con-
stant 0 � τ < ∞ such that g(x) = O(xτ ) and max{gL(n),gU(n),g′L(n),g′U(n)} � g(n)
for n � 1 . Then the following statements hold:

(i) If n2−1/t/sn = O(1) and n2−1/p/sn → 0, then

n1−1/p(ân−a) → 0 a.s. (1.4)

(ii) If supn�1 min{n,sn}n1−1/t x2
n/s∗n < ∞ and n2−1/pxn/s∗n → 0, then

n1−1/p(b̂n−b)→ 0 a.s., (1.5)

where s∗n = max{n,sn} is the same as in Theorem A.

REMARK 1.1. In the proof of Theorem 1.1, ε and δ need finite absolute moments
of order greater than 2 (see the proofs of (2.5) and (2.6)). However, 2t p/(2t− p) = 2
when p = 1 and t = 1. If the moment conditions of ε and δ are strengthened to
0 < E|ε|u,E|δ |u < ∞ for some u > 2, then Theorem 1.1 is still valid when p = 1 and
t = 1.

REMARK 1.2. Theorem 1.1 improves and extends the sufficiency parts of The-
orem A to WOD random variables. When t = p, Theorem 1.1 (i) corresponds to the
sufficiency part of the first result of Theorem A. For each fixed 1 < p < 2, the func-
tion h(t) := 2t p/(2t − p) is strictly decreasing on 1 � t < 2p/(4− 2p), and hence
h(p) < h(1). Since h(1) = β , where 1/p = 1/2 + 1/β , the moment conditions of
Theorem 1.1 are weaker than those of Theorem A. When t = 1, Theorem 1.1 (ii) cor-
responds to the sufficiency part of the second result of Theorem A.

The following theorem is a partial converse of Theorem 1.1.

THEOREM 1.2. Under the assumptions of Theorem 1.1, further assume that {ε,εn}
and {δ ,δn} are independent, and aEδ 2 �= 0 (i.e., Eδε �= aEδ 2). Then the following
statements hold:

(i) If 1 � t � p, then n1−1/p(ân−a)→ 0 a.s. implies n2−1/p/sn → 0.

(ii) If supn�1 min{n,sn}n1−1/t x2
n/s∗n < ∞, then n1−1/p(b̂n − b) → 0 a.s. implies

n2−1/pxn/s∗n → 0.

REMARK 1.3. If 1 � t � p, condition n2−1/t/sn = O(1) of Theorem 1.1 (i) fol-
lows from n2−1/p/sn → 0 (i.e., condition n2−1/t/sn = O(1) can be deleted). Hence
Theorem 1.2 (i) is the converse of Theorem 1.1 (i) when 1 � t � p. Theorem 1.2, of
course, requires an additional condition that {εn} and {δn} are independent.
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2. Lemmas and proofs

To prove the main results, we need the following lemmas. The first one provides a
strong law of large numbers for weighted sums of WOD random variables.

LEMMA 2.1. (Yi et al., 2020) Let 1 � p < 2 and α,β > 0 with 1/p = 1/α +
1/β . Let {X ,Xn,n � 1} be a sequence of identically distributed WOD random vari-
ables with dominating coefficients gL(n) and gU(n) for n � 1. Suppose that there exist
a positive function g(x) for x � 0 and a nonnegative constant 0 � τ < ∞ such that
g(x) = O(xτ) and max{gL(n),gU(n)}� g(n) for n � 1. Let {ank,1 � k � n,n � 1} be
an array of constants satisfying

n

∑
k=1

|ank|α = O(n).

If EX = 0 and E|X |β < ∞, then

n−1/p
n

∑
k=1

ankXk → 0 a.s.

If all weights ank in Lemma 2.1 have the same value, then ∑n
k=1 |ank|α = O(n) for

any α > 0. Hence, the following lemma follows easily from Lemma 2.1.

LEMMA 2.2. Let 1 � p < 2 . Let {X ,Xn,n � 1} be a sequence of identically
distributed WOD random variables with dominating coefficients gL(n) and gU(n) for
n � 1. Suppose that there exist a positive function g(x) for x � 0 and a nonnegative
constant 0 � τ < ∞ such that g(x) = O(xτ ) and max{gL(n),gU(n)} � g(n) for n � 1.
If EX = 0 and E|X |β < ∞ for some β > p, then

n−1/p
n

∑
k=1

Xk → 0 a.s.

REMARK 2.1. Lemma 2.2 can be obtained by Theorem 2.2 of Lita da Silva
(2020). In fact, the result of Lita da Silva (2020) improves and generalizes Lemma
2.2.

To prove Theorem 1.2, we need the following lemma.

LEMMA 2.3. Let {Xn,n � 1} be a sequence of nonnegative WOD random vari-
ables with dominating coefficients gL(n) and gU(n) for n � 1, and let {Yn,n � 1} be
a sequence of nonnegative WOD random variables with dominating coefficients g′L(n)
and g′U(n) for n � 1. Assume that {Xn,n � 1} and {Yn,n � 1} are independent. Then
{XnYn,n � 1} is a sequence of WOD random variables with dominating coefficients
gL(n)g′L(n) and gU(n)g′U(n) for n � 1.

Proof. The proof is similar to those of Lemma 1 in Chen et al. (2019) and Lemma
2.2 in Lang et al. (2021). For the sake of completeness, we give the proof here.
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If z1, · · · ,zn are all nonnegative, we have that

P(X1Y1 � z1, · · · ,XnYn � zn)

=
∫

· · ·
∫

I (x1y1 � z1, · · · ,xnyn � zn) dFX1,···,Xn,Y1,···,Yn(x1, · · · ,xn,y1, · · · ,yn)

=
∫

· · ·
∫

I (x1y1 � z1, · · · ,xnyn � zn) dFX1,···,Xn(x1, · · · ,xn)dFY1,···,Yn(y1, · · · ,yn)

(by independence of {Xn} and {Yn})
=
∫

· · ·
∫

P(x1Y1 � z1, · · · ,xnYn � zn) dFX1,···,Xn(x1, · · · ,xn)

� g′L(n)
∫

· · ·
∫

P(x1Y1 � z1) · · ·P(xnYn � zn) dFX1,···,Xn(x1, · · · ,xn) (by WOD of {Yn})
= g′L(n)E [FY1(z1/X1) · · ·FYn(zn/Xn)] .

Since FYi(zi/·) is nonincreasing for each 1 � i � n, we have by Proposition 1.1 of Wang
et al. (2013) that {FY1(z1/X1), · · · ,FYn(zn/Xn)} is a sequence of WOD with dominating
coefficients gU(i) and gL(i) for 1 � i � n, and hence

E [FY1(z1/X1) · · ·FYn(zn/Xn)] � gL(n)E [FY1(z1/X1)] · · ·E [FYn(zn/Xn)] .

On the other hand,

E [FY1(z1/X1)] · · ·E [FYn(zn/Xn)]

=
∫∫

I(x1y1 � z1) dFY1(y1)dFX1(x1) · · ·
∫∫

I(xnyn � zn) dFYn(yn)dFXn(xn)

=
∫∫

I(x1y1 � z1) dFX1,Y1(x1,y1) · · ·
∫∫

I(xnyn � zn) dFXn,Yn(xn,yn)

(by independence of {Xn} and {Yn})
= P(X1Y1 � z1) · · ·P(XnYn � zn).

It follows that

P(X1Y1 � z1, · · · ,XnYn � zn) � g′L(n)gL(n)P(X1Y1 � z1) · · ·P(XnYn � zn).

Otherwise, we have that

P(X1Y1 � z1, · · · ,XnYn � zn) = g′L(n)gL(n)P(X1Y1 � z1) · · ·P(XnYn � zn) = 0.

Similarly, we also have that

P(X1Y1 > z1, · · · ,XnYn > zn) � g′U(n)gU(n)P(X1Y1 > z1) · · ·P(XnYn > zn).

Therefore, X1Y1, · · · ,XnYn are WOD with dominating coefficients g′L(i)gL(i) and
g′U(i)gU (i) for 1 � i � n. �

Proof of Theorem 1.1. The idea of the proof is similar to that of Liu et al. (2020),
but some details should be changed. It is important to observe at the outset that ε and



1538 Y. YANCHUN, P. CHEN AND S. H. SUNG

δ have finite absolute moments of order greater than 2, since 2t p/(2t− p) > 2 when
1 < p < 2 and 1 � t < 2p/(4−2p).

(i) Assume that n2−1/p/sn → 0 and n2−1/t/sn = O(1). From (1.2), it suffices to
prove that

s−1
n ·n1−1/p

n

∑
k=1

(δk − δn)εk → 0 a.s., (2.1)

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)(εk −aδk) → 0 a.s., (2.2)

s−1
n ·n1−1/p

n

∑
k=1

(δk − δn)2 → 0 a.s., (2.3)

s−1
n

n

∑
k=1

(ξk − ξn)
2 → 1 a.s. (2.4)

By Proposition 1.1 in Wang et al. (2013) or Lemma 2.3 in Chen and Sung (2019),
{(ε+

n )2,n � 1} is a sequence of WOD random variables with dominating coefficients
gL(n) and gU(n) for n � 1, and {(ε−n )2,n � 1} is a sequence of WOD random vari-
ables with dominating coefficients gU(n) and gL(n) for n � 1. Then by Lemma 2.2,

n−1
n

∑
k=1

(ε+
k )2 → E(ε+)2 a.s. and n−1

n

∑
k=1

(ε−k )2 → E(ε−)2 a.s.,

which follow that

n−1
n

∑
k=1

ε2
k = n−1

n

∑
k=1

(ε+
k )2 +n−1

n

∑
k=1

(ε−k )2 → Eε2 a.s. (2.5)

Similarly, we have

n−1
n

∑
k=1

δ 2
k → Eδ 2 a.s. (2.6)

By the Hölder inequality, (2.5), and (2.6),

limsup
n→∞

n−1

∣∣∣∣∣
n

∑
k=1

εkδk

∣∣∣∣∣� limsup
n→∞

(
n−1

n

∑
k=1

ε2
k

)1/2(
n−1

n

∑
k=1

δ 2
k

)1/2

=
√

Eε2Eδ 2 a.s.,

which, together with the facts that ε n → 0 a.s. and δ n → 0 a.s. from Lemma 2.2,
implies that

s−1
n ·n1−1/p

n

∑
k=1

(δk − δn)εk =
n2−1/p

sn
·
(

1
n

n

∑
k=1

εkδk − ε nδ n

)
→ 0 a.s.,

i.e., (2.1) holds.
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By (2.6) and δ n → 0 a.s.,

s−1
n ·n1−1/p

n

∑
k=1

(δk − δn)2 =
n2−1/p

sn
·
(

1
n

n

∑
k=1

δ 2
k − δ

2
n

)
→ 0 · (Eδ 2−0) = 0 a.s.,

i.e., (2.3) holds.
Set ank = n(xk − xn)/sn for n � 1 and 1 � k � n . Then

sup
n�1

n−1
n

∑
k=1

|ank|2t = sup
n�1

n2t−1 ∑n
k=1 |xk − xn|2t

s2t
n

� sup
n�1

n2t−1stn
s2t
n

=

(
sup
n�1

n2−1/t

sn

)t

< ∞.

Therefore by Lemma 2.1 with α = 2t and β = 2t p/(2t− p) ,

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)εk = n−1/p
n

∑
k=1

ankεk → 0 a.s. (2.7)

and

s−1
n ·n1−1/p

n

∑
k=1

(xk − xn)δk = n−1/p
n

∑
k=1

ankδk → 0 a.s. (2.8)

Then (2.2) holds from (2.7) and (2.8).
Noting that

s−1
n

n

∑
k=1

(ξk − ξ n)
2 = 1+2s−1

n

n

∑
k=1

(xk − xn)δk + s−1
n

n

∑
k=1

(δk − δn)2,

(2.4) holds by (2.3) and (2.8). Hence the proof of (i) is completed.
(ii) By Lemma 2.2,

n1−1/pε n → 0 a.s. and n1−1/pδ n → 0 a.s.

Hence, to prove (1.5), it suffices by (1.3) to show that

limsup
n→∞

|ân−a|< ∞ a.s. (2.9)

and
n1−1/p · xn(ân−a)→ 0 a.s. (2.10)

It is clear that

1
s∗n

n

∑
k=1

(ξk − ξn)
2 =

sn

s∗n
+

2
s∗n

n

∑
k=1

(xk − xn)δk +
1
s∗n

n

∑
k=1

(δk − δn)2. (2.11)

Observing that

sup
n�1

1
n

n

∑
k=1

(n(xk − xn)/s∗n)
2 = sup

n�1

nsn

(s∗n)2 � 1,
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we have by Lemma 2.1 with p = 1 and α = β = 2 that

1
s∗n

n

∑
k=1

(xk − xn)δk =
1
n

n

∑
k=1

[n(xk − xn)/s∗n]δk → 0 a.s. (2.12)

By (2.6) and Lemma 2.2,

1
n

n

∑
k=1

(δk − δn)2 =
1
n

n

∑
k=1

δ 2
k − δ

2
n → Eδ 2 a.s., (2.13)

which, together with the definition of s∗n, implies that

min{1,Eδ 2} � liminf
n→∞

(
sn

s∗n
+

1
s∗n

n

∑
k=1

(δk − δn)2

)

� limsup
n→∞

(
sn

s∗n
+

1
s∗n

n

∑
k=1

(δk − δn)2

)
� 1+Eδ 2 a.s. (2.14)

It follows by (2.11), (2.12), and (2.14) that

min{1,Eδ 2} � liminf
n→∞

1
s∗n

n

∑
k=1

(ξk − ξ n)
2 � limsup

n→∞

1
s∗n

n

∑
k=1

(ξk − ξ n)
2 � 1+Eδ 2 a.s.

(2.15)
By the Hölder inequality, (2.5), (2.6), and Lemma 2.2,

limsup
n→∞

∣∣∣∣∣1n
n

∑
k=1

(δk − δn)εk

∣∣∣∣∣� limsup
n→∞

(√
1
n

n

∑
k=1

δ 2
k · 1

n

n

∑
k=1

ε2
k + |δ nε n|

)

=
√

Eε2Eδ 2 a.s., (2.16)

and hence

limsup
n→∞

∣∣∣∣∣ 1
s∗n

n

∑
k=1

(δk − δn)εk

∣∣∣∣∣= limsup
n→∞

∣∣∣∣∣ ns∗n ·
1
n

n

∑
k=1

(δk − δn)εk

∣∣∣∣∣�
√

Eε2Eδ 2 a.s. (2.17)

By the same argument as (2.12),

1
s∗n

n

∑
k=1

(xk − xn)(εk −aδk) → 0 a.s. (2.18)

Therefore, we have by (1.2), (2.13), (2.15), (2.17), and (2.18) that

limsup
n→∞

|ân−a|�
√

Eε2Eδ 2 + |a|Eδ 2

min{1,Eδ 2} a.s.,

since

limsup
n→∞

1
s∗n

n

∑
k=1

(δk − δn)2 � lim
n→∞

1
n

n

∑
k=1

(δk − δn)2 = Eδ 2 a.s.
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Hence (2.9) holds.
By (2.16) and (2.6),

n1−1/p · xn

s∗n

n

∑
k=1

(δk − δ n)εk =
n2−1/pxn

s∗n
· 1
n

n

∑
k=1

(δk − δ n)εk → 0 a.s. (2.19)

and

n1−1/p · xn

s∗n

n

∑
k=1

(δk − δ n)2 =
n2−1/pxn

s∗n
· 1
n

n

∑
k=1

(δk − δ n)2 → 0 a.s. (2.20)

Noting that

sup
n�1

1
n

n

∑
k=1

∣∣∣∣nxn(xk − xn)
s∗n

∣∣∣∣
2t

= sup
n�1

n2t−1|xn|2t ∑n
k=1 |xk − xn|2t

s∗n2t

� sup
n�1

n2t−1|xn|2t stn
s∗n2t =

(
sup
n�1

min{n,sn}n1−1/t x2
n/s∗n

)t

< ∞,

we have by Lemma 2.1 with α = 2t and β = 2t p/(2t− p) that

n1−1/p · xn

s∗n

n

∑
k=1

(xk− xn)(εk−aδk) =
1

n1/p

n

∑
k=1

nxn(xk − xn)
s∗n

(εk−aδk)→ 0 a.s. (2.21)

Then (2.10) follows from (1.2), (2.15), and (2.19)–(2.21). The proof of (ii) is com-
pleted. �

Proof of Theorem 1.2. We first show that

1
n

n

∑
k=1

εkδk → 0 a.s. (2.22)

We can rewrite n−1 ∑n
k=1 εkδk as

1
n

n

∑
k=1

εkδk =
1
n

n

∑
k=1

(ε+
k δ+

k − ε+
k δ−

k − ε−k δ+
k + ε−k δ−

k ).

By Proposition 1.1 in Wang et al. (2013) or Lemma 2.3 in Chen and Sung (2019),
{ε+

n ,n � 1} and {δ+
n ,n � 1} are sequences of WOD random variables with dominating

coefficients gL(n) and gU(n), g′L(n) and g′U(n) for n � 1, respectively. It follows by
Lemma 2.3 that {ε+

n δ+
n ,n � 1} is still a sequence of WOD random variables with

dominating coefficients gL(n)g′L(n) and gU(n)g′U(n). Then by Lemma 2.2,

1
n

n

∑
k=1

ε+
k δ+

k → Eε+δ+ a.s.
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Similarly, n−1 ∑n
k=1 ε+

k δ−
k → Eε+δ− a.s., n−1 ∑n

k=1 ε−k δ+
k → Eε−δ+ a.s., and

n−1 ∑n
k=1 ε−k δ−

k → Eε−δ− a.s. Hence,

1
n

n

∑
k=1

εkδk → Eε+δ+−Eε+δ−−Eε−δ+ +Eε−δ− = Eεδ = Eε ·Eδ = 0,

i.e., (2.22) holds.
(i) Suppose that n2−1/p/sn does not converge to 0. Taking a subsequence when

necessary, we may assume that n2−1/p/sn → c ∈ (0,∞].
Noting that

sup
n�1

1
n

n

∑
k=1

∣∣∣∣∣n
1/(2t)(xk − xn)

s1/2
n

∣∣∣∣∣
2t

= sup
n�1

∑n
k=1 |xk − xn|2t

stn
� 1,

we have by Lemma 2.1 with α = 2t and β = 2t p/(2t− p) that

n−1/p+1/(2t)

s1/2
n

n

∑
k=1

(xk − xn)(εk −aδk) =
1

n1/p

n

∑
k=1

n1/(2t)(xk − xn)

s1/2
n

(εk −aδk) → 0 a.s.

From the proof of Theorem 1.1, ε n → 0 a.s., δ n → 0 a.s., and n−1 ∑n
k=1 δ 2

k → Eδ 2 a.s.
Then we obtain by (2.22), 1 � t � p, and n2−1/p/sn → c ∈ (0,∞] that

n−1

{
n

∑
k=1

(δk − δn)εk +
n

∑
k=1

(xk − xn)(εk −aδk)−a
n

∑
k=1

(δk − δn)2

}

= n−1
n

∑
k=1

δkεk − δnε n +
1

n1/(2t)−1/(2p) ·
s1/2
n

n1−1/(2p) ·
n−1/p+1/(2t)

s1/2
n

n

∑
k=1

(xk − xn)(εk −aδk)

−an−1
n

∑
k=1

δ 2
k +aδn

2

→−aEδ 2 a.s. (2.23)

and

n−2+1/p
n

∑
k=1

(ξk − ξn)
2

= n−2+1/p

{
sn +2

n

∑
k=1

(xk − xn)δk +
n

∑
k=1

(δk − δn)2

}

= n−2+1/psn +2n−1+1/p ·n−1
n

∑
k=1

(xk − xn)δk +n−1+1/p ·n−1
n

∑
k=1

δ 2
k −n−1+1/pδ n

2

→
{

c−1 a.s. if 0 < c < ∞,

0 a.s. if c = ∞,
(2.24)

since n−1 ∑n
k=1(xk − xn)δk → 0 a.s. by the same argument as (2.23).
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Therefore, we have by (1.2), (2.23), and (2.24) that

n1−1/p(ân−a)→

⎧⎪⎨
⎪⎩
−caEδ 2 a.s. if 0 < c < ∞,

−∞ a.s. if c = ∞, a > 0,

∞ a.s. if c = ∞, a < 0,

which contradicts that n1−1/p(ân−a)→ 0 a.s.
(ii) We prove that n1−1/p(b̂n − b) → 0 a.s. if and only if n2−1/pxn/s∗n → 0, un-

der condition supn�1 min{n,sn}n1−1/t x2
n/s∗n < ∞. From the proof of Theorem 1.1 (ii),

limsupn→∞ |ân −a| < ∞ a.s., n1−1/pε n → 0 a.s., and n1−1/pδ n → 0 a.s. It follows by
(1.3) that

n1−1/p(b̂n−b) → 0 a.s. ⇐⇒ n1−1/pxn(ân−a)→ 0 a.s. (2.25)

By (1.2), (2.15), and (2.21),

n1−1/pxn(ân−a)→ 0 a.s.

⇐⇒ n1−1/p xn

s∗n

{
n

∑
k=1

(δk − δn)εk +
n

∑
k=1

(xk − xn)(εk −aδk)−a
n

∑
k=1

(δk − δn)2

}
→ 0 a.s.

⇐⇒ n1−1/p xn

s∗n

{
n

∑
k=1

(δk − δn)εk −a
n

∑
k=1

(δk − δ n)2

}
→ 0 a.s. (2.26)

We have by (2.22), together with ε n → 0 a.s., δ n → 0 a.s., and n−1 ∑n
k=1 δ 2

k → Eδ 2

a.s., that

n−1

{
n

∑
k=1

(δk − δn)εk −a
n

∑
k=1

(δk − δn)2

}
→−aEδ 2 a.s.

Hence,

n1−1/p xn

s∗n

{
n

∑
k=1

(δk − δ n)εk −a
n

∑
k=1

(δk − δn)2

}
→ 0 a.s.

⇐⇒ n2−1/pxn/s∗n → 0. (2.27)

Combining (2.25)–(2.27), we obtain the result. �
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