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TWO LOWER BOUNDS ABOUT SINGULAR SUBSPACES

CHUNGUANG REN

(Communicated by M. Niezgoda)

Abstract. Cai and Zhang establish two lower bounds for sinΘ distances with spectral and Frobe-
nius norms (Cai, T. T. and Zhang, A., Rate-optimal perturbation bounds for singular subspaces
with applications to high-dimensional statistics, The Annals of Statistics, Vol. 46, No. 1 (2018)
60–89). We provide two lower bounds under any unitarily invariant norm. It turns out that our
estimation is better in some sense.

1. Introduction

We begin with some notations in this section. For a,b ∈ R, a∧b :=min(a,b) . Let
Op,r = {V ∈ Cp×r : VHV = Ir} be the set of all p× r orthonormal columns and write
Op for the set of p -dimensional unitary matrices. Here, VH denotes the conjugate
transpose of V .

For X ,Z ∈ Rp1×p2 , the matrix X denotes a true and unobserved matrix, and Z
is a small perturbation matrix, so X̂ := X +Z can represent an observed matrix. As-
sume rank (X) � r , and there exists a significant gap between σr(X) and σr+1(X) .
Furthermore, the SVD of X can be given as follows,

X = [U U⊥]

[
Σ 0
0 Σ⊥

]
[V V⊥]T , (1)

where U ∈ Op1,r with [U U⊥] ∈Op1 ; V ∈ Op2,r with [V V⊥] ∈Op2 ; Σ =diag {σ1(X),
· · · ,σr(X)}∈Rr×r with the singular values σ1(X)� · · ·� σr(X) and Σ⊥ ∈R(p1−r)×(p2−r) .

Clearly, the SVD of X̂ can be also given as follows,

X̂ = [Û Û⊥]

[
Σ̂ 0
0 Σ̂⊥

]
[V̂ V̂⊥]T , (2)

while the quantities Û , Û⊥, Σ̂, Σ̂⊥, V̂ and V̂⊥ are defined analogously.
For a matrix A ∈ Cp1×p2 , we denote PA ∈ Cp1×p1 the orthogonal projection op-

erator onto the column space of A . The perturbation Z can be decomposed into four
blocks

Z = Z11 +Z12 +Z21 +Z22, (3)
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where

Z11 = PUZPV , Z12 = PUZPV⊥ , Z21 = PU⊥ZPV , Z22 = PU⊥ZPV⊥ .

Two matrix norms will be used in the paper: ‖A‖2 = σ1(A) stands for the spectral

norm; ‖A‖F =
√

∑p1∧p2
i=1 σ2

i (A) the Frobenius norm.
To reflect the perturbation effective, we should select one kind of quantities. The

sinΘ distances are well-known and classical, so we select them in this paper. Suppose
the singular values of VHV̂ are σ1 � σ2 � · · · � σr � 0. Then

Θ(V, V̂ ) = diag{cos−1(σ1), cos−1(σ2), · · · , cos−1(σr)}

is said to be principle angles. A quantitative measure of distance between the column
spaces of V and V̂ is ‖sinΘ(V,V̂)‖ under any unitarily invariant norm. Clearly, the es-
tablished spectral and Frobenius sinΘ distances in Cai and Zhang ([1]) are two special
kinds of unitarily invariant ‖sinΘ(V,V̂ )‖ distances.

To state Cai and Zhang’s results, we introduce

F := Fr,α ,β ,z12,z21
=

{
(X ,Z) : with X̂ ,U,V,Zi j in (1)–(3),

σr(UHX̂V ) � α, ‖UH
⊥ X̂V⊥‖2 � β , ‖Z12‖2 � z12, ‖Z21‖2 � z21

}
and

G := Gα ,β ,z12,z21,z̃12,z̃21
=

{
(X ,Z) ∈ F : ‖Z12‖F � z̃12,‖Z21‖F � z̃21

}
.

THEOREM 1. ([1]) Let r � 1
2 (p1 ∧ p2) and Ṽ ∈ Op2×r be any estimator of V

based on X̂ .
(i). If α2 > β 2 + z2

12 + z2
21 ,

inf
Ṽ

sup
(X ,Z)∈F

‖sinΘ(V,V̂ )‖2 � 1

8
√

10

(
αz12 + β z21

α2−β 2− z2
12∧ z2

21

∧1

)
.

(ii). With α2 > β 2 + z2
12 + z2

21 , z̃12 � √
rz12 and z̃21 � √

rz21 ,

inf
Ṽ

sup
(X ,Z)∈G

‖sinΘ(V,V̂)‖F � 1

8
√

10

(
α z̃12 + β z̃21

α2 −β 2− z2
12∧ z2

21

∧√
r

)
.

THEOREM 2. ([1]) Let r � 1
2 (p1 ∧ p2) and Ṽ ∈ Op2×r be any estimator of V

based on X̂ . If α2 � β 2 + z2
12∧ z2

21 ,

inf
Ṽ

sup
(X ,Z)∈F

‖sinΘ(V,V̂)‖2 � 1

2
√

2
.

DEFINITION 1. ([3]) A norm ‖·‖ is said to be unitarily invariant norm, if ‖UAVH‖
= ‖A‖ holds for each unitary U , V . It is normalized if ‖A‖= ‖A‖2 holds for rank (A)=1.
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Both spectral and Frobenius norms are examples of unitarily invariant norms. In
the following discussions, we always use ‖ · ‖ to represent a unitarily invariant norm.

To establish our lower bounds, we introduce

H := Hα ,β ,z12,z21,z̃12,z̃21
=

{
(X ,Z) ∈ F : ‖Z12‖ � z̃12,‖Z21‖ � z̃21

}
.

When ‖ · ‖ = ‖ · ‖2 and ‖ · ‖ = ‖ · ‖F respectively, H reduces to F and G re-
spectively. Furthermore, ‖Ir‖2 = 1 and ‖Ir‖F =

√
r .

Our first result establishes an lower bound under any unitarily invariant norm when
α2 > β 2+z2

12+z2
21 . We allow both X and Z taking complex values, i.e. X ,Z ∈Cp1×p2 .

THEOREM 3. Let α2 > β 2 + z2
12 + z2

21 and r � p1∧p2
2 . Then for all estimate Ṽ ∈

Op2×r of V based on X̂ , we have

inf
Ṽ

sup
(X ,Z)∈H

‖sinΘ(V,Ṽ)‖ � 1√
10+2

√
5

(
αz12‖Ir‖

α2 −β 2− z2
12

∧‖Ir‖
)

.

REMARK 1. If z12 � z21 , αz12 � β z21 , z̃12 � z12‖Ir‖ and z̃21 � z21‖Ir‖ , Theorem
3 implies

inf
Ṽ

sup
˜(X ,Z)∈H

‖sinΘ(V,V̂)‖ � 1

2
√

10+2
√

5

(
α z̃12 + β z̃21

α2 −β 2− z2
12∧ z2

21

∧‖Ir‖
)

.

For example, when X and Z are symmetrical, z12 = z21 and z̃12 = z̃21 . Then it
satisfies the assumption of Remark 1 thanks to α > β .

In fact, 1

2
√

10+2
√

5

/
1

8
√

10
≈ 3.3. Hence, the estimation of Theorem 3 is better than

Cai and Zhang’s in some situations.
The following result extends Theorem 2 ([1]) from spectral norm to any unitarily

invariant norm.

THEOREM 4. Let α2 � β 2 + z2
12 ∧ z2

21 and r � p1∧p2
2 . Then for all estimate

Ṽ ∈ Op2×r of V based on X̂ , we have

inf
Ṽ

sup
(X ,Z)∈H

‖sinΘ(V,V̂ )‖ � 1

2
√

2
‖Ir‖.

2. Proof of Theorem 3

Firstly, we present a proposition which is needed in our later discussions.

PROPOSITION 1. Suppose 2-by-2 matrix A satisfies

A =
[
a b
c d

]
, a,b,c,d � 0.
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Let V =
[
v11 v12

v21 v22

]
be the right singular vectors of A. If a2 + c2 > d2 +b2, we have

|v21| � 2√
10+2

√
5

(
ab+ cd

a2 + c2−b2−d2 ∧1

)
.

Proof. By solving the two eigenvalues of AHA , one finds that the maximal eigen-
value of AHA is

λ1 =
a2 +b2 + c2 +d2 +

√
(a2 +b2 + c2 +d2)2 −4(ad−bc)2

2

=
a2 +b2 + c2 +d2 +

√
(a2 + c2−b2−d2)2 +4(ab+ cd)2

2
. (4)

By the definition of singular vectors, (λ1I2−AHA)

[
v11

v21

]
= 0. Thus,

− (ab+ cd)v11+(λ1−b2−d2)v21 = 0.

By v2
11 + v2

21 = 1 and the above identity, one finds that

|v21| =
ab+ cd√

(λ1−b2−d2)2 +(ab+ cd)2
. (5)

The assumption a2 + c2 > b2 +d2 with (4) and (5) implies

|v21| =
ab+ cd√[

a2+b2+c2+d2+
√

(a2+c2−b2−d2)2+4(ab+cd)2
2 −b2−d2

]2

+(ab+ cd)2

=
ab+ cd√[

a2+c2−b2−d2+
√

(a2+c2−b2−d2)2+4(ab+cd)2
2

]2

+(ab+ cd)2

� 2√
10+2

√
5

(
ab+ cd

a2 + c2−b2−d2 ∧1

)
. �

The following two lemmas are also needed in the proof of Theorem 3.

LEMMA 1. ([4]) Let A = (ai j) ∈ Cp1×p2 . Then

max
1�i�p1,1� j�p2

|ai j| � ‖A‖2.
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LEMMA 2. ([5]) Let ‖·‖ be a unitarily invariant norm, V,V̂ ∈Op,r with [V V⊥]∈
Op and [V̂ V̂⊥] ∈ Op . Then

‖sinΘ(V,V̂ )‖ = ‖VH
⊥ V̂‖ = ‖VHV̂⊥‖.

For V1,V2,V3 ∈ Op,r,

‖sinΘ(V2,V3)‖ � ‖sinΘ(V1,V2)‖+‖sinΘ(V1,V3)‖.
We use Proposition 1 and Lemma 1–2 to prove Theorem 3.

The SVD of

[
α z12

0 β

]
can be given as

[
α z12

0 β

]
=

[
u11 u12

u21 u22

][
σ1 0
0 σ2

][
v11 v12

v21 v22

]H

. (6)

Note that α2 > β 2 + z2
12 + z2

21 implies α2 > β 2 + z2
12 . Then by Proposition 1,

|v21| � 2√
10+2

√
5

(
αz12

α2 −β 2− z2
12

∧1

)
. (7)

From (6), we know that[
α 0
0 0

]
+

[
0 z12

0 β

]
=

[
σ1u11v11 σ1u11v21

σ1u21v11 σ1u21v21

]
+

[
σ2u12v12 σ2u12v22

σ2u22v12 σ2u22v22

]
. (8)

We find that the constructions of (X1,Z1),(X2,Z2) ∈H which given in Reference
[2] can also be use for our proof. Hence, we apply the constructions to complete the
proof.

Choose

X1 :=

⎡
⎣σ1u11v11Ir σ1u11v21Ir 0

σ1u21v11Ir σ1u21v21Ir 0
0 0 0

⎤
⎦ , Z1 :=

⎡
⎣σ2u12v12Ir σ2u12v22Ir 0

σ2u22v12Ir σ2u22v22Ir 0
0 0 0

⎤
⎦ ,

X2 :=
r
r

p1−2r

⎡
⎣αIr 0 0

0 0 0
0 0 0

⎤
⎦ and Z2 :=

r
r

p1−2r

⎡
⎣0 z12Ir 0

0 β Ir 0
0 0 0

⎤
⎦ .

Then

X1 +Z1 = X2 +Z2 = X̂1 = X̂2 =

⎡
⎣αIr z12Ir 0

0 β Ir 0
0 0 0

⎤
⎦ .

Denote U1 = [u11Ir u21Ir 0]T , V1 = [v11Ir v21Ir 0]T ,

U1⊥ =

⎡
⎣u12Ir 0

u22Ir 0
0 Ip1−2r

⎤
⎦ and V1⊥ =

⎡
⎣v12Ir 0

v22Ir 0
0 Ip2−2r

⎤
⎦ .
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Hence,

X̂1 = X̂2 =

⎡
⎣αIr z12Ir 0

0 β Ir 0
0 0 0

⎤
⎦ = [U1 U1⊥]

⎡
⎣σ1Ir 0 0

0 σ2Ir 0
0 0 0

⎤
⎦ [V1 V1⊥]H , (9)

X1 = σ1U1V
H
1 and Z1 = U1⊥

[
σ2Ir 0
0 0

]
VH

1⊥ (10)

thanks to (6) and (8).
From (9) and (10), one knows

UH
1 X̂1V1 = σ1Ir, UH

1⊥X̂1V1⊥ =
[

σ2Ir 0
0 0

]
, (11)

Z112 = PU1Z1PV1⊥ = 0 and Z121 = PU1⊥Z1PV1 = 0. (12)

By (11) and (12), σr(UH
1 X̂1V1) = σ1, ‖UH

1⊥X̂1V1⊥‖2 = σ2 and ‖Z112‖ = ‖Z121‖ =
0. Note that σ1 � α thanks to (6) and Lemma 1. From (6), αβ = σ1σ2 . Moreover,

σ1 � α and σ2 � β .

These conclude (X1,Z1) ∈ H .
On the other hand, denote U2 = [Ir 0 0]T , V2 = [Ir 0 0]T ,

U2⊥ =

⎡
⎣0 0

Ir 0
0 Ip1−2r

⎤
⎦ and V2⊥ =

⎡
⎣0 0

Ir 0
0 Ip2−2r

⎤
⎦ ,

one finds that the SVD can be given as follows,

X2 =

⎡
⎣αIr 0 0

0 0 0
0 0 0

⎤
⎦ = [U U⊥]

⎡
⎣αIr 0 0

0 0 0
0 0 0

⎤
⎦ [V V⊥]H .

Then

UH
2 X̂2V2 = αIr, UH

2⊥X̂2V2⊥ =
[

β Ir 0
0 0

]
, (13)

Z212 = PU2Z2PV2⊥ =

⎡
⎣0 0 0

0 z12Ir 0
0 0 0

⎤
⎦ and Z221 = PU2⊥Z2PV2 = 0 (14)

thanks to (9).
From (13)− (14), σr(UH

2 X̂2V2) = α, ‖UH
2⊥X̂2V2⊥‖2 = β , ‖Z212‖ = z12‖Ir‖ and

‖Z221‖ = 0. Hence, (X2,Z2) ∈ H .
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Note that Ṽ ∈ Op2×r is an estimator of V based on X̂ , then

sup
(X ,Z)∈H

‖sinΘ(Ṽ ,V )‖ � max
{‖sinΘ(Ṽ ,V1)‖,‖sinΘ(Ṽ ,V2)‖

}

� 1
2

[‖sinΘ(Ṽ ,V1)‖+‖sinΘ(Ṽ ,V2)‖
]
� 1

2
‖sinΘ(V1,V2)‖.

This with Lemma 2 tells

sup
(X ,Z)∈H

‖sinΘ(V,Ṽ)‖ � 1
2
‖VH

2⊥V1‖ =
1
2
‖v21Ir‖ =

1
2
|v21| · ‖Ir‖.

The above inequality with (7) shows

sup
(X ,Z)∈H

‖sinΘ(V,Ṽ )‖ � 1√
10+2

√
5

(
αz12‖Ir‖

α2 −β 2− z2
12

∧‖Ir‖
)

.

The proof is done. �

3. Proof of Theorem 4

We introduce a useful lemma, which plays a key role for proof of Theorem 4.

LEMMA 3. ([2]) Let V =

[
v11 v12

v21 v22

]
be right singular vectors of A =

[
a b
0 d

]
with

a,b,d > 0 and a2 � b2 +d2 ,

|v21| � 1√
2
.

Now, we can give the proof of Theorem 4.

Consider the following SVD of

[
α z12

0 β

]
,

[
α z12

0 β

]
=

[
u11 u12

u21 u22

][
σ1 0
0 σ2

][
v11 v12

v21 v22

]H

.

Note that α2 � β 2 + z2
12∧ z2

21 implies α2 � β 2 + z2
12 . Then by Lemma 3,

|v21| � 1√
2
. (15)

In fact, the constructions of (X1,Z1),(X2,Z2) ∈ H in the proof of Theorem 3 can
also be use for following discussions. We borrow the conclusions about (X1,Z1),(X2,Z2)
in the proof of Theorem 3 for completeness.
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Note that Ṽ ∈ Op2×r is an estimator of V based on X̂ , then

sup
(X ,Z)∈H

‖sinΘ(Ṽ ,V )‖ � max
{‖sinΘ(Ṽ ,V1)‖,‖sinΘ(Ṽ ,V2)‖

}

� 1
2

[‖sinΘ(Ṽ ,V1)‖+‖sinΘ(Ṽ ,V2)‖
]
� 1

2
‖sinΘ(V1,V2)‖.

This with Lemma 2 and (15) implies

sup
(X ,Z)∈H

‖sinΘ(V,Ṽ)‖ � 1
2
‖VH

2⊥V1‖ =
1
2
‖v21Ir‖ =

1
2
|v21| · ‖Ir‖ � 1

2
√

2
‖Ir‖.

The proof is done. �
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