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Abstract. Let p(z) be a polynomial of degree n . The polar derivative of p(z) with respect to a
complex number α is defined by

Dα p(z) = np(z)+(α − z)p′(z).

If p(z) has all its zeros in |z| � k , k � 1 , then for |α | � k , Aziz and Rather [Math. Inequal.
Appl., 1, (1998), 231-238] proved

max
|z|=1

|Dα p(z)| � n

( |α |− k
1+ kn

)
max
|z|=1

|p(z)|.

In this paper, we first improve as well as generalize the above inequality. Besides, we are able to
prove an improvement of a result due to Govil and Mctume [Acta Math. Hungar., 104, (2004),
115–126] and also prove an inequality for a subclass of polynomials having all its zeros in
|z| � k , k � 1 .

1. Introduction

Let p(z) =
n

∑
j=0

c jz
j be a polynomial of degree n over the set of complex numbers.

We will use Q(z) to represent the polynomial zn p
(

1
z

)
.

According to the famous Bernstein’s inequality [6],

max
|z|=1

|p′(z)| � nmax
|z|=1

|p(z)|. (1)

Inequality (1) is sharp and equality holds for p(z) = αzn,α �= 0.
The above inequality can be sharpened, if the zeros of p(z) are restricted. In this

direction, Erdös conjectured and later Lax [18] proved that if p(z) has all its zeros in
|z| � 1, then

max
|z|=1

∣∣p′(z)∣∣� n
2

max
|z|=1

|p(z)|. (2)
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Inequality (2) is best possible for p(z) = α + β zn , where |α| = |β | .
On the other hand, in 1939, Turán [19] provided a lower bound estimate of the

derivative to the size of the polynomial by restricting its zeros, and proved that if p(z)
has all its zeros in |z| � 1, then

max
|z|=1

|p′(z)| � n
2

max
|z|=1

|p(z)|. (3)

Aziz and Dawood [2] further refined inequality (3) by involving min
|z|=1

|p(z)|

max
|z|=1

|p′(z)| � n
2

{
max
|z|=1

|p(z)|+ min
|z|=1

|p(z)|
}

. (4)

Both these inequalities (3) and (4) are best possible and equality holds if p(z) has all
its zeros on |z| = 1.

Inequalities (3) and (4) have been extended and generalized in different directions
(see [4], [5], [8], [10], [16]). For polynomial p(z) having all its zeros in |z| � k , k � 1,
Govil [8] proved that

max
|z|=1

|p′(z)| � n
1+ kn max

|z|=1
|p(z)|. (5)

Govil [10] further improved inequality (5) for the same class of polynomials which also
is a generalization of (4) by proving

max
|z|=1

|p′(z)| � n
1+ kn max

|z|=1
|p(z)|+ n

1+ kn min
|z|=k

|p(z)|. (6)

Inequalities (5) and (6) are sharp and equality holds for p(z) = zn + kn .
Govil [9] proved a generalization of (2) to a subclass of polynomials having all its

zeros in |z| � k , k � 1, by proving that if |p′(z)| and |Q′(z)| attain maximum at the
same point on |z| = 1, then

max
|z|=1

|p′(z)| � n
1+ kn max

|z|=1
|p(z)|. (7)

It is easy to see that Dα p(z) is a polynomial of degree at most n−1 and it generalizes
the ordinary derivative in the sense that

lim
α→∞

[
Dα p(z)

α

]
= p′(z).

In 1998, Aziz and Rather [3] extended inequality (5) to polar derivative by proving that
if p(z) is a polynomial of degree n having all its zeros in |z| � k , k � 1, then for every
real or complex number α with |α| � k ,

max
|z|=1

|Dα p(z)| � n

( |α|− k
1+ kn

)
max
|z|=1

|p(z)|. (8)
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Govil and Mctume [12] established the polar derivative extension of inequality (6) and
proved

max
|z|=1

|Dα p(z)| � n

( |α|− k
1+ kn

)
max
|z|=1

|p(z)|+n

( |α|− (1+ k+ kn)
1+ kn

)
min
|z|=k

|p(z)|, (9)

for any complex number α with |α| � 1+ k+ kn .
In literature there exist some recent results which improve inequality (8) by in-

volving certain coefficients, for example: Govil and Kumar [11], Kumar [14], Kumar
and Dhankhar [15] and Rather et al. [17]. We can improve inequality (8) by a method
different from those adopted by these authors.

2. Main results

In this paper, we get some results concerning polar derivative of a polynomial by
using a lemma of Dubinin [7]. We begin, by presenting the following generalization
and refinement of inequality (8) due to Aziz and Rather [3].

THEOREM 1. If p(z) = zs
n−s

∑
j=0

c jz
j , 0 � s � n, is a polynomial of degree n having

all its zeros in |z| � k , k � 1, then for any complex number α with |α| � k ,

max
|z|=1

|Dα p(z)| � (|α|− k)

(
n+ s
1+ kn +

k
n−s
2
√|cn−s|−

√|c0|
(1+ kn)k

n−s
2
√|cn−s|

)
max
|z|=1

|p(z)|. (10)

REMARK 1. Since the polynomial h(z) = p(z)
zs =

n−s

∑
j=0

c jz
j has all its zeros in |z| �

k , k � 1 and ∣∣∣∣ c0

cn−s

∣∣∣∣� kn−s,

which is equivalent to

k
n−s
2
√
|cn−s| �

√
|c0|

Dividing both sides of (10) by |α| and taking limit as |α| → ∞ , we get the follow-
ing generalization and refinement of inequality (5) due to Govil [8].

COROLLARY 1. If p(z) = zs
n−s

∑
j=0

c jz
j , 0 � s � n, is a polynomial of degree n hav-

ing all its zeros in |z| � k , k � 1, then

max
|z|=1

∣∣p′(z)∣∣�
(

n+ s
1+ kn +

k
n−s
2
√|cn−s|−

√|c0|
(1+ kn)k

n−s
2
√|cn−s|

)
max
|z|=1

|p(z)|. (11)
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When s = 0, Theorem 1 in particular gives an improvement of inequality (8)
proved by Aziz and Rather [3].

COROLLARY 2. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then for any complex number |α| with |α| � k

max
|z|=1

|Dα p(z)| � (|α|− k)

(
n

1+ kn +
k

n
2
√|cn|−

√|c0|
(1+ kn)k

n
2
√|cn|

)
max
|z|=1

|p(z)|. (12)

Dividing both sides of (12) by |α| and taking limit as |α| → ∞ , we get

COROLLARY 3. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then

max
|z|=1

∣∣p′(z)∣∣�
(

n
1+ kn +

k
n
2
√|cn|−

√|c0|
(1+ kn)k

n
2
√|cn|

)
max
|z|=1

|p(z)|. (13)

Inequality (13) is best possible for p(z) = zn + kn .

REMARK 2. Taking k = 1 in Corollary 3, inequality (13) provides a refinement
of inequality (3) due to Turán.

EXAMPLE 1. Consider the polynomial p(z) = z2(z2 − 9) . Then p(z) is a poly-
nomial of degree 4 having all its zeros in |z| � 3. For this polynomial, we have
max
|z|=1

|p(z)| = 10 and min
|z|=3

|p(z)| = 0. Then it can be easily seen that by inequalities (5)

and (6), we have max
|z|=1

|p′(z)| � 40
82

, while our inequality (11) gives max
|z|=1

|p′(z)| � 60
82

,

an improvement of 50% over the bounds obtained from (5) and (6). Also, the inequality

(13) gives max
|z|=1

|p′(z)| � 50
82

, an improvement of 25% over the bounds obtained from

(5) and (6).

As an application of Theorem 1, we get the following refinement of inequality (9)
due to Govil and Mctume [12].

THEOREM 2. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros
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in |z| � k , k � 1 , then for any complex number α with |α| � 1+ k+ kn

max
|z|=1

|Dα p(z)|

� (|α|− k)
1+ kn

(
n+

k
n
2
√|cn|−

√
|c0 + eiθ0m|

k
n
2
√|cn|

)
max
|z|=1

|p(z)|

+

[
n

( |α|− (1+ k+ kn)
1+ kn

)
+

|α|− k
1+ kn

(
k

n
2
√|cn|−

√
|c0 + eiθ0m|

k
n
2
√|cn|

)]
m, (14)

where m = min
|z|=k

|p(z)| and θ0 = arg
{
p(eiφ0)

}
such that |p(eiφ0)| = max

|z|=1
|p(z)| .

REMARK 3. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros in

|z|� k , k � 1, then for any complex number |λ |eiθ0 with |λ |< 1, by Rouche’s theorem
it follows that the polynomial p(z)+ |λ |eiθ0m = (c0 + |λ |eiθ0m)+ c1z+ · · ·+ cnzn has
all its zeros in |z| � k , where m = min

|z|=k
|p(z)| , then

kn �
∣∣∣∣c0 + |λ |eiθ0m

cn

∣∣∣∣ ,
which implies that

k
n
2
√
|cn| �

√
|c0 + |λ |eiθ0m|.

Taking |λ | → 1, we get

k
n
2
√
|cn| �

√
|c0 + eiθ0m|.

REMARK 4. Diving both sides of (14) by |α| and taking limit as |α| → ∞ , we
have the following refinement of inequality (6) due to Govil [10].

COROLLARY 4. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then

max
|z|=1

∣∣p′(z)∣∣ � 1
1+ kn

(
n+

k
n
2
√|cn|−

√
|c0 + eiθ0m|

k
n
2
√|cn|

)
max
|z|=1

|p(z)|

+

[
n

1+ kn +
1

1+ kn

(
k

n
2
√|cn|−

√
|c0 + eiθ0m|

k
n
2
√|cn|

)]
m, (15)

where m = min
|z|=k

|p(z)| and θ0 = arg
{
p(eiφ0)

}
such that |p(eiφ0)| = max

|z|=1
|p(z)| .

Inequality (15) is best possible for p(z) = zn + kn .
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REMARK 5. Taking k = 1 in Corollary 4, inequality (15) reduces to a refinement
of inequality (4) due to Aziz and Dawood [2].

COROLLARY 5. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros

in |z| � 1 , then

max
|z|=1

∣∣p′(z)∣∣ � 1
2

(
n+

√|cn|−
√
|c0 + eiθ0m|√|cn|

)
max
|z|=1

|p(z)|

+
1
2

[
n+

(√|cn|−
√
|c0 + eiθ0m|√|cn|

)]
m, (16)

where m = min
|z|=1

|p(z)| and θ0 = arg
{
p(eiφ0)

}
such that |p(eiφ0)| = max

|z|=1
|p(z)| .

Further, we are able to prove an improvement of inequality (7) due to Govil [9].

THEOREM 3. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros in

|z| � k , k � 1 . If |p′(z)| and |Q′(z)| attain their maxima at the same point on |z| = 1 ,
then

max
|z|=1

∣∣p′(z)∣∣�
⎡
⎣ n

1+ kn −
(√|c0|− k

n
2
√|cn|

)
kn

(1+ kn)
√|c0|

⎤
⎦max

|z|=1
|p(z)|. (17)

The result is sharp and equality in (17) holds for p(z) = zn + kn .

REMARK 6. Taking k = 1 in Theorem 3, we get the following improvement of
(2) due to Erdös and Lax for a subclass of polynomials having all its zeros in |z| � 1.

COROLLARY 6. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n having all its zeros

in |z| � 1 . If |p′(z)| and |Q′(z)| attain their maxima at the same point on |z| = 1 , then

max
|z|=1

∣∣p′(z)∣∣� 1
2

(
n−

√|c0|−
√|cn|√|c0|

)
max
|z|=1

|p(z)|. (18)

3. Lemmas

We need the following lemmas to prove our theorems.

LEMMA 1. If 0 � x � 1 and 0 � y � 1 , then

2
1+ x

� 1+
√

y−√
xy. (19)
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Proof of Lemma 1. The inequality is trivially true if x = 1. So, let us assume that
x < 1, then

1+
√

x
1+ x

> 1 � √
y,

which implies
1− x
1+ x

>
√

y
1− x

1+
√

x
=
√

y−√
xy,

and hence it follows that

2
1+ x

> 1+
√

y−√
xy. �

LEMMA 2. If p(z) =
n

∑
j=0

c jz
j is a polynomial of degree n � 1 having all its zeros

in |z| � 1, then for all z on |z| = 1 with p(z) �= 0

ℜ
(

z
p′(z)
p(z)

)
� n+1

2
− 1

2

√|c0|√|cn|
. (20)

The above result was first proved by Dubinin [7]. Here we present an alternative
proof which we think is new by the principle of mathematical induction.

Proof of Lemma 2. Without loss of generality, let us assume cn = 1. We use the
principle of mathematical induction on the degree of p(z) .

If n = 1, then p(z) = z− z0 with |z0| � 1, and for |z| = 1 and z �= z0

ℜ
(

z
p′(z)
p(z)

)
= ℜ

(
z

z− z0

)
� 1

1+ |z0| ,

and with some simple calculations it is easy to obtain that, for |z0| � 1

1
1+ |z0| � 1

2

(
2−
√
|z0|
)

.

So,

ℜ
(

z
p′(z)
p(z)

)
� 1

2

(
2−
√
|z0|
)

, (21)

which is nothing but (20) for n = 1.
Let us assume that (20) is true for all polynomials with degree � N .

Let p(z) = (z−w)Q(z) with |w| � 1, where Q(z) =
N

∑
j=0

c jz
j is a polynomial of

degree N having all its zeros in |z| � 1, then

ℜ
(

z
p′(z)
p(z)

)
= ℜ

(
z

z−w

)
+ ℜ

(
z
Q′(z)
Q(z)

)

� 1
1+ |w| +

1
2

(
N +1−

√
|c0|
)

,
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for all z on |z| = 1 with p(z) �= 0.
We need to show that

ℜ
(

z
p′(z)
p(z)

)
� 1

2

(
N +2−

√
|w||c0|

)
on |z| = 1. (22)

Clearly, inequality (22) holds if

1
1+ |w| +

1
2

(N +1−√
c0) � 1

2

(
N +2−

√
|w||c0|

)
,

which is equivalent to

2
1+ |w| � 1+

√
|c0|−

√
|w||c0|. (23)

Since all the zeros of p(z) lies on |z| � 1, therefore 0 � |c0| � 1 and 0 � |w| � 1, the
inequality (23) follows from Lemma 1.

This completes the proof of Lemma 2 by using induction principle. �

LEMMA 3. If p(z) = zs
n−s

∑
j=0

c jz
j , 0 � s � n is a polynomial of degree n having all

its zeros in |z| � 1, with s-fold zeros at the origin, then on |z| = 1 with p(z) �= 0

ℜ
(

z
p′(z)
p(z)

)
� n+ s+1

2
− 1

2

√|c0|√|cn−s|
. (24)

Proof of Lemma 3. Let p(z) = zsQ(z) where Q(z) =
n−s

∑
j=0

c jz
j is a polynomial of

degree n− s having all its zeros in |z| � 1. Then for any complex number z with
p(z) �= 0

ℜ
(

z
p′(z)
p(z)

)
= s+ ℜ

(
z
Q′(z)
Q(z)

)
(25)

Applying Lemma 2 to Q(z) , it follows from (25) that

ℜ
(

z
p′(z)
p(z)

)
� s+

n− s+1
2

− 1
2

√|c0|√|cn−s|
=

n+ s+1
2

− 1
2

√|c0|√|cn−s|
. �

LEMMA 4. Let p(z) be a polynomial of degree n having all its zeros in |z| � k ,
k � 1, then

max
|z|=k

|p(z)| � 2kn

1+ kn max
|z|=1

|p(z)|. (26)

The above result appears in Aziz [1].
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LEMMA 5. If p(z) = zs
n−s

∑
j=0

c jz
j , 0 � s � n is a polynomial of degree n having all

its zeros in |z|� 1, with s-fold zeros at the origin, then for any complex number α with
|α| � 1 and on |z| = 1

|Dα p(z)| � (|α|−1)

(
n+ s

2
+

√|cn−s|−
√|c0|

2
√|cn−s|

)
|p(z)| (27)

Proof of Lemma 5. If q(z) = znp( 1
z ), then it is easy to verify that for |z| = 1∣∣q′(z)∣∣= ∣∣np(z)− zp′(z)

∣∣ .
Also, p(z) has all its zeros in |z| � 1, and it is a well-known fact that on |z| = 1∣∣p′(z)∣∣� ∣∣q′(z)∣∣ . (28)

We have for |α| � 1 and |z| = 1

|Dα p(z)| =
∣∣np(z)+ (α − z)p′(z)

∣∣
� |α| ∣∣p′(z)∣∣− ∣∣np(z)− zp′(z)

∣∣ .
This gives with (28)

|Dα p(z)| � (|α|−1)
∣∣p′(z)∣∣ (29)

on |z| = 1, and using Lemma 3, we get on |z| = 1

∣∣p′(z)∣∣�
(

n+ s
2

+

√|cn−s|−
√|c0|

2
√|cn−s|

)
|p(z)|. (30)

Combining (29) and (30) gives inequality (27). �

LEMMA 6. If p(z) is a polynomial of degree n, then on |z| = 1∣∣p′(z)∣∣+ ∣∣Q′(z)
∣∣� nmax

|z|=1
|p(z)|. (31)

The above result is due to Govil and Rahman [13].

4. Proofs of the theorems

Proof of Theorem 1. Since p(z) = zs
n−s

∑
j=0

c jz
j has all its zeros in |z|� k , k � 1, the

polynomial p(kz) = zs
(
ksc0 + ks+1c1z+ · · ·kncnzn−s

)
has all its zeros in |z|� 1. Using

Lemma 5 to p(kz) , we get for
∣∣α

k

∣∣� 1

max
|z|=1

∣∣∣D α
k
p(kz)

∣∣∣� |α|− k
k

(
n+ s

2
+

k
n−s
2
√|cn−s|−

√|c0|
2k

n−s
2
√|cn−s|

)
max
|z|=1

|p(kz)| ,
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which is

max
|z|=1

∣∣∣np(kz)+
(α

k
− z
)

kp′(kz)
∣∣∣

� (|α|− k)
k

(
n+ s

2
+

k
n−s
2
√|cn−s|−

√|c0|
2k

n−s
2
√|cn−s|

)
max
|z|=k

|p(z)| . (32)

Using Lemma 4 and the fact that max
|z|=1

∣∣∣np(kz)+
(α

k
− z
)

kp′(kz)
∣∣∣= max

|z|=k
|Dα p(z)| , the

inequality (32) gives

max
|z|=k

|Dα p(z)| � (|α|− k)
k

(
n+ s

2
+

k
n−s
2
√|cn−s|−

√|c0|
2k

n−s
2
√|cn−s|

)
2kn

1+ kn max
|z|=1

|p(z)| . (33)

As we can see Dα p(z) is a polynomial of degree at most n− 1 and k � 1, it is well-
known that

max
|z|=k

|Dα p(z)| � kn−1 max
|z|=1

|Dα p(z)|.

By using this fact, the inequality (33) gives

kn−1 max
|z|=1

|Dα p(z)|

� (|α|− k)

(
n+ s+

k
n−s
2
√|cn−s|−

√|c0|
k

n−s
2
√|cn−s|

)
kn−1

1+ kn max
|z|=1

|p(z)| , (34)

this gives the desired inequality (10), and thus the proof of Theorem 1 is complete. �

Proof of Theorem 2. If p(z) has a zero on |z| = k, then m = 0 and the result
follows trivially from Theorem 1. So, without loss of generality, let us assume that
p(z) has all its zeros in |z| < k , k � 1, then it follows by Rouche’s theorem that for
any complex number λ with |λ | < 1, the polynomial p(z)+ λm = (c0 + λm)+ c1z+
· · ·+ cnzn also has all its zeros in |z| < k , k � 1. Therefore, applying Theorem 1 to
p(z)+ λm with s = 0, we get for |α| � 1+ k+ kn

max
|z|=1

|Dα [p(z)+ λm]|

� (|α|− k)

(
n

1+ kn +
k

n
2
√|cn|−

√|c0 + λm|
(1+ kn)k

n
2
√|cn|

)
max
|z|=1

|p(z)+ λm|. (35)

Let 0 � φ0 < 2π , be such that
∣∣p(eiφ0)

∣∣= max
|z|=1

|p(z)| . Then, the above inequality (35)

gives

max
|z|=1

|Dα p(z)+nλm|

� (|α|− k)

(
n

1+ kn +
k

n
2
√|cn|−

√|c0 + λm|
(1+ kn)k

n
2
√|cn|

)
|p(eiφ0)+ λm|. (36)
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Now,

∣∣p(eiφ0)+ λm
∣∣ =

∣∣∣∣∣p(eiφ0)
∣∣eiθ0 + |λ |eiφ m

∣∣∣
=
∣∣∣∣∣p(eiφ0)

∣∣+ |λ |ei(φ−θ0)m
∣∣∣ .

Setting the argument φ such that φ = θ0 , then
∣∣p(eiφ0)+ λm

∣∣= ∣∣p(eiφ0)
∣∣+ |λ |m , and

then it follows from inequality (36) that

max
|z|=1

|Dα p(z)|+n |λ |m

� (|α|− k)

(
n

1+ kn +
k

n
2
√|cn|−

√
|c0 + |λ |eiθ0m|

(1+ kn)k
n
2
√|cn|

)(∣∣p(eiφ0)
∣∣+ |λ |m) ,

which is equivalent to

max
|z|=1

|Dα p(z)|

� (|α|− k)
1+ kn

(
n+

k
n
2
√|cn|−

√
|c0 + |λ |eiθ0m|

k
n
2
√|cn|

)
max
|z|=1

|p(z)|

+|λ |
[
n

( |α|− (1+ k+ kn)
1+ kn

)
+

|α|− k
1+ kn

(
k

n
2
√|cn|−

√
|c0 + |λ |eiθ0m|

k
n
2
√|cn|

)]
m.

Taking |λ | → 1, the above inequality reduces to (14). This completes the proof of
Theorem 2. �

Proof of Theorem 3. Since p(z) has all its zeros in |z| � k , k � 1, Q(z) has all its
zeros in |z| � 1

k , 1
k � 1. Then applying Corollary 3 to Q(z) with s = 0, we have

max
|z|=1

∣∣Q′(z)
∣∣ �

[
n

1+ 1
kn

+

( 1
k

) n
2
√|c0|−

√|cn|
(1+ 1

kn )
(

1
k

) n
2
√|c0|

]
max
|z|=1

|Q(z)|

=

⎡
⎣ nkn

1+ kn +

(√|c0|− k
n
2
√|cn|

)
kn

(1+ kn)
√|c0|

⎤
⎦max

|z|=1
|p(z)|. (37)

By Lemma 6 we have on |z| = 1,∣∣p′(z)∣∣+ ∣∣Q′(z)
∣∣� nmax

|z|=1
|p(z)|. (38)

Since |p′(z)| and |Q′(z)| attain their maxima at the same point, then

max
|z|=1

{∣∣p′(z)∣∣+ ∣∣Q′(z)
∣∣}= max

|z|=1

∣∣p′(z)∣∣+max
|z|=1

∣∣Q′(z)
∣∣ . (39)
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Combining (37), (38) and (39), we have

max
|z|=1

∣∣p′(z)∣∣+
⎡
⎣ nkn

1+ kn +

(√|c0|− k
n
2
√|cn|

)
kn

(1+ kn)
√|c0|

⎤
⎦max

|z|=1
|p(z)| � nmax

|z|=1
|p(z)|,

which is equivalent to

max
|z|=1

∣∣p′(z)∣∣�
⎡
⎣ n

1+ kn −
(√|c0|− k

n
2
√|cn|

)
kn

(1+ kn)
√|c0|

⎤
⎦max

|z|=1
|p(z)|.

This completes the proof of Theorem 3. �
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