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MAPPING PROPERTIES OF MAXIMAL
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(Communicated by M. Krnić)

Abstract. In this paper, we introduce Morrey, Hölder, Lipschitz and Campanato spaces on infi-
nite connected graphs. We establish the boundedness of the Hardy-Littlewood maximal operator
and its fractional variants on the above function spaces under certain conditions on graphs. The
relations between Hölder spaces and Campanato spaces will be also investigated.

1. Introduction

It is well known that the Hardy-Littlewood maximal function and fractional max-
imal functions play key roles in partial differential equations, potential theory and har-
monic analysis. For example, see [5, 20, 21, 32] for the Hardy-Littlewood maximal
function and [1, 2, 3] for fractional maximal functions. Over the last several years the
mapping properties for the fractional maximal operators on various of function spaces
have been studied by many authors in the Euclidean setting (see [11, 10, 16, 17, 19,
24, 25]) and in the metric setting (see [9, 13, 14, 15, 28, 29, 33]). The main motivation
of this paper is to introduce Morrey, Hölder, Lipschitz and Campanato spaces on con-
nected graphs, as well as establish the boundedness for the Hardy-Littlewood maximal
operator on graphs and its fractional variants on the above function spaces.

Let G = (VG,EG) be an undirected combinatorial graph with the set of vertices VG

and the set of edges EG . Two vertices x, y ∈ VG are called neighbors if they are con-
nected by an edge x∼ y∈ EG . For any v∈VG we denote by NG(v) the set of neighbors
of v . We say that G is locally finite if for any v∈VG , the cardinality |NG(v)|< ∞ . The
graph G is called connected if for any distinct x, y ∈ VG , there is a finite sequence of
vertices {xi}k

i=0 , k∈N\{0} , such that x = x0 ∼ x1 ∼ ·· · ∼ xk = y . Here N = {0,1, . . .} .
We say that G is infinite if |VG| = +∞ .

In what follows, we always assume that the graph G = (VG,EG) is an infinite
connected graph. Let dG be the metric induced by the edges in EG . That is, given
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u,v ∈VG , the distance dG(u,v) is the number of edges in a shortest path connecting u
and v . Let BG(v,r) be the ball centered at v , with radius r on the graph G , i.e.

BG(v,r) = {u ∈VG : dG(u,v) � r}.
For example,

BG(v,r) =
{ {v}, if 0 � r < 1;
{v}∪NG(v), if 1 � r < 2.

For any subset A ⊂VG , we denote by |A| the cardinality of A .
We now introduce the definitions of fractional maximal operators on graphs.

DEFINITION 1.1. (Fractional maximal operators) (see [23]). Let 0 � α < 1. For
a function f : VG → R , the (centered) fractional maximal operator on G is given by

Mα ,G f (v) = sup
r�0

1
|BG(v,r)|1−α ∑

w∈BG(v,r)
| f (w)|.

Another version is defined as

M̃α ,G f (v) = sup
r>0

rα

|BG(v,r)| ∑
w∈BG(v,r)

| f (w)|.

Since the distance dG only takes natural numbers as values, the fractional maximal
operator Mα ,G can be redefined by

Mα ,G f (v) = sup
r∈N

1
|BG(v,r)|1−α ∑

w∈BG(v,r)
| f (w)|.

When α = 0, the operators Mα ,G and M̃α ,G reduce to the centered Hardy-Littlewood
maximal operator on G , which is denoted by MG .

The operators MG and Mα ,G have their roots in the discrete harmonic analysis
(see [6, 7, 8]). More precisely, let G1 = (VG1 ,EG1) , where VG1 = Z and EG1 = {i ∼
i+1 : i∈Z} . The operator MG1 is just the classical one-dimensional discrete centered
Hardy-Littlewood maximal operator M , i.e.

M f (n) = sup
r∈N

1
2r+1

r

∑
k=−r

| f (n+ k)|, n ∈ Z.

Then the operator Mα ,G1 is the usual one-dimensional discrete centered fractional max-
imal operator Mα , i.e.

Mα f (n) = sup
r∈N

1
(2r+1)1−α

r

∑
k=−r

| f (n+ k)|, n ∈ Z.

Over the last twenty years the Hardy-Littlewood maximal operator on graphs has
also been studied by many authors (see [4, 12, 18, 26, 30, 31]). This type of opera-
tor MG was firstly introduced by Korányi and Picardello [18] who used this operator
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to study the boundary behaviour of eigenfunctions of the Laplace operator on trees.
Subsequently, Cowling et al. [12] further studied the operator MG with G being ho-
mogeneous trees. In 2010, Naor and Tao studied the weak L1(G) norm of MG with G
being an infinite rooted regular tree. It would be worth noting that Naor and Tao’s result
was recently extended to the weighted setting in [27]. In 2012, Badr and Martell [4]
established the weighted norm inequalities for the Hardy-Littlewoood maximal opera-
tors on infinite graphs. In 2016, Soria and Tradacete [30] studied the best constants for
the Lp -norm of the Hardy-Littlewood maximal operators on finite connected graphs.
Recently, Soria and Tradacete [31] further investigated some different geometric prop-
erties on infinite graphs, related to the weak-type boundedness of the Hardy-Littlewood
maximal operator. To be more precise, they illustrated the connections and differences
of the doubling condition, finite dilation and overlapping indices, uniformly bounded
degree, the equidistant comparison property of a infinite graph G and the weak type
(1,1) boundedness of MG via some non-trivial examples.

Let us introduce some geometric conditions on graphs, which are useful for our
aim.

DEFINITION 1.2. ([31]). Let G = (VG,EG) .
(i) (Doubling condition). We say that the graph G is doubling, if

D(G) := sup
x∈VG, r∈N

|BG(x,2r)|
|BG(x,r)| < ∞.

(ii) (Overlapping index). The overlapping index of G is defined as

O(G) := min
{

m ∈ N : ∀{Bj} j∈J, Bj a ball in G, ∃I ⊂ J,⋃
j∈J

B j =
⋃
i∈I

Bi and ∑
i∈I

χBi � m
}
.

(iii) (Uniformly bounded degree). We say that the graph G satisfies the uniformly
bounded degree condition, if

ΔG := sup
v∈VG

|NG(v)| < ∞.

We remark that there is no relation between D(G) and ΔG for any infinite graph G
(see [31]). In order to establish our main results, we also introduce other conditions on
graph.

DEFINITION 1.3. Let G = (VG,EG) .
(i) (Lower bound condition). We say that the graph G satisfies a lower bound

condition, if there exists Q � 1 such that

B1,Q := inf
x∈VG,r∈N\{0}

|BG(x,r)|
rQ > 0.
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(ii) (Upper bound condition). We say that the graph G satisfies a upper bound
condition, if there exists Q � 1 such that

B2,Q := sup
x∈VG,r∈N\{0}

|BG(x,r)|
rQ < ∞.

(iii) (Annular decay properties). Let 0 < δ � 1. We say that the graph G satisfies
the δ -annular decay property, if

B3,δ := sup
x∈VG,

h,R∈N\{0}, 0<h<R

|BG(x,R)|− |BG(x,R−h)|
|BG(x,R)|

(R
h

)δ
< ∞.

(iv) (Inverse doubling condition). We say that the graph G is inverse doubling, if

D̃(G) := inf
x∈VG, r∈N\{0}

|BG(x,2r)|
|BG(x,r)| > 1.

REMARK 1.4. There are some examples for infinite graphs satisfy the above prop-
erties appearing in Definitions 1.2 and 1.3. Let d ∈N\{0} and Gd = (VGd ,EGd ) , where
VGd = Zd and

EGd =
d⋃

i=1
{(a1, . . . ,ai−1,ai,ai+1, . . . ,ad) ∼ (a1, . . . ,ai−1,ai +1,ai+1, . . . ,ad) :

a j ∈ Z, j = 1,2, . . . ,d.}.
It was pointed out in [22] that

max{1,cd(r− c1)d} � |BGd (v,r)| � cd(r+ c1)d ,

for any �n ∈ Zd and r � 0, where c1 =
√

d/2 and cd = 2πd/2

Γ(d/2)d . Let c2 = c1 + c−1/d
d .

One can easily check that 1 � D(Gd) � (5d)d , O(Gd) = 2d , 1 < ΔGd � 3d−1. Taking
Q = d and δ = 1, we have min{cd,1,c−d

2 } � B1,Q < cd2ddd/2 1 � B2,Q < cd2ddd/2

and 2/(cd(2 + c1)d) � B3,δ � 2dd(1 + 2c1 + 2c2)d . Particularly, when d = 1, then

D̃(G) = 5
3 .

It should be pointed out that the fractional maximal operators Mα ,G and M̃α ,G

were first introduced by Liu and Zhang [23] who investigated the Lebesgue space
boundedness for the above maximal operators and the regularity properties for the
above maximal operators on the endpoint Sobolev spaces and Hajłasz-Sobolev spaces
on G under certain geometric conditions on G . In this paper we shall introduce Mor-
rey, Hölder, Lipschitz and Campanato spaces on infinite connect graphs, and establish
the boundedness of Mα ,G and M̃α ,G on the above function spaces, which is the main
motivation of this work.

This paper will be organized as follows. Section 2 will be devoted to introducing
the Morrey spaces on graphs and studying the boundedness of the Hardy-Littlewood
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maximal operator and its fractional variants on Morrey spaces. In Section 3, we in-
troduce the Hölder spaces and Lipschitz spaces on graphs and study the action of the
above operators on the above function spaces. Finally, we introduce the Campanato
spaces on graphs and study the behaviors of the above operators on Campanato spaces
in Section 4. We would like to remark that the main ideas employed in the proofs of
main Theorems are motivated by [9, 13, 14], but our methods and techniques are more
refine and simple than those in [9, 13, 14]. Particularly, some new techniques will be
explored in the graph setting.

Throughout this paper, we use the symbol Cα ,β ,··· to denote positive constants
that depend on parameters α, β , · · · appeared in the statements of the theorems and
other conclusions, but they are independent of the essential variables. In what follows,
given a graph G = (VG,EG) , we denote fB = 1

|B| ∑v∈B f (v) for any arbitrary function
f : VG → R and any subset B of G .

2. Boundedness on Morrey spaces

This section is devoted to establishing the boundedness of the Hardy-Littlewood
maximal operator and its fractional variants on Morrey spaces. Let us introduce the
Morrey spaces on graphs.

DEFINITION 2.1. (Morrey spaces) Let 1 � p < ∞ , β ∈ R and G = (VG,EG) . A
locally integrable function f : G → R belongs to the Morrey space Lp,β (G) , if

‖ f‖Lp,β (G) := sup
x∈VG,r∈N

|BG(x,r)|β
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|p

)1/p
< ∞.

Another way to define Morrey space is the following

L̃p,β (G) :=
{

f ∈ L1
loc(G) : ‖ f‖L̃p,β (G) < ∞

}
,

where

‖ f‖L̃p,β (G) := sup
x∈VG,r>0

rβ
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|p

)1/p
, if β � 0;

‖ f‖L̃p,β (G) := sup
x∈VG,r�1

rβ
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|p

)1/p
, if β < 0.

REMARK 2.2. (i) It is clear that Lp,1/p(G) = Lp(G) for all 1 � p < ∞ . Also,
Lq,β (G) ⊂ Lp,β (G) and L̃q,β (G) ⊂ L̃p,β (G) for 1 � p < q < ∞ and β ∈ R .

(ii) The definition of L̃p,β (G) for the case β < 0 is reasonable. Actually, unlike
the definitions of classical Morrey spaces on the n -dimensional Euclidean spaces Rn

and more general metric measure spaces, the supremum about r � 1 in the definition
of L̃p,β (G)-norm can’t replaced by r > 0. The reason is as follows:

sup
x∈VG,0<r<1

rβ
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|p

)1/p
= sup

x∈VG,0<r<1
rβ | f (x)| = +∞,



1618 X. ZHANG, F. LIU AND H. ZHANG

when β < 0 and ‖ f‖L∞(G) > 0.
(iii) It is clear that

‖ f‖L∞(G) � ‖ f‖Lp,β (G), for 1 � p < ∞, β ∈ R,

and
‖ f‖L∞(G) � ‖ f‖L̃p,β (G), for 1 � p < ∞, β � 0.

We shall establish the following result.

THEOREM 2.1. Let 1 < p < ∞ and G = (VG,EG) . Assume that D(G) < ∞ and
1 < D̃(G) < ∞ . Then

(i) Let β > 0 . Then the map MG : Lp,β (G) → Lp,β (G) is bounded. Moreover,

‖MG f‖Lp,β (G) � Cp,β ,D(G),D̃(G)‖ f‖Lp,β (G), ∀ f ∈ Lp,β (G).

(ii) Let 0 < α < 1 , β > α and q = pβ/(β −α) . Then the map Mα ,G : Lp,β (G)→
Lq,β−α(G) is bounded. Moreover,

‖Mα ,G f‖Lq,β−α (G) � Cp,β ,α ,D(G),D̃(G)‖ f‖Lp,β (G), ∀ f ∈ Lp,β (G).

THEOREM 2.2. Let 1 < p < ∞ and G = (VG,EG) . Assume that D(G) < ∞ and
1 < D̃(G) < ∞ . Let 0 < α < 1 , β > α and q = pβ/(β −α) . Then M̃α ,G is bounded
from L̃p,β (G) to L̃q,β−α(G) . Moreover,

‖M̃α ,G f‖L̃q,β−α (G) � Cp,β ,α ,D(G),D̃(G)‖ f‖L̃p,β (G), f ∈ L̃p,β (G).

REMARK 2.3. The corresponding results in Theorems 2.1 and 2.2 hold for the
graph in {Gd}d∈N\{0} , where {Gd}d∈N\{0} are given as in Remark 1.4. Moreover, we
see that the conclusions in Theorems 2.1 and 2.2 also hold for the discrete centered
fractional maximal operator

Mα ,d f (�n) = sup
r�0

1
N(B(�n,r))1−α ∑

�m∈B(�n,r)∩Zd

| f (�n+�m)|, for �n ∈ Zd ,

where B(�n,r) is the open ball centered at �n with radius r and N(B(�n,r)) is the number
of the lattice points in the set B(�n,r) . The above claim follows from the following

Mα ,Gd f (�n) � Mα ,d f (�n) � Cα ,dMα ,Gd f (�n), ∀�n ∈ Rd .

We now present the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Fix x ∈ VG and r ∈ N\ {0} , let B1 = BG(x,4r) and S j =
BG(x,2 jr)\BG(x,2 j−1r) for j � 3. We can write f = f1 +g , where f1 = f χB1 , g =

∞
∑
j=3

f j and f j = f χS j for all j � 3. By the sublinearity of MG , one has

∑
v∈BG(x,r)

|MG f (v)|p � 2p−1
(

∑
v∈BG(x,r)

|MG f1(v)|p + ∑
v∈BG(x,r)

|MGg(v)|p
)
. (2.1)
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It was shown in [23] that MG is bounded on Lp(G) for 1 < p < ∞ . This together with
the fact that 1 < D̃(G) < ∞ implies

1
|BG(x,r)| ∑

v∈BG(x,r)
|MG f1(v)|p � Cp,D(G)

1
|BG(x,r)| ∑

v∈VG

| f1(v)|p

� Cp,D(G)
1

|BG(x,r)| ∑
v∈BG(x,4r)

| f (v)|p

= Cp,D(G)
|BG(x,4r)|
|BG(x,r)|

1
|BG(x,4r)| ∑

v∈BG(x,4r)
| f (v)|p

� Cp,D(G)|BG(x,4r)|−pβ‖ f‖p
Lp,β (G)

� Cp,β ,D(G),D̃(G)|BG(x,r)|−pβ‖ f‖p
Lp,β (G)

.

(2.2)
On the other hand, let us fix j � 3, v ∈ BG(x,r) and t ∈ N . Note that t ∈ [(2 j−1−

1)r,(2 j +1)r] when BG(v,t)∩S j = /0 . Moreover, BG(x,2 j−2r) ⊂ BG(x,(2 j−1−1)r) ⊂
BG(v,2 j−1r) . These facts together with the fact that 1 < D̃(G) < ∞ and Hölder’s in-
equality will imply

1
|BG(v, t)| ∑

w∈BG(v,t)
| f j(w)| �

( 1
|BG(v,t)| ∑

w∈BG(v,t)
| f j(w)|p

)1/p

=
( 1
|BG(v,t)| ∑

w∈BG(v,t)∩S j

| f (w)|p
)1/p

� sup
(2 j−1−1)r�s�(2 j+1)r

( 1
|BG(v,s)| ∑

w∈BG(v,s)
| f (w)|p

)1/p

� sup
(2 j−1−1)r�s�(2 j+1)r

‖ f‖Lp,β (G)|BG(v,s)|−β

� |BG(v,2 j−1r)|−β‖ f‖Lp,β (G)
� |BG(x,2 j−2r)|−β‖ f‖Lp,β (G)

� D̃(G)−( j−2)β |BG(x,r)|−β‖ f‖Lp,β (G).

It follows that

MGg(v) �
∞

∑
j=3

MG f j(v) �
∞

∑
j=3

|BG(x,r)|−β D̃(G)−( j−2)β‖ f‖Lp,β (G)

� Cβ ,D̃(G)|BG(x,r)|−β‖ f‖Lp,β (G).

(2.3)

Then we get from (2.1)–(2.3) that

|BG(x,r)|pβ

|BG(x,r)| ∑
v∈BG(x,r)

|MG f (v)|p

� 2p−1|BG(x,r)|pβ
( 1
|BG(x,r)| ∑

v∈BG(x,r)
|MG f1(v)|p

+
1

|BG(x,r)| ∑
v∈BG(x,r)

|MGg(v)|p
)

� Cp,β ,D(G),D̃(G)‖ f‖p
Lp,β (G)

,
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which shows
‖MG f‖Lp,β (G) � Cp,β ,D(G)‖ f‖Lp,β (G).

This proves part (i).
We now prove part (ii). Let x ∈ VG and r ∈ N \ {0} . By Hölder’s inequality, we

get

1
|BG(x,r)|1−α ∑

v∈BG(x,r)
| f (v)|

=
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|

)α/β |BG(x,r)|α
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|

)1−α/β

�
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|p

)α/(pβ )( 1

|BG(x,r)|1−αβ/(β−α) ∑
v∈BG(x,r)

| f (v)|
)1−α/β

� ‖ f‖α/β
Lp,β (G)

( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)|

)1−α/β

� ‖ f‖α/β
Lp,β (G)

(MG f (x))1−α/β .

When r = 0, by the fact that ‖ f‖L∞(G) � ‖ f‖Lp,β (G) , one has

1
|BG(x,r)|1−α ∑

v∈BG(x,r)
| f (v)|

= | f (x)| = | f (x)|α/β | f (x)|1−α/β � ‖ f‖α/β
Lp,β (G)

(MG f (x))1−α/β .

Hence, we have

Mα ,G f (x) � ‖ f‖α/β
Lp,β (G)

(MG f (x))1−α/β , ∀x ∈VG. (2.4)

Fix x ∈VG and r ∈ N . By (2.4) and part (i), we get( 1
|BG(x,r)| ∑

v∈BG(x,r)
|Mα ,G f (v)|pβ/(β−α)

)(β−α)/(pβ )

� ‖ f‖α/β
Lp,β (G)

( 1
|BG(x,r)| ∑

v∈BG(x,r)
|MG f (v)|p

)(β−α)/(pβ )

� ‖ f‖α/β
Lp,β (G)

|BG(x,r)|−(β−α)‖MG f‖(β−α)/β
Lp,β (G)

� Cp,α ,β ,D(G),D̃(G)|BG(x,r)|−(β−α)‖ f‖Lp,β (G),

which gives
‖Mα f‖Lpβ/(β−α),β−α (G) � Cp,α ,β ,D(G),D̃(G)‖ f‖Lp,β (G).

This yields the conclusion of part (ii) and finishes the proof of Theorem 2.1. �

Proof of Theorem 2.2. By the arguments similar to those used in deriving part (ii)
of Theorem 2.1, we can get the desired conclusion of Theorem 2.2. The details are
omitted. �
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3. Boundedness on Hölder and Lipschitz spaces

In this section, we investigate the boundedness of the Hardy-Littlewood maximal
operator and its fractional variants on Hölder and Lipschitz spaces. Let us introduce
Hölder spaces and Lipschitz spaces on graphs.

DEFINITION 3.1. (Hölder spaces) Let β � 0 and G = (VG,EG) . A locally in-
tegrable function f : G → R belongs to the space of Hölder continuous functions
C 0,β (G) , if

‖ f‖C 0,β (G) := sup
x,y∈VG,

x=y

| f (x)− f (y)|
dG(x,y)β < ∞.

DEFINITION 3.2. (Lipschitz spaces) Let β ∈ R and G = (VG,EG) . A locally
integrable function f : G → R belongs to the space of Lipschitz continuous functions
Lipβ (G) , if

‖ f‖Lipβ (G) := ‖ f‖L∞(G) +‖ f‖C 0,β (G) < ∞.

REMARK 3.3.

(i) It is clear that ‖ · ‖C 0,β (G) is a seminorm and Lipβ (G) is a Banach space.

(ii) Note that
Lipβ (G) = C 0,β (G), for β = 0. (3.1)

To see (3.1), it is clear that Lipβ (G)⊂C 0,β (G) . It suffices to check that C 0,β (G)⊂
L∞(G) when β = 0. Let G = (VG,EG) and fix f ∈ C 0,β (G) with β = 0. There
exists a vertex v ∈VG such that | f (v)| < ∞ . It is clear that

| f (u)| � | f (u)− f (v)|+ | f (v)| � ‖ f‖C 0,0(G) + | f (v)| < ∞, ∀u ∈VG.

This yields f ∈ L∞(G) and gives the above claim.

(iii) We have that
Lipβ (G) � C 0,β (G), ∀β > 0, (3.2)

which is a proper inclusion.

To see the above proper inclusion (3.2), let us consider the Graph G = (VG,EG)
with VG = N and EG = {i ∼ i+1; i ∈ N} and discuss the following two cases:

(a) When β � 1, let us take f (n) = n , n ∈ N . It is clear that

‖ f‖C 0,β (G) = sup
m,n∈N

| f (m)− f (n)|
dG(m,n)β � 1,

which gives that f ∈ C 0,β (G) . However f /∈ L∞(G) .
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(b) When β ∈ (0,1) , let us consider the function f (n) = nβ , n ∈ N . It is clear
that f /∈ L∞(G) . However,

‖ f‖C 0,β (G) = sup
m,n∈N

| f (m)− f (n)|
dG(m,n)β

� sup
m,n∈N

|mβ −nβ |
|m−n|β � 1,

since β ∈ (0,1) .

Our main results of this section can be listed as follows:

THEOREM 3.1. Let 0 < β � δ � 1 and 0 � α � δ −β . Let G = (VG,EG) satisfy
the δ -annular decay property. Then the map MG : C 0,β (G) → C 0,β (G) is bounded.
More precisely,

‖M̃α ,G f‖C 0,α+β (G) � 5(B3,δ +1)‖ f‖C 0,β (G), (3.3)

holds for all f ∈ C 0,β (G) with ‖ f‖C 0,β (G) > 0 .

Proof. The proof is motivated by the idea in the proof in [9, Theorem 1.1]. Let
f ∈C 0,β (G) . If ‖ f‖C 0,β (G) = 0, then we have f (v)≡C1 for some constant C1 ∈R and
all v∈VG . In this case we have MG f (v)≡ 1 for all v∈VG and then (3.3) is trivial since
‖MG f‖C 0,β (G) = 0. Hence, the boundedness of MG : C 0,β (G)→C 0,β (G) follows from
(3.3). Without loss of generality we shall prove (3.3) under the restrictive conditions
‖ f‖C 0,β (G) = 1 and f � 0 since M̃α ,G f = M̃α ,G| f | and ‖| f |‖C 0,β (G) � ‖ f‖C 0,β (G) .

Fix x, y ∈VG with x = y and let a = dG(x,y) . It suffices to show that

|M̃α ,G f (x)− M̃α ,G f (y)| � 5(B3,δ +1)aα+β . (3.4)

Without loss of generality we may assume that M̃α ,G f (x) > M̃α ,G f (y) . By the defini-
tion of M̃α ,G f (x) , there exists r > 0 such that

M̃α ,G f (x) � rα fBG(x,r) +aα+β .

It follows that

|M̃α ,G f (x)− M̃α ,G f (y)| � rα fBG(x,r) − (r+a)α fBG(y,r+a) +aα+β

� rα( fBG(x,r) − fBG(y,r+a))+aα+β .

Therefore, inequality (3.4) reduces to the following

rα( fBG(x,r) − fBG(y,r+a)) � 4(B3,δ +1)aα+β . (3.5)

We consider the following two cases:
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(i) (r � a ). In this case we have

| f (u)− f (v)| � dG(u,v)β � (dG(u,y)+dG(v,y))β � (4a)β , ∀u, v ∈ BG(y,r+a).

This together with the fact that BG(x,r) ⊂ BG(y,r+a) implies

fBG(x,r) − fBG(y,r+a) � f (ω1)− f (ω2) � (4a)β ,

where f (ω1) = max
u∈BG(y,r+a)

f (u) and f (ω2) = min
u∈BG(y,r+a)

f (u) . Therefore,

rα( fBG(x,r) − fBG(y,r+a)) � rα(4a)β � 4aα+β .

This proves (3.5) in this case.
(ii) (r > a ). Without loss of generality we may assume that r ∈ N\ {0} . Set m =

minw∈BG(x,r) f (w) . One can easily check that 0 � f (z)−m � (2r)β for all z ∈ BG(x,r) .
By the δ -annular decay property of G and β � δ < 1, we have

fBG(x,r) − fBG(y,r+a) = ( f −m)BG(x,r) − ( f −m)BG(y,r+a)

�
( 1
|BG(x,r)| −

1
|BG(y,r+a)|

)
∑

u∈BG(x,r)
( f (u)−m)

�
( |BG(y,r+a)|− |BG(x,r)|

|BG(y,r+a)|
)
( f −m)BG(x,r)

� (2r)β
( |BG(y,r+a)|− |BG(y,r−a)|

|BG(y,r+a)|
)

� B3,δ (2r)β
( 2a

r+a

)δ
.

(3.6)

Combining (3.6) with the fact that α + β � δ implies that

rα( fBG(x,r) − fBG(y,r+a)) � B3,δ 2β+δrα+β
( a

r+a

)δ

� 4B3,δ aα+β
(

r
a

)α+β−δ

� 4B3,δ aα+β .

This proves (3.5) in this case. Theorem 3.1 is proved. �

THEOREM 3.2. Let Q � 1 , 0 < β < δ � 1 and 0 < α � (δ −β )/Q. Assume that
the graph G = (VG,EG) has δ -annular decay property and a upper bound Q condition.
Then

‖Mα ,G f‖C 0,Qα+β (G) � (4Bα
2,Q(B3,δ +1)+1)‖ f‖C0,β (G) (3.7)

holds for all f ∈ C 0,β (G) with ‖ f‖C 0,β (G) > 0 .
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Proof. The proof is similar as the proof of Theorem 3.1. It suffices to prove (3.7)
for all f ∈ C 0,β (G) with ‖ f‖C 0,β (G) > 0 and f � 0. Let us fix a nonnegative function
f : G → R with ‖ f‖C 0,β (G) = 1. Fix x, y ∈ VG with x = y and let a = dG(x,y) . We
want to show that

|Mα ,G f (x)−Mα ,G f (y)| � (4Bα
2,Q(B3,δ +1)+1)aQα+β . (3.8)

We may assume, without loss of generality that Mα ,G f (x) > Mα ,G f (y) . By the defini-
tion of Mα ,G f (x) , there exists r ∈ N such that

Mα ,G f (x) � |BG(x,r)|α fBG(x,r) +aQα+β .

This together with the fact BG(x,r) ⊂ BG(y,r + a) and the upper bound condition im-
plies

Mα ,G f (x)−Mα ,G f (y) � |BG(x,r)|α fBG(x,r) −|BG(y,r+a)|α fBG(y,r+a) +aQα+β

� |BG(x,r)|α ( fBG(x,r) − fBG(y,r+a))+aQα+β

� Bα
2,QrQα ( fBG(x,r) − fBG(y,r+a))+aQα+β .

Therefore, to prove (3.8), it is enough to prove that

rQα( fBG(x,r) − fBG(y,r+a)) � 4(B3,δ +1)aQα+β . (3.9)

When r � a . It was shown in the proof of Theorem 3.1 that

fBG(x,r) − fBG(y,r+a) � (4a)β ,

which together with r � a gives (3.9) in this case.
When r > a , we get from (3.6) that

rQα( fBG(x,r) − fBG(y,r+a)) � 2β B3,δ rQα+β
( 2a

r+a

)δ

� 2β+δ aQα+β
( r

a

)Qα+β ( a
r+a

)δ

� 4B3,δ aQα+β ,

since β +Qα � δ . This proves (3.9) in this case. �
It is clear that the map Mα ,G : Lipβ (G) → Lipβ (G) is unbounded because of the

lack of the boundedness of Mα ,G : L∞(G) → L∞(G) when α ∈ (0,1) . However, the
boundedness for MG : C 0,β (G) → C 0,β (G) and the fact that ‖MG f‖L∞(G) � ‖ f‖L∞(G)
yields the following result.

COROLLARY 3.3. Let 0 < β � δ � 1 and the graph G = (VG,EG) has the δ -
annular decay property. Then the map MG : Lipβ (G) → Lipβ (G) is bounded.

REMARK 3.4. The corresponding results in Theorems 3.1 and 3.2 and Corollary
3.3 hold for the graph in {Gd}d∈N\{0} . Here {Gd}d∈N\{0} are given as in Remark 1.4.
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4. Boundedness on Campanato spaces

In this section we study the behaviors of the Hardy-Littlewood maximal operator
and its fractional variants on Campanato spaces.

4.1. Some definitions and lemmas

Let us introduce the Campanato spaces on graphs.

DEFINITION 4.1. (Campanato spaces) Let G = (VG,EG) , 1 � p < ∞ and β ∈R .
A locally integrable function f : G → R belongs to the Campanato space L p,β (G) , if

‖ f‖L p,β (G) := sup
x∈VG,r∈N\{0}

|BG(x,r)|β
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)− fBG(x,r)|p

)1/p
< ∞.

Another way to define the Campanato spaces is the following

L̃ p,β (G) :=
{

f ∈ L1
loc(G) : ‖ f‖

L̃ p,β (G) < ∞
}
.

where

‖ f‖
L̃ p,β (G) := sup

x∈VG,r�1
rβ

( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)− fBG(x,r)|p

)1/p
.

REMARK 4.2. In contrast to what happens in for Euclidean spaces and more gen-
eral metric measure spaces it suffices to give the definitions for L p,β (G) and L̃ p,β (G)
for r � 1. The reason is the fact that( 1

|BG(x,r)| ∑
v∈BG(x,r)

| f (v)− fBG(x,r)|p
)1/p

= 0, ∀x ∈VG, 1 � p < ∞, 0 < r < 1.

Applying Minkowski’s inequality and Hölder’s inequality, one finds

‖ f‖L p,β (G) � 2‖ f‖Lp,β (G), ‖ f‖
L̃ p,β (G) � 2‖ f‖L̃p,β (G), ∀1 � p < ∞, β ∈ R. (4.1)

LEMMA 4.1. Let β ∈ R and f ∈ L̃ p,β (G) for 1 � p < ∞ . Let r > 0 , x, y ∈VG ,
x = y and R � max{r,dG(x,y)} . Then we have

| fBG(x,r) − fBG(y,R)| � CG

(
ln

R
r

+1
)
‖ f‖

L̃ p,β (G), if β = 0;

| fBG(x,r) − fBG(y,R)| � CGr−β‖ f‖
L̃ p,β (G), if β > 0;

| fBG(x,r) − fBG(y,R)| � CGR−β‖ f‖
L̃ p,β (G), if β < 0.

Here

CG =
{

Cβ (D(G)4 + ΔG), if 0 < r < 1;
Cβ D(G)4, if r � 1,

where Cβ > 0 depends only on β .
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Proof. Note that R/r � 1. There exists an integer k0 ∈ N such that 2k0 � R/r <
2k0+1 . Clearly, BG(y,R) ⊂ BG(x,2R) ⊂ BG(x,2k0+2r) . By Hölder’s inequality, one has

| fBG(x,r) − fBG(y,R)|
� | fBG(x,r) − fBG(x,2k0+2r)|+ | fBG(x,2k0+2r) − fBG(y,R)|

�
k0+2

∑
i=1

| fBG(x,2i−1r) − fBG(x,2ir)|+
1

|BG(y,R)| ∑
u∈BG(y,R)

| f (u)− fBG(x,2k0+2r)|

�
k0+2

∑
i=1

1
|BG(x,2i−1r)| ∑

u∈BG(x,2i−1r)

| f (u)− fBG(x,2ir)|

+
|BG(x,2k0+2r)|

|BG(y,R)|
1

|BG(x,2k0+2r)| ∑
u∈BG(x,2k0+2r)

| f (u)− fBG(x,2k0+2r)|

�
k0+2

∑
i=1

|BG(x,2ir)|
|BG(x,2i−1r)|

( 1
|BG(x,2ir)| ∑

u∈BG(x,2ir)

| f (u)− fBG(x,2ir)|p
)1/p

+
|BG(x,2k0+2r)|

|BG(y,R)|
( 1
|BG(x,2k0+2r)| ∑

u∈BG(x,2k0+2r)

| f (u)− fBG(x,2k0+2r)|p
)1/p

�
( k0+2

∑
i=1

|BG(x,2ir)|
|BG(x,2i−1r)| (2

ir)−β +
|BG(x,2k0+2r)|

|BG(y,R)| (2k0+2r)−β
)
‖ f‖

L̃ p,β (G).

Note that R � dG(x,y) � 1. Then

|BG(x,2k0+2r)|
|BG(y,R)| � |BG(y,5R)|

|BG(y,R)| =
|BG(y, [5R])|
|BG(y, [R])| � |BG(y,10[R])|

|BG(y, [R])| � D(G)4

and

|BG(y,2s)|
|BG(y,s)| �

⎧⎨
⎩

1, if s ∈ (0,1/2);
ΔG, if s ∈ [1/2,1);
D(G), if s � 1.

Here [x] = max{k ∈ Z;k � x} for any x ∈ R . Therefore,

| fBG(x,r) − fBG(y,R)| � 2
( k0+2

∑
i=1

2−β i
)
D(G)4r−β‖ f‖

L̃ p,β (G), if r � 1.

| fBG(x,r) − fBG(y,R)| � 2
( k0+2

∑
i=1

2−β i
)
(D(G)4 + ΔG)r−β‖ f‖

L̃ p,β (G), if r ∈ (0,1).

When β = 0, one has

k0+2

∑
i=1

2−β i = k0 +2 � 2
(

ln
R
r

+1
)
.

When β > 0, one gets
k0+2

∑
i=1

2−β i �
∞

∑
i=1

2−β i =
1

2β −1
.
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When β < 0, we have

k0+2

∑
i=1

2−β i �
∫ k0+3

1
(2−β )xdx � 1

−β ln2
2−β (k0+3) � 8−β

−β ln2

(R
r

)−β
.

Then the conclusions of Lemma 4.1 follow from the above estimates. �
Applying Lemma 4.1, we have some relationships between Hölder’s spaces and

Campanato spaces.

LEMMA 4.2. Let G = (VG,EG) , β < 0 and 1 � p < ∞ . Then
(i) For any f ∈ L̃p,β (G) , there exists a constant Cβ > 0 depending only on β such

that
‖ f‖C 0,−β (G) � Cβ (D(G)4 + ΔG)‖ f‖

L̃ p,β (G). (4.2)

(ii) For any f ∈ C 0,−β (G) , we have

‖ f‖
L̃ p,β (G) � ‖ f‖C 0,−β (G). (4.3)

Proof. First we prove (i). Let f ∈ L̃ p,β (G) and fix x, y ∈ VG with x = y . It is
clear that dG(x,y) � 1. Let r ∈ (1/2,1) . Then we have

| f (x)− f (y)|
= | fBG(x,r) − fBG(y,r)|
� | fBG(x,r) − fBG(y,dG(x,y))|+ | fBG(y,dG(x,y)) − fBG(x,r+dG(x,y))|

+| fBG(y,r) − fBG(x,r+dG(x,y))|.
(4.4)

Invoking Lemma 4.1, we obtain

| fBG(x,r) − fBG(y,dG(x,y))| � Cβ (D(G)4 + ΔG)dG(x,y)−β‖ f‖
L̃ p,β (G), (4.5)

| fBG(y,dG(x,y))− fBG(x,r+dG(x,y))| � Cβ D(G)4(r+dG(x,y))−β‖ f‖
L̃ p,β (G)

� Cβ D(G)4dG(x,y)−β‖ f‖
L̃ p,β (G),

(4.6)

| fBG(y,r) − fBG(x,r+dG(x,y))|
� Cβ (D(G)4 + ΔG)(r+dG(x,y))−β‖ f‖

L̃ p,β (G)
� Cβ (D(G)4 + ΔG)dG(x,y)−β‖ f‖

L̃ p,β (G).

(4.7)

Inequality (4.4) together with (4.5)–(4.7) implies

| f (x)− f (y)| � Cβ (D(G)4 + ΔG)dG(x,y)−β‖ f‖
L̃ p,β (G),

which gives (4.2).
Now we prove (ii). Let f ∈ C 0,−β (G) . Fix r � 1 and x ∈VG , one has

| f (v)− fBG(x,r)| �
1

|BG(x,r)| ∑
u∈BG(x,r)

| f (v)− f (u)|

� sup
u∈BG(x,r)

dG(u,v)−β‖ f‖C 0,−β (G) � r−β‖ f‖C 0,−β (G)
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for all v ∈ B(x,r) . It follows that

rβ
( 1
|BG(x,r)| ∑

v∈BG(x,r)
| f (v)− fBG(x,r)|p

)1/p
� ‖ f‖C 0,−β (G),

which leads to (4.3) and completes the proof. �
As an application of Lemma 4.2, we have

COROLLARY 4.3. Let G = (VG,EG) , Q � 1 , β < 0 and 1 � p < ∞ .
(i) If G has a lower bound Q condition, then

‖ f‖L p,β (G) � Cβ ,Q,B1,Q
‖ f‖C 0,−βQ(G).

(ii) If G has a upper bound Q condition, then

‖ f‖C 0,−βQ(G) � Cβ ,Q,B2,Q
(D2(G)4 + ΔG)‖ f‖L p,β (G).

4.2. Main results and proofs

The main results of this section can be stated as follows:

THEOREM 4.4. Let G = (VG,EG) and δ ∈ (0,1] . Let D(G) < ∞ , ΔG < ∞ ,
O(G) < ∞ and G satisfy the δ -annular decay property. Assume that one of the follow-
ing conditions holds:

(i) 0 < α < δ and β = 0 ;
(ii) 0 � α � δ , 0 � α −β � δ and β = 0 .
Then the map M̃α ,G : L̃ p,β (G) → C 0,α−β (G) is bounded. More precisely,

‖M̃α ,G f‖C 0,α−β (G) � Cβ ,D(G),O(G),ΔG,B3,δ
‖ f‖

L̃ p,β (G), ∀ f ∈ L̃ p,β (G).

Proof. Let f ∈ L̃ p,β (G) . Fix x, y∈VG with x = y and let a = dG(x,y) . It suffices
to show that

|M̃α ,G f (x)− M̃α ,G f (y)| � Cβ ,D(G),ΔG,B3,δ
aα−β‖ f‖

L̃ p,β (G). (4.8)

Without loss of generality we may assume that M̃α ,G f (x) > M̃α ,G f (y) . By the defini-
tion of M̃α ,G f (x) , there exists r > 0 such that

M̃α ,G f (x) � rα fBG(x,r) +aα−β‖ f‖
L̃ p,β (G).

It follows that

|M̃α ,G f (x)− M̃α ,G f (y)| � rα fBG(x,r) − (r+a)α fBG(y,r+a) +aα−β‖ f‖
L̃ p,β (G)

� rα ( fBG(x,r) − fBG(y,r+a))+aα−β‖ f‖
L̃ p,β (G).
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Therefore, inequality (4.8) reduces to the following

rα( fBG(x,r) − fBG(y,r+a)) � Cβ ,D(G),O(G),ΔG,B3,δ
aα−β‖ f‖

L̃ p,β (G). (4.9)

We consider the different cases:
Case 1: (r � a ). By Lemma 4.1, we have

| fBG(x,r) − fBG(y,r+a)| � Cβ ,D(G),ΔG
r−β‖ f‖

L̃ p,β (G), if β > 0;

| fBG(x,r) − fBG(y,r+a)| � Cβ ,D(G),ΔG
(r+a)−β‖ f‖

L̃ p,β (G)
� Cβ ,D(G),ΔG

a−β‖ f‖
L̃ p,β (G), if β < 0;

| fBG(x,r) − fBG(y,r+a)| � Cβ ,D(G),ΔG

(
ln

r+a
r

+1
)
‖ f‖

L̃ p,β (G), if β = 0.

It follows that

rα( fBG(x,r) − fBG(y,r+a)) � Cβ ,D(G),ΔG
rα−β‖ f‖

L̃ p,β (G)
� Cβ ,D(G),ΔG

aα−β‖ f‖
L̃ p,β (G), if β > 0,

since α −β � 0 and r � a . Moreover,

rα( fBG(x,r) − fBG(y,r+a)) � Cβ ,D(G),ΔG
rαa−β‖ f‖

L̃ p,β (G)
� Cβ ,D(G),ΔG

aα−β‖ f‖
L̃ p,β (G), if β < 0;

rα( fBG(x,r) − fBG(y,r+a)) � CD(G),ΔG
rα

(
ln

r+a
r

+1
)
‖ f‖

L̃ p,β (G)

� CD(G),ΔG
aα

((2a
r

)−α
ln

2a
r

+1
)
‖ f‖

L̃ p,β (G)
� CD(G),ΔG

aα‖ f‖
L̃ p,β (G), if β = 0.

Here we used the fact that the function t−α ln t � 1
αe for all t � 1. This proves (4.9) in

this case.
Case 2: (r > a ). We write

fBG(x,r) − fBG(y,r+a)

=
1

|BG(x,r)|
(

∑
u∈BG(x,r)

f (u)− |BG(x,r)|
|BG(y,r+a)| ∑

v∈BG(y,r+a)
f (v)

)
=

1
|BG(x,r)|

(
∑

u∈BG(x,r)
f (u)− ∑

u∈BG(y,r+a)
f (u)

+
|BG(y,r+a)|− |BG(x,r)|

|BG(y,r+a)| ∑
v∈BG(y,r+a)

f (v)
)

=
1

|BG(x,r)|
(
− ∑

u∈BG(y,r+a)\BG(x,r)
f (u)+ (|BG(y,r+a)|− |BG(x,r)|) fBG(y,r+a)

)
=

1
|BG(x,r)| ∑

u∈BG(y,r+a)\BG(x,r)
( fBG(y,r+a)− f (u)).
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It follows that

| fBG(x,r) − fBG(y,r+a)| �
1

|BG(x,r)| ∑
u∈BG(y,r+a)\BG(x,r)

| f (u)− fBG(y,r+a)|.

Note that a ∈ N\{0} . Without loss of generality we may assume that r ∈ N\{0} . By
the δ -annular decay property of G ,

|BG(y,r+a)\BG(x,r)| = |BG(y,r+a)|− |BG(x,r)|
� |BG(x,r+2a)|− |BG(x,r)|
� B3,δ

( 2a
r+2a

)δ |BG(x,r+2a)|.

When β < 0, by Lemma 4.2 (i), we have

| f (u)− fBG(y,r+a)|
=

1
|BG(y,r+a)| ∑

v∈BG(y,r+a)
| f (v)− f (u)|

� sup
v∈BG(y,r+a)

| f (v)− f (u)| � sup
v∈BG(y,r+a)

d(u,v)−β‖ f‖C 0,−β (G)

� Cβ (D(G)4 + ΔG)(r+a)−β‖ f‖
L̃ p,β (G), ∀u ∈ BG(y,r+a).

Hence, we get

rα | fBG(x,r) − fBG(y,r+a)|
� Cβ ,D(G),ΔG,B3,δ

(r+a)−β
( 2a

r+2a

)δ |BG(x,r+2a)|
|BG(x,r)| ‖ f‖

L̃ p,β (G)

� Cβ ,D(G),ΔG,B3,δ
rα (r+a)−β

( 2a
r+2a

)δ‖ f‖
L̃ p,β (G)

� Cβ ,D(G),ΔG,B3,δ
aα−β

( r
a

)α−β−δ‖ f‖
L̃ p,β (G)

� Cβ ,D(G),ΔG,B3,δ
aα−β‖ f‖

L̃ p,β (G),

since α −β − δ � 0. This proves (4.9) in this case.
When β � 0. Let F := BG(y,r +a)\BG(x,r) . It is clear that F ⊂ ⋃

v∈F BG(v,a) .
Since the graph G satisfies O(G)< ∞ , then there exists a set E ⊂F such that ∑v∈E χBG(v,a)
� O(G) and

⋃
v∈F BG(v,a) =

⋃
v∈E BG(v,a) . We write

| fBG(x,r) − fBG(y,r+a)|
� 1

|BG(x,r)| ∑
u∈BG(y,r+a)\BG(x,r)

| f (u)− fBG(y,r+a)|

� 1
|BG(x,r)| ∑

v∈E
∑

u∈BG(v,a)
| f (u)− fBG(y,r+a)|

=
1

|BG(x,r)| ∑
v∈E

|BG(v,a)| 1
|BG(v,a)| ∑

u∈BG(v,a)
| f (u)− fBG(y,r+a)|.

(4.10)
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One can easily check that

⋃
v∈E

BG(v,a) ⊂ BG(y,r+2a)\BG(x,r−a) ⊂ BG(x,r+3a)\BG(x,r−a).

This together with the δ -annular decay property of G gives that

∑
v∈E

|BG(v,a)| � O(G)
∣∣∣ ⋃
v∈E

BG(v,a)
∣∣∣

� O(G)|BG(x,r+3a)\BG(x,r−a)|
� O(G)(|BG(x,r+3a)|− |BG(x,r−a)|)
� O(G)B3,δ

( 4a
r+3a

)δ |BG(x,r+3a)|

� 4O(G)B3,δ

(a
r

)δ |BG(x,r+3a)|.

(4.11)

On the other hand, for a fixed v ∈ E , we have

1
|BG(v,a)| ∑

u∈BG(v,a)
| fBG(y,r+a)− f (u)|

� 1
|BG(v,a)| ∑

u∈BG(v,a)
| f (u)− fBG(v,a)|+ | fBG(v,a) − fBG(y,r+a)|.

Since v ∈ BG(y,r+a)\BG(x,r) , invoking Lemma 4.1, we get

| fBG(v,a) − fBG(y,r+a)| � Cβ D(G)4a−β‖ f‖
L̃ p,β (G), if β > 0;

| fBG(v,a) − fBG(y,r+a)| � Cβ D(G)4
(

ln
r+a
2a

+1
)
‖ f‖

L̃ p,β (G), if β = 0.

By Hölder’s inequality, we get

1
|BG(v,a)| ∑

u∈BG(v,a)
| f (u)− fBG(v,a)|

�
( 1
|BG(v,a)| ∑

u∈BG(v,a)
| f (u)− fBG(v,a)|p

)1/p
� a−β‖ f‖

L̃ p,β (G).

It follows that

1
|BG(v,a)| ∑

u∈BG(v,a)
| f (u)− fBG(y,r+a)| � Cβ D(G)4a−β‖ f‖

L̃ p,β (G), if β > 0; (4.12)

1
|BG(v,a)| ∑

u∈BG(v,a)
| f (u)− fBG(y,r+a)|

� Cβ D(G)4
(

ln
r+a
2a

+1
)
‖ f‖

L̃ p,β (G), if β = 0.

(4.13)
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When β > 0, we get from (4.10)–(4.12) that

rα | fBG(x,r) − fBG(y,r+a)|
� Cβ ,D(G),O(G),B3,δ

rαa−β
(a

r

)δ |BG(x,r+3a)|
|BG(x,r)| ‖ f‖

L̃ p,β (G)

� Cβ ,D(G),O(G),B3,δ
aα−β

( r
a

)α−δ‖ f‖
L̃ p,β (G) � Cβ ,D(G),O(G),B3,δ

aα−β‖ f‖
L̃ p,β (G).

since α � δ . This proves (4.9) in this case.
When β = 0, it follows from (4.10), (4.11) and (4.13) that

rα | fBG(x,r) − fBG(y,r+a)|
� Cβ ,D(G),O(G),B3,δ

rα
(

ln
r+a
2a

+1
)(a

r

)δ |BG(x,r+3a)|
|BG(x,r)| ‖ f‖

L̃ p,β (G)

� Cβ ,D(G),O(G),B3,δ
aα

( r
a

)−(δ−α)(
ln

r
a

+1
)
‖ f‖

L̃ p,β (G)

� Cβ ,D(G),O(G),B3,δ
aα‖ f‖

L̃ p,β (G),

since α < δ and the function g(t) = t−(δ−α) logt � 1
(δ−α)e for all t � 1. This proves

(4.9) in this case and completes the proof of Theorem 4.4. �

THEOREM 4.5. Let G = (VG,EG) and δ ∈ (0,1] . Let D(G) < ∞ , O(G) < ∞ ,
ΔG < ∞ and G satisfy the δ -annular decay property. Assume that one of the following
conditions holds:

(i) G satisfies the upper bound condition, 0 < α < δ/Q and β = 0 ;
(ii) G satisfies the upper bound condition, 0 � α � δ/Q+ β and β < 0 ;
(ii) G satisfies the lower and upper bound conditions, 0 < β � α � δ/Q.
Then the map Mα ,G : L p,β (G) → C 0,(α−β )Q(G) is bounded. More precisely,

‖Mα ,G f‖C 0,(α−β)Q(G) � Cβ ,D(G),O(G),ΔG,B2,Q,B3,δ
‖ f‖L p,β (G), ∀ f ∈ L p,β (G).

Proof. We assume that ‖ f‖L p,β (G) = 1. Fix x, y ∈ VG with x = y and let a =
dG(x,y) . We want to show that

|Mα ,G f (x)−Mα ,G f (y)| � Cβ ,D(G),ΔG,B2,Q,B3,δ
a(α−β )Q. (4.14)

Without loss of generality we may assume that Mα ,G f (x) > Mα ,G f (y) . By the defini-
tion of Mα ,G f (x) , there exists r ∈ N such that

Mα ,G f (x) � |BG(x,r)|α fBG(x,r) +a(α−β )Q.

By the upper bound condition on G ,

Mα ,G f (x)−Mα ,G f (y)|
� |BG(x,r)|α fBG(x,r) −|BG(y,r+a)|α fBG(y,r+a) +a(α−β )Q

� |BG(x,r)|α ( fBG(x,r) − fBG(y,r+a))+a(α−β )Q

� Bα
2,QrαQ( fBG(x,r) − fBG(y,r+a))+a(α−β )Q,

(4.15)
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‖ f‖
L̃ p,βQ(G) � Cβ ,B2,Q

‖ f‖L p,β (G), if β < 0. (4.16)

By the lower bound condition on G ,

‖ f‖
L̃ p,βQ(G) � Cβ ,B1,Q

‖ f‖L p,β (G), if β > 0. (4.17)

It is clear that
‖ f‖

L̃ p,0(G) = ‖ f‖L p,0(G). (4.18)

Similar arguments to those in getting (4.9) will imply that

rαQ( fBG(x,r) − fBG(y,r+a)) � Cβ ,Q,D(G),O(G),ΔG,B3,δ
a(α−β )Q‖ f‖

L̃ p,βQ(G), (4.19)

provided that one of the following conditions holds:
(i) 0 < α < δ/Q and β = 0;
(ii) 0 � α � δ/Q , 0 � α −β � δ/Q and β = 0.
Then (4.14) follows from (4.15)–(4.19). Theorem 4.5 is proved. �

4.3. Some applications

As applications of Theorems 2.1 and 2.2 and (4.1), the following theorem is valid.

COROLLARY 4.6. Let 1 < p < ∞ and G = (VG,EG) . Assume that D(G) < ∞
and 1 < D̃(G) < ∞ . Then

(i) Let β > 0 . Then the map MG : Lp,β (G) → L p,β (G) is bounded. Moreover,

‖MG f‖L p,β (G) � Cp,β ,D(G),D̃(G)‖ f‖Lp,β (G), ∀ f ∈ Lp,β (G).

(ii) Let 0 < α < 1 , β > α and q = pβ/(β −α) . Then the map Mα ,G : Lp,β (G)→
L q,β−α(G) is bounded. Moreover,

‖Mα ,G f‖L q,β−α (G) � Cp,β ,α ,D(G),D̃(G)‖ f‖Lp,β (G), ∀ f ∈ Lp,β (G).

(iii) Let 0 < α < 1 , β > α and q = pβ/(β −α) . Then the map M̃α ,G : L̃p,β (G)→
L̃ q,β−α(G) is bounded. Moreover,

‖M̃α ,G f‖
L̃ q,β−α (G) � Cp,β ,α ,D(G),D̃(G)‖ f‖L̃p,β (G), ∀ f ∈ L̃p,β (G).

Applying Theorem 4.4 and Lemma 4.2, we have

COROLLARY 4.7. Let G = (VG,EG) , δ ∈ (0,1] and β ∈ [−δ ,0) . Let D(G) <
∞ , O(G) < ∞ , ΔG < ∞ and G satisfy the δ -annular decay property. Then the map
MG : L̃ p,β (G) → L̃ p,β (G) is bounded. More precisely,

‖MG f‖
L̃ p,β (G) � Cβ ,D(G),O(G),ΔG,B3,δ

‖ f‖
L̃ p,β (G), ∀ f ∈ L̃ p,β (G).
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COROLLARY 4.8. Let G = (VG,EG) and δ ∈ (0,1] . Let D(G) < ∞ , O(G) < ∞ ,
ΔG < ∞ and G satisfy the δ -annular decay property. Assume that one of the following
conditions holds:

(i) 0 < α < δ and β = 0 ;
(ii) 0 < α � δ , 0 < α −β � δ and β = 0 .
Then the map M̃α ,G : L̃ p,β (G) → L̃ p,β−α(G) is bounded. More precisely,

‖M̃α ,G f‖
L̃ p,β−α (G) � Cβ ,D(G),O(G),ΔG,B3,δ

‖ f‖
L̃ p,β (G), ∀ f ∈ L̃ p,β (G).

Applying Theorem 4.5 and Corollary 4.3, we have

COROLLARY 4.9. Let G = (VG,EG) , δ ∈ (0,1] , Q � 1 and β ∈ [−δ/Q,0) . Let
D(G) < ∞ , O(G) < ∞ , ΔG < ∞ and G satisfy the δ -annular decay property and the
lower and upper bound Q conditions. Then the map MG : L p,β (G) → L p,β (G) is
bounded. More precisely,

‖MG f‖L p,β (G) � Cβ ,D(G),O(G),ΔG,B1,Q,B2,Q,B3,δ
‖ f‖L p,β (G), ∀ f ∈ L p,β (G).

COROLLARY 4.10. Let G = (VG,EG) and δ ∈ (0,1] . Let D(G) < ∞ , O(G) < ∞ ,
ΔG < ∞ and G satisfy the δ -annular decay property. Assume that the graph G satisfies
the lower and upper bound Q conditions. β < α . Suppose that one of the following
conditions holds:

(i) 0 < α < δ/Q and β = 0 ;
(ii) 0 < α � δ/Q+ β and β < 0 ;
(ii) 0 < β < α � δ/Q.
Then the map Mα ,G : L p,β (G) → L p,β−α(G) is bounded. More precisely,

‖Mα ,G f‖L p,β−α (G) � Cβ ,D(G),O(G),ΔG,B1,Q,B2,Q,B3,δ
‖ f‖L p,β (G), ∀ f ∈ L p,β (G).

REMARK 4.3. The corresponding results in Theorems 4.4 and 4.5 and Corollaries
4.7-4.10 hold for the graph in {Gd}d∈N\{0} . Here {Gd}d∈N\{0} are given as in Remark
1.4.
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