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DETERMINANT FOR POSITIVE OPERATORS

AND OPPENHEIM’S INEQUALITY
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(Communicated by M. Fujii)

Abstract. In this paper, by virtue of the Specht ratio, we show Oppenheim type inequalities for
the normalized determinant of positive invertible operators on a Hilbert space, and we moreover
discuss Hadamard type inequalities for positive definite matrices.

1. Introduction

There are some attempts to extend the notion of the determinant for matrices. In
1950s, Fuglede and Kadison [2, 3] and Arveson [1] introduced the normalized deter-
minant for invertible operators A in a II1 -factor with the canonical normalized trace τ
as

Δ(A) = expτ(log |A|)
and discussed properties of the determinant. Inspired by the notion of the determinant
due to Fuglede-Kadison and Arveson, Fujii et al. [6, 5] discussed the normalized deter-
minant Δx(A) for positive invertible operators A on a Hilbert space H and a fixed unit
vector x ∈ H defined by

Δx(A) = exp〈logAx,x〉, (1.1)

and discussed it as a continuous geometric mean and observed some inequalities around
the determinant from this point of view. In the matrix case, the definition of (1.1) is a
generalization of the usual determinant det for positive definite matrices: In fact, for
any positive definite n×n matrix A with the spectrum σ(A) = {l1, . . . , ln}

Δx(A) =
n

∏
i=1

l1/n
i = (detA)1/n

for some unit vector x ∈ C
n .

We want to consider Oppenheim type inequality for the normalized determinant
Δx(A) . For this, we recall the Hadamard product of operators [8, 4]. The Hadamard
product is expressed as the deformation of the tensor product, which is one of the most
powerful tools for the study of the Hadamard product of operators on a separable Hilbert
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space: Let {e j} be an orthogonal basis of a Hilbert space H and A⊗ B be tensor
product of operators A and B on H regarding to {e j} . Let U : H �→ H ⊗H be the
isometry such that Uej = e j ⊗ e j . The Hadamard product A ◦B regarding to {e j} is
expressed as

A◦B =U∗(A⊗B)U. (1.2)

In the finite dimensional case, if the matrices A = (ai j) and B = (bi j) in Mn(C) , then
the Hadamard product A◦B has an associated matrix A◦B = (ai jbi j) in Mn(C) . We
recall the Hadamard inequality and Oppenheim’s inequality for the Hadamard product
[11, p. 218, p. 242]: Let A and B be n×n positive semidefinite matrices with diagonal
entries aii and bii , respectively. Then the Hadamard determinant inequality says that

detA �
n

∏
i=1

aii = detA◦ I, (1.3)

and Oppenheim’s inequality says that

detAdetB � det(A◦B) �
n

∏
i=1

aiibii. (1.4)

In this paper, by virtue of the Specht ratio, we show Oppenheim type inequali-
ties for the normalized determinant of positive invertible operators on a Hilbert space
and we moreover discuss Hadamard type determinant inequalities for positive definite
matrices.

2. Oppenheim type inequality

Let B(H) be the space of all bounded linear operators on a Hilbert space H , and
I stands for the identity operator on H . An operator A in B(H) is said to be positive
(in symbol: A � 0) if 〈Ax,x〉 � 0 for all x ∈ H . In particular, A > 0 means that A is
positive and invertible. For a pair A,B of selfadjoint operators the order relation A � B
means as usual that A−B is positive.

We list important properties of the normalized determinant, also see [6]: For each
unit vector x ∈ H

(i) continuity: The map A �→ Δx(A) is norm continuous;

(ii) bounds: 〈A−1x,x〉−1 � Δx(A) � 〈Ax,x〉 ;
(iii) continuous mean: 〈Apx,x〉1/p ↓ Δx(A) for p ↓ 0 and 〈Apx,x〉1/p ↑ Δx(A) for p ↑

0;

(iv) power equality: Δx(At) = Δx(A)t for all t > 0;

(v) homogeneity: Δx(tA) = tΔx(A) and Δx(tI) = t for all t > 0;

(vi) monotonicity: 0 � A � B implies Δx(A) � Δx(B) ;

(vii) multiplicativity: Δx(AB) = Δx(A)Δx(B) for commuting A and B ;
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(viii) Ky Fan type inequality: Δx((1−α)A+ αB) � Δx(A)1−α Δx(B)α for 0 < α < 1.

First of all, we consider the matrix case. By (1.4),

det(A◦B) �
n

∏
i=1

aii

n

∏
i=1

bii = det(A◦ I)det(B◦ I).

The diagonal operator formed from an operator A can be obtained by the Hadamard
multiplication with the identity I . From this view point, we would expect the following
Oppenheim’s inequality for operators: For any positive invertible operators A and B

Δx(A◦B) � Δx(A◦ I)Δx(B◦ I)

for every unit vector x ∈ H . Unfortunately, we have the following counterexamples:
Let

A = B =
(

2 1
1 2

)
.

Then

Δx(A◦B) = 5 > Δx(A◦ I)Δx(B◦ I) = 4 for x = 1√
2

(
1
1

)

and

Δx(A◦B) = 3 < Δx(A◦ I)Δx(B◦ I) = 4 for x = 1√
2

(
1
−1

)
.

Thus, we investigate the upper and lower boundary of the ratio

Δx(A◦B)/Δx(A◦ I)Δx(B◦ I) for every unit vector x ∈ H

in terms of the spectra of A and B .
Next, we recall the Specht ratio. Specht [10] estimated the upper bound of the

arithmetic mean by the geometric one for positive numbers: For x1, . . . ,xn ∈ [m,M]

n
√

x1x2 · · ·xn � x1 + x2 + · · ·+ xn

n
� S(h) n

√
x1x2 · · ·xn (2.1)

where h = M
m and the Specht ratio is defined by

S(h) =
(h−1)h

1
h−1

e logh
(h 
= 1) and S(1) = 1.

In [5], we showed an operator version of (2.1): Let A be a positive invertible operator
such that mI � A � MI for some scalars 0 < m < M . Then

Δx(A) � 〈Ax,x〉 � S(h)Δx(A)

for every unit vector x ∈ H , where h = M
m .

The following Lemma is well-known, but we give a proof for readers’ conve-
nience.
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LEMMA 2.1. Let A be a positive invertible operator such that mI � A � MI for
some scalars 0 < m < M, and Φ a unital positive linear map from B(H) into B(K) .
Then

Φ(logA) � logΦ(A) � Φ(logA)+ logS(h)I (2.2)

where h = M
m .

Proof. Since log t is operator concave, the first inequality of (2.2) follows from
Jensen operator inequality.

For the second inequality of (2.2), put f (t) = αt + β − log t on [m,M] , where
α = logM−logm

M−m and β = M logm−m logM
M−m . Since f ′(t) = α − 1

t , putting t0 = 1
α , we then

have
min

m�t�M
f (t) = f (t0) = 1+ β + logα.

Since α = logh
m(h−1) and β = logM− h logh

h−1 , we have

1+ β + logα = 1+ logM− h logh
h−1

+ log

(
logh

m(h−1)

)

= − log(h−1)+1− h logh
h−1

+ log(logh)+ logh

= − logS(h).

Hence it follows that

Φ(logA)− logΦ(A) � Φ(αA+ β I)− logΦ(A) = αΦ(A)+ β I− logΦ(A)
� (1+ β + logα)I = − logS(h)I,

which implies logΦ(A) � Φ(logA)+ logS(h)I . �
We show the following Oppenheim type inequality in terms of the Specht ratio:

THEOREM 2.2. Let A and B be positive invertible operators on H such that
m1I � A � M1I and m2I � B � M2I for some scalars 0 < m1 < M1 and 0 < m2 < M2 .
Put h1 = M1

m1
and h2 = M2

m2
. Then

1
S(h1)S(h2)

Δx(A◦ I)Δx(B◦ I) � Δx(A◦B) � S(h1h2)Δx(A◦ I)Δx(B◦ I) (2.3)

for every unit vector x ∈ H .

Proof. Since logt is operator concave, it follows from Jensen operator inequality
that

U∗ [log(A⊗ I)]U � logU∗(A⊗ I)U

where the isometry U is defined as (1.2) in the section 1. Since m1m2I � A1 ⊗A2 �
M1M2I and h1h2 = M1M2

m1m2
, it follows from Lemma 2.1 that

log(A◦B) = logU∗(A⊗B)U � U∗ [log(A⊗B)]U + logS(h1h2)I.
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Moreover, since A⊗ I and I⊗B commute,

U∗ [log(A⊗B)]U = U∗ [log(A⊗ I)(I⊗B)]U = U∗ [log(A⊗ I)+ log(I⊗B)]U.

Hence it follows from Lemma 2.1 that for every unit vector x ∈ H

〈log(A◦B)x,x〉 = 〈logU∗(A⊗B)Ux,x〉
� 〈U∗ log(A⊗B)Ux,x〉+ logS(h1h2)
= 〈U∗ log(A⊗ I)(I⊗B)Ux,x〉+ logS(h1h2)
= 〈U∗ log(A⊗ I)Ux,x〉+ 〈U∗ log(I⊗B)Ux,x〉+ logS(h1h2)
� 〈logU∗(A⊗ I)Ux,x〉+ 〈logU∗(I⊗B)Ux,x〉+ logS(h1h2)
= 〈log(A◦ I)x,x〉+ 〈log(I ◦B)x,x〉+ logS(h1h2).

By taking the exponential of both sides, we get the desired right hand side of (2.3).
On the other hand, we have

〈log(A◦B)x,x〉 = 〈logU∗(A⊗B)Ux,x〉
� 〈U∗ log(A⊗B)Ux,x〉
= 〈U∗ log(A⊗ I)(I⊗B)Ux,x〉
= 〈U∗ log(A⊗ I)Ux,x〉+ 〈U∗ log(I⊗B)Ux,x〉
� 〈logU∗(A⊗ I)Ux,x〉− logS(h1)+ 〈logU∗(I⊗B)Ux,x〉− logS(h2)

for every unit vector x ∈ H . By taking the exponential of the both sides, we get the
desired left hand sides of (2.3). �

The coefficients in inequality (2.3) of Theorem 2.2 are not symmetric with resprct
to the Specht ratio. For this, we examine some properties of the Specht ratio a little
more.

LEMMA 2.3. Let h > 0 . Then the Specht ratio has the following power monotone
increasing property:

S(h)r � S(hr) for all r � 1 ,

or equivalently
S(hr) � S(h)r for all 0 < r < 1 .

Proof. Since it follows from [7, Theorem 2.16] that S(h) = S(h−1) and S(1) =
limh→1 S(h) = 1, we may assume that h > 1. Noting that

(1 �)
S(hr)
S(h)r =

(hr −1)h
r

hr−1

er logh
er(logh)r

(h−1)rh
r

h−1

=
hr −1

(h−1)r

er−1

r
(logh)r−1/h

r
h−1− r

hr−1 ,



1642 S. HIRAMATSU AND Y. SEO

we show the following inequality stronger than the desired one:

h
r

h−1− r
hr−1 � er−1 � er−1

r
hr −1

(h−1)r (logh)r−1 (2.4)

for all r � 1.
To show the left hand side of (2.4), taking the logarithm of both sides of (2.4), it is

equivalent to (
1

h−1
− 1

hr −1

)
logh � r−1

r
(2.5)

for all r � 1. To cancel the denominator of inequality (2.5), we get

(logh)(hr −h)r � (h−1)(r−1)(hr−1).

Put f (r) = (h−1)(r−1)(hr−1)+ (logh)(h−hr)r and then f (1) = 0 and

f ′(r) = (h−1)hr +1−h+h logh+(logh)hr ((h−1− logh)r−h)

and f ′(1) = (h−1)2−h(logh)2 � 0. Differentiating f ′(r) , we get

f ′′(r) = (logh)hr ((h−1− logh)(logh)r+2(h−1)−h logh− logh) .

and f ′′(r) � 0 for r � 1 and h > 1. Since f ′(r) is monotone increasing and f ′(1) � 0,
we have f ′(r) � 0. Since f (1) = 0, it follows that f (r) is monotone increasing and
f (r) � 0. Hence we get (2.5).

Next we show the right hand side of (2.4). Taking the logarithm, it is equivalent to

logr+ r log(h−1) � log(hr −1)+ (r−1) log(logh). (2.6)

Put g(r) = log(hr−1)+(r−1) log(logh)− logr−r log(h−1) . Then we have g(1)= 0
and

g′(r) =
hr logh
hr −1

+ log(logh)− 1
r
− log(h−1),

so that g′(1) = h logh
h−1 + log(logh)−1− log(h−1) � 0. Moreover, since

g′′(r) =
(hr −1)2− (logh)2hrr2

r2(hr −1)2 ,

it follows that g′′(r) � 0 for all r � 1. Since g′(r) is monotone increasing and g′(1) �
0, it follows that g′(r) � 0, hence g(r) is monotone increasing and g(1) = 0. Namely,
we have g(r) � 0, which proves (2.6). �

LEMMA 2.4. Let h > 1 . The Specht ratio S(h) is supermultiplicative for h > 1 ,
i.e.,

S(h1)S(h2) � S(h1h2)

for h1,h2 > 1 .
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Proof. We may assume that 1 < h1 < h2 . Then h1 = hα
2 for some 0 < α < 1. By

Lemma 2.3, it follows that

S(h1)S(h2) = S(hα
2 )S(h2) � S(h2)αS(h2)

= S(h2)1+α � S(h1+α
2 ) = S(h1h2). �

REMARK 2.5. By Theorem 2.2, we have an Oppenheim type inequality:

1
S(h1)S(h2)

Δx(A◦ I)Δx(B◦ I) � Δx(A◦B) � S(h1h2)Δx(A◦ I)Δx(B◦ I) (2.7)

for every unit vector x ∈ H . The coefficients of inequality (2.7) are not symmetric.
Lemma 2.4 proposes a symmetric version of (2.7) as follows:

1
S(h1h2)

Δx(A◦ I)Δx(B◦ I) � Δx(A◦B) � S(h1h2)Δx(A◦ I)Δx(B◦ I).

By Theorem 2.2, we have the following Hadamard type determinant inequality:

COROLLARY 2.6. Let A and B be positive invertible operators on H such that
m1I � A � M1I and m2I � B � M2I for some scalars 0 < m1 < M1 and 0 < m2 < M2 .
Put h1 = M1

m1
and h2 = M2

m2
. Then

1
S(h1)S(h2)

Δx(A◦B◦ I) � Δx(A◦B) � S(h1h2)Δx(A◦B◦ I) (2.8)

for every unit vector x ∈ H .

Proof. Since A◦ I and B◦ I commute and A◦B◦ I = (A◦ I)(B◦ I) , we have

Δx(A◦ I)Δx(B◦ I) = Δx((A◦ I)(B◦ I)) = Δx(A◦B◦ I)

for every unit vector x ∈ H and so (2.8) follows from Theorem 2.2. �

3. The Hadamard type determinant inequality

Finally, we deal with the matrix case. Let Mn = Mn(C) be the space of n× n
complex matrices. For A ∈ Mn , we write A � 0 if A is positive semidefinite and A > 0
if A is positive definite, that is, A is positive and invertible. For two Hermitian matrices
A and B , we write A � B if A−B � 0, and it is called the Löwner ordering.

By (1.3) and (1.4), we would expect the following Hadamard inequality for matri-
ces: For a positive definite matrix A ∈ Mn

Δx(A) � Δx(A◦ I) for every unit vector x ∈ Cn (3.1)

and
Δx(A)Δx(B) � Δx(A◦B) for every unit vector x ∈ C

n . (3.2)
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Unfortunately, these inequalities do not hold in general. In fact, put

A =
(

2 1
1 2

)
.

Then

Δx(A) =
√

3 < Δx(A◦ I) = 2 for x =
(

1
0

)

and

Δx(A) = 3 > Δx(A◦ I) = 2 for x = 1√
2

(
1
1

)
.

However, as a complementary result to inequality (3.1), we have the following Hadamard
type determinant inequality, also see [9, Lemma 2]:

THEOREM 3.1. For an n×n positive definite matrix A ∈ Mn

1
n

Δx(A) � Δx(A◦ I) for every unit vector x ∈ Cn ,

and the constnat 1
n is the best possible.

Proof. Let E be the n×n matrix all of whose entries are 1. Then it follows that
I− 1

nE � 0 and thus

0 � A◦ (I− 1
n
E) = A◦ I− 1

n
A◦E = A◦ I− 1

n
A.

Hence we have 〈log(A◦ I)x,x〉� 〈logAx,x〉− logn and this implies the desired inequal-
ity

1
n

Δx(A) � Δx(A◦ I)

for every unit vector x ∈ Cn .
Considering A+ εI where A is the n×n matrix all of whose entries are 1, we see

that the coefficient 1
n is the best possible. �

REMARK 3.2. The following example shows that there is no upper bound K sat-

isfying A ◦ I � KA for all A > 0 in Mn in Theorem 3.1. Let A =
(

1 1− ε
1− ε 1

)
for

a fixed 0 < ε < 1. Since the spectrum of A is {ε,2− ε} and A ◦ I = I , there is no
constant K saatisfying A◦ I � KA for all A > 0 in Mn by mA = ε .

As a complementary result to inequality (3.2), we have the following Oppenheim
type inequality for matrices:
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COROLLARY 3.3. Let A and B be positive definite matrices in Mn such that
m1I � A � M1I and m2I � B � M2I for some scalars 0 < m1 < M1 and 0 < m2 < M2 .
Put h1 = M1

m1
and h2 = M2

m2
. Then

1
n2S(h1)S(h2)

Δx(A)Δx(B) � Δx(A◦B)

for every unit vector x ∈ Cn .

Proof. By Theorem 3.1 and Theorem 2.2, we have

Δx(A◦B) � 1
S(h1)S(h2)

Δx(A◦ I)Δx(B◦ I) � 1
n2S(h1)S(h2)

Δx(A)Δx(B). �
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